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Analytical study of the self-healing property of Airy beams
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An analytical expression for the optical field of an Airy beam partially blocked by an opaque obstacle is
derived. The self-healing properties of the Airy beam are studied and discussed in detail. The study shows that
the self-healing process of the Airy beam is affected by many factors such as the opaque obstacle size, propagation
distance, wavelength, and parameters of the Airy beam. The self-healing process is caused by the convergence of
energy from the side to the position of the opaque obstacle and is finished when the convergence of energy flow
disappears. When the propagation distance is short, the main lobe of the Airy beam is affected by the obstruction
located near the main lobe. When the propagation distance is long, the main lobe of the Airy beam can be affected
by the obstruction located far away from the main lobe. The result agrees with the existing results and can be
explained by the caustic of the Airy beam.
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I. INTRODUCTION

In recent years, nondiffracting waves have attracted much
attention due to their many interesting properties and potential
applications [1–6]. The Airy beam, which was predicted by
Berry and Balaze within the context of quantum mechanics, is
one type of nondiffracting wave [7]. One of the most interesting
properties is the self-healing ability. However, since the Airy
beam has infinite energy, a long tail, and decays very slowly, it
is very difficult to generate such beams. In practice, truncated
Airy beams have been proposed and can be demonstrated
experimentally [8,9]. Both theory and experiment indicate that
the truncated Airy beams have almost the same properties as
the Airy beam, such as the self-healing ability and acceleration
[10–12], and exhibit more resilience against perturbations of
media [13,14].

The self-healing ability of Airy beams makes them very use-
ful in optical tweezing and many other areas. Both theoretical
and experimental works concerning the self-healing properties
have been carried out [10]. However, these theoretical studies
are restricted in their numerical calculations. To see the
self-healing process clearly, an analytical expression for the
self-healing of Airy beams has been derived in present paper.
With the help of the analytical expression, the self-healing
process and the effects of many factors, such as the size and
position of an opaque obstacle and propagation distance, on
the self-healing can be investigated simply; some interesting
results are obtained.

II. ANALYTICAL EXPRESSION FOR AN AIRY BEAM
PARTIALLY BLOCKED BY AN OPAQUE OBSTACLE

The optical field of the two-dimensional finite-energy Airy
beam at the origin is given by [10–15]

U1(x1,y1) =
∏

χ=x,y
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)
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where (x1, y1) represents the transverse coordinates of initial
plane, Ai( ) denotes the Airy function, ω0 is an arbitrary
transverse scale, and a in the exponential function is a
parameter associated with the truncation of the Airy beam.
To analytically study the self-healing properties of the Airy
beam, we assume that a finite opaque obstacle that partially
blocks the initial beam has Gaussian absorption efficiency.
Therefore, the transmittance function of the Airy beam has the
form

T (x1,y1) = 1 − exp

[
− (x1 − bx)2 + (y1 − by)2

w2
0

]
, (2)

where w0 is the size and (bx , by) is the central coordinates of
the opaque obstacle. With the help of the Fresnel diffraction
integral, the optical field at the receiver plane can be expressed
by

U2(x2,y2) = k

2πiz

∫ ∞

−∞

∫ ∞

−∞
U1(x1,y1)T (x1,y1)

× exp

{
ik

2z
[(x2 − x1)2 + (y2 − y1)2]

}
dx1dy1,

(3)

where (x2, y2) is a pair of coordinates on the z plane, k =
2π/λ, and λ is the wavelength. From Eqs. (1)–(3) and using
the Babinet principle, the optical field at the z plane can be
expressed as

U2(x2,y2) = u2(x2,y2) − u′
2(x2,y2), (4)

where u2(x2,y2) is the optical field of the Airy beam without
an obstacle and u′2(x2,y2) is the field of the Airy beam
passing through an off-axis Gaussian aperture. Performing the
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FIG. 1. Intensity distribution of the Airy beam at the initial plane (a) without an obstacle, (b) for bx = by = −0.6 cm and w0 = 1.5 cm, and
(c) for bx = by = −0.5 cm and w0 = 3 cm.

integration in Eq. (3) we obtain
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where η = z/kw2
0 and ξ = z/kω2

0 are the normalized propaga-
tion distance associated with the Gaussian beam and the Airy
beam, respectively, Sχ = ξ/(2 + 4iη) − i(a + 2bχω0/w

2
0),

and δχ = ξ (ia − Sχ )/2 + ibχη/ω0. From Eq. (5) we can see
that limη→∞ u′
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which agrees with the existing results [10–12]. From Eqs. (4)–
(6), the self-healing of the Airy beam blocked by an opaque
obstacle can be investigated analytically.

III. ANALYSIS AND DISCUSSION

To see the self-healing process of the Airy beam we set
a = 0.2 and ω0 = 1 cm in the following calculation. Contour
plots of the intensity distribution for the Airy beam at the
initial plane with an opaque obstacle located at a different
position are plotted in Fig. 1. As a comparison, the intensity
distribution for the Airy beam without an obstacle is plotted
in Fig. 1(a).

It should be pointed out that the normalized intensity in
the present paper is defined as the intensity divided by its
maximum intensity for the Airy beam without an opaque
obstacle under the same conditions. Figures 1(c) and 1(b) show
the intensity distribution of an Airy beam whose main lobe is
partially blocked by an opaque obstacle of a different size. It
can be seen that the beam blocked by an opaque obstacle can
be analytically expressed by Eqs. (1) and (2).

FIG. 2. Self-healing process of the Airy beam during propagation for a = 0.2, ω0 = 1 cm, and bx = −0.005 m at (a) the initial plane,
(b) ξ = 1, and (c) ξ = 2.
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FIG. 3. Distribution of the Poynting vector along the x axis for the Airy beam without an opaque obstacle for a = 0.2 and ω0 = 1 cm at
(a) ξ = 0.5, (b) ξ = 1, and (c) ξ = 2.

FIG. 4. Distribution of the Poynting vector along the x axis for the Airy beam with a different opaque obstacle for a = 0.2, ω0 = 1 cm,
bx = −0.5 cm, and ξ = 0.5 at (a) w0/ω0 = 1/4, (b) w0/ω0 = 1/2, and (c) w0/ω0 = 1.

FIG. 5. Distribution of the Poynting vector along the x axis for the Airy beam with a different opaque obstacle for a = 0.2, ω0 = 1 cm,
bx = −0.5 cm, and ξ = 1 at (a) w0/ω0 = 1/4, (b) w0/ω0 = 1/2, and (c) w0/ω0 = 1.
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FIG. 6. Distribution of the Poynting vector along the x axis for the Airy beam with a different opaque obstacle for a = 0.2, ω0 = 1 cm,
bx = −0.5 cm, and ξ = 2 at (a) w0/ω0 = 1/4, (b) w0/ω0 = 1/2, and (c) w0/ω0 = 1.

FIG. 7. Variation of the normalized intensity of the Airy beam with a different propagation distance for (a) a = 0.2, ω0 = 0.5 m, and
bx = 0.73 cm; (b) a = 0 (the exact Airy beam), ω0 = 0.5 cm, and bx = 1 cm; (c) a = 0.2, ω0 = 1 cm, and bx = 4.4 cm; and (d) a = 0, ω0 =
1 cm, and bx = 6.1 cm.
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FIG. 8. Variation of the normalized intensity of the exact Airy
beam (a = 0) along the trajectory x = (1.02 + ξ 2/4)ω0 with the
parameters denoted by the solid and dotted lines the same as in
Figs. 7(c) and 7(d), respectively.

To see the self-healing process of the Airy beam during
propagating, the evolution of the one-dimensional intensity
distribution is shown in Fig. 2. We see that when w0 is small,
the small part of the main lobe is blocked [see Fig. 2(a)] and
then the self-healing process is fast. In contrast, a large obstacle
causes slow reconstruction. From Fig. 2 we also see that the
position of the peak value intensity for the Airy beam with
a different obstacle moves isochronously from left to right
during propagation.

Because the Airy beam cannot keep its shape unchanged
during propagation due to its finite energy, its side lobes
gradually disappear and the main lobe evolves into a Gaussian
shape with the increase of propagation distance [14]. The
self-healing process can also be seen from the Poynting vector,
which is defined in the paraxial regime as

�S = �Sz + �S⊥ = 1

2η0
|U2|2ẑ + i

4η0k
[U2 �∇⊥U ∗

2 − U ∗
2

�∇⊥U2],

(7)

where η0 is the impedance of free space, �Sz denotes the
component along the z axis of the Poynting vector, and
�S⊥ = �Sx + �Sy is the transverse component. Because of the
symmetry of the Airy beam, only the Poynting vector along
the x axis is investigated in the following. The positive value
denotes the energy flow in the direction of the positive x axis
and the negative value denotes the opposite direction. The
normalized Poynting vector is defined as its value divided by
its maximum. As a comparison, the contour plot of �Sx for the
Airy beam without an opaque obstacle is plotted in Fig. 3.

Figure 3 shows that the flow of energy for the Airy
beam trends to spread from the center to both sides. From
a comparison with Fig. 2 we can see that the boundary for the
three cases is a straight line located to the left of the peak value
of the main lobe. The position of the boundary of the Poynting
vector also moves from left to right like the peak intensity of
the Airy beam during propagation.

The contour plots of the Poynting vector of the Airy
beam with an opaque obstacle are shown in Figs. 4–6, where
one could see that the distribution of the Poynting vector

becomes more complex due to disturbances of the obstacle.
For example, when the propagation distance is small (ξ = 0.5),
there is energy flow in the direction of the negative x axis
to the right of the boundary line, namely, some energy
around the center of the opaque obstacle converges into the
center to reform the beam. With the increase of propagation
distance, the convergence becomes slow (see Fig. 5). With a
further increase of the propagation distance, the convergence
gradually disappears, namely, the self-healing process has
finished (see Fig. 6). When the opaque obstacle is small, a
shorter propagation distance is needed to reform the beam
shape.

Besides the flow of energy, a physical explanation of the
self-healing process of the Airy beam can also be given by
catastrophe optics [16] and geometrical optics. Existing results
show that the self-healing property is attributed to the caustic
of the wave packet and generated by a continuum of sideways
contributions to the field [1,16–18]. These results can also
be obtained by using the analytical expression in the present
paper. The evolution of the intensity distribution of the Airy
beam with a different obstacle is shown in Fig. 7.

We can see that if the main lobe of the Airy beam is
blocked partially by an obstacle [see Figs. 7(a) and 7(c)], the
distorted main lobe will be reconstructed gradually during
propagation. However, if the side lobes are blocked partially
[see Figs. 7(b) and 7(d)], the main lobe remains unchanged
when the propagation distance is short; however, with an
increase of the propagation distance, the normalized intensity
for the main lobe decreases. When we further increase the
propagation distance, the effects of the obstacle on the main
lobe disappear. To see the variation of the main lobe during
propagation, the normalized intensity of the exact Airy beam
(a = 0) along the trajectory x = (1.02 + ξ 2/4)ω0 is plotted
in Fig. 8, where the parameters are the same as in Figs. 7(c)
and 7(d), respectively. From Figs. 7 and 8 we can see that the
obstruction of the main lobe will affect the intensity of the
main lobe of the Airy beam with a short propagation distance
and the obstruction far away from the main lobe will affect
the intensity of the main lobe for the Airy beam with a longer
propagation distance. The result agrees with the existing results
and can be explained by the caustic of the Airy beam [1,18].

IV. CONCLUSION

We derive an analytical expression for the optical field of
the Airy beam partially blocked by an opaque obstacle. Based
on the formula, the self-healing process of the Airy beam
in free space has been studied and discussed in detail. The
results show that self-healing process is affected by the size
of the opaque obstacle. A large opaque obstacle causes slow
reform of the Airy beam. Meanwhile, the position of the peak
value intensity for the Airy beam with a different obstacle
moves isochronously from left to right during propagation.
From the variation of the Poynting vector we can see that an
opaque obstacle will cause the energy flow and its direction
to change. Some energy around the center of the opaque
obstacle converges into the center to reform the beam. When
the convergence of the energy flow towards a center disappears
we can consider the self-healing process to be finished.
Although the obstruction of the side lobe far away from the
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main lobe does not affect the intensity of the main lobe in the
initial plane, it will affect the main lobe when the propagation

distance is longer. This agrees with the existing results and can
be explained by the caustic of the Airy beam.
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