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Optimal control of wave-packet localization in driven two-level systems and curved
photonic lattices: A unified view
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It is shown that wave-packet localization in space-periodic systems subjected to generic ac forces having
equidistant zeros is a highly nonlinear phenomenon that is fully controlled by the integral of the ac force over a
half period (i.e., the force’s impulse), and that suitably varying this impulse allows one to achieve wave-packet
localization for almost any value of the force’s amplitude, in contrast to the standard case of a harmonic force.
In particular, the result is demonstrated in two simple universal models—driven two-level systems in the limit
of small periods, and periodically curved waveguide arrays in the nearest-neighbor tight-binding approximation.
Remarkably, the problem motivated the introduction of a nonlinear generalization of the zeroth-order Bessel
function J0 (z).
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I. INTRODUCTION

Over the past few decades, the control of wave-packet
spreading by periodic driving fields has attracted a great deal of
attention in many branches of physics, including spin systems,
cold atoms in optical traps, quantum superconductor systems,
and quantum computing [1–3]. In this context, dynamic
localization (DL) [1,4–9] is the continual localization of an
initially localized wave packet by means of the application
of an ac field. DL has been demonstrated experimentally
with Bose-Einstein condensates in optical lattices [6,9], and
is closely related to the phenomenon known as coherent
destruction of tunneling (CDT), in which the tunneling of a
particle is suppressed when the amplitude and frequency of a
sinusoidal field present certain values which are associated
with zeros of the zeroth-order Bessel function J0 (z) [10].
Remarkably, DL also occurs in arrays of harmonically curved
optical waveguides with alternating curvature [11], in which
the periodic bending profile of the waveguide plays the role of
the ac field, and leads to the cancellation of diffraction. Once
again, DL occurs when the optical parameters involved are
tuned to various particular values associated with the zeros of
J0 (z) [11]. While it is natural to think that, with the period
fixed, wave-packet localization must depend on the driving
wave form, the main target of study up to now has only
been their dependence on the driving amplitude because of
the traditional use of sinusoidal functions. This has led to
it being implicitly assumed that there is an effective limited
discretization of the suitable values (of the driving amplitude)
associated with CDT and DL owing to the aforementioned
Bessel-function dependence. Recent work provides strong
evidence for a different dependence of DL on sinusoidal
and square-wave forces [8,9]. Since there are infinitely many
different wave forms, the question naturally arises: How can
one characterize quantitatively the effect of the driving wave
form on DL?

In this work, I show that a relevant quantity properly
characterizing the effect of the driving on the wave-packet
localization in space-periodic systems subjected to generic ac
forces f (z) having equidistant zeros is the impulse transmitted
by the force over a half period (hereafter referred to simply

as the force’s impulse [12] If ≡ ∫ T/2
0 f (z)dz, T being the

period)—a quantity integrating the conjoint effects of the
force’s amplitude, period, and wave form, and that the afore-
mentioned discretization is inessential in the sense that suitably
varying the force’s impulse allows one to achieve wave-packet
localization for almost any value of the force’s amplitude irre-
spective of the remaining parameters involved. The relevance
of the force’s impulse has recently been shown in the context
of ratchet transport [13] (i.e., directed transport by symmetry
breaking of zero-mean forces). Indeed, it has been shown that
optimal enhancement of ratchet transport is achieved when
maximal effective (i.e., critical) symmetry breaking occurs,
which is in turn a consequence of two reshaping-induced
competing effects: the increase in the degree of symmetry
breaking and the decrease in the (normalized) maximal force’s
impulse, thus implying the existence of a universal force wave
form that optimally enhances ratchet transport [13]. It has also
been demonstrated in the context of adiabatically ac-driven
periodic systems that the width of the separatrix chaotic layer
and the adiabatic condition depend on the maximal impulse
transmitted by the force over a period between two of its
consecutive zeros, irrespective of its wave form [14].

For the sake of clarity, the effect of the force’s impulse
on the wave-packet localization will be discussed here in the
absence of any ratchet effect. Remarkably, the consideration of
the force’s impulse provides an additional degree of freedom
to maximally optimize the control of DL and CDT. In
particular, the result is demonstrated in two simple universal
models—driven two-level systems [2] in which CDT is related
to the presence of crossings in the spectrum of Floquet
quasienergies, and periodically curved waveguide arrays in the
nearest-neighbor tight-binding (NNTB) approximation [11] in
which DL corresponds to periodic diffraction cancellation. The
relevance of these two models is now clear. On the one hand,
periodically driven two-level systems appear in many phys-
ical contexts including superconductivity, structural glasses,
magnetism, and quantum information theory [2,15–18]. For
example, a qubit itself is a two-level system, and the problem
of its control under an external time-dependent excitation is
essential in the field of quantum computing. On the other hand,

013813-11050-2947/2012/85(1)/013813(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.013813
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DL of light in periodically curved waveguide arrays [11,19]
provides the optical analog of DL for electrons in periodic
potentials subjected to ac electric fields [1], thereby giving
the attractive possibility of coherent manipulation of light in
photonic lattices.

II. CDT IN A DRIVEN TWO-LEVEL SYSTEM

Consider first the case of a charged particle confined to a
double-quantum-dot system [20], whose Hamiltonian may be
transformed to the standard two-level form

H = �σz + EF (t)σx

2
, (1)

where E is the amplitude of the driving field, σi are the standard
Pauli matrices, � represents the splitting between the two
eigenstates existing in the absence of a driving field (E = 0),
and

F (t) = F (t ; m,T ) ≡ N (m) sn

[
4Kt

T

]
dn

[
4Kt

T

]
, (2)

in which sn (·) ≡ sn (·; m) and dn (·) ≡ dn (·; m) are Jacobian
elliptic functions of parameter m [K ≡ K(m) is the complete
elliptic integral of the first kind] [21] and N (m) is a normal-
ization function (see Fig. 1, top) which is introduced for the
force to have the same amplitude 1 and period T , for any wave
form (i.e., ∀ m ∈ [0,1]). When m = 0, then F (t ; m = 0,T ) =
sin (2πt/T ), i.e., one recovers the previously studied case of a
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FIG. 1. (Color online) Top: Force F (t) [cf. Eq. (2)] versus
t/T , where T is the temporal period and N (m) ≡ 1/{a + b/[1 +
exp({m − c}/d)]}, with a ≡ 0.439 32,b ≡ 0.697 96,c ≡ 0.3727,d ≡
0.268 83, for four values of the shape parameter: m = 0 (si-
nusoidal pulse), m = 0.72 (nearly square-wave pulse), m = 0.99
(double-humped pulse), and m = 0.999 999 (sharp double-humped
pulse). Bottom: The normalized force’s impulse IF (m,T )/IF (0,T ) ≡
N (m)K(0)/[N (0)K(m)] versus m. The quantities plotted are dimen-
sionless.

harmonic excitation [1,6], while for the limiting value m = 1
the force vanishes. Note that, as a function of m, the force’s
impulse

IF = IF (m,T ) ≡ ET N (m)

2K
(3)

presents a single maximum at m = m
impulse
max � 0.717 (see

Fig. 1, bottom). Since the driving field is periodic in time,
Floquet theory allows one to write solutions of the time-
dependent Schrödinger equation as

ψ (t) = exp[−iεj t]φj , (4)

where j = L (R) denotes the left (right) quantum dot, while φj

and εj are the Floquet state and its corresponding quasienergy,
respectively. Noting that the driving field F (t) exhibits the
shift symmetry F (t) = −F (t + T/2), the von Neumann–
Wigner theorem [22] allows the two quasienergies to cross
as an external parameter, such as the field strength E or
the shape parameter m, is varied. Also, the limit of small
periods is assumed to obtain accurate theoretical predictions
of the quasienergies. Now, following standard perturbation
schemes [23], one may consider approximate solutions of the
eigenvalue equation[

H (t) − i
∂

∂t

]
φj (t) = εjφj (t) (5)

to obtain (see Ref. [20] for further details) the quasienergies
in the simple form

ε± = ±�|〈φ2
+〉T |,

(6)

〈φ2
+〉T ≡ T −1

∫ T

0
exp

[
iE

∫ t

T /2
F (τ ) dτ

]
dt.

Finally, after some simple algebraic manipulation (see the
Appendix), one obtains

ε± = ±�

2
J ∗(αm=0,m), (7)

J ∗(αm=0,m) ≡ Jcn(α; m), (8)

where

α = αm=0πN (m)

2K(m)
,

(9)

αm=0 = E

2π/T
,

while Jcn (α; m) is the generalized Bessel function (A1)–(A3).
Note that J ∗ (αm=0,m = 0) = J0 (αm=0), i.e., one recovers the
standard case of a sinusoidal driving field [20], as expected.
Figure 2 shows a contour plot of the numerically calculated
Floquet quasienergy |2ε+/�| together with the zeros of the
function J ∗ (αm=0,m) in the plane αm=0-m. One finds exact
agreement between the theoretical prediction (8) and the
numerical results obtained using the method described in
[23]. Such zeros correspond to crossings in the spectrum of
Floquet quasienergies (7), which in turn have been shown
[10] to be closely related to CDT. Thus, the inhibition of
wave-packet spreading, and hence the occurrence of CDT,
occurs on one-dimensional manifolds of zeros of the function
J ∗ (αm=0,m) in the plane αm=0-m, which begin at the zeros of
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FIG. 2. (Color online) Contour plot of the numerically calculated
quasienergy |2ε+/�| vs α (m = 0) ≡ E/ (2π/T ) and m together with
the one-dimensional manifolds associated with zeros of the function
J ∗ (αm=0,m) [cf. Eq. (12), dashed curves] in the plane α(m = 0)-m.
The quantities plotted are dimensionless.

J0 (αm=0) for m = 0. This inhibition occurs on each of such
manifolds at a minimal value of the ratio E/(2π/T ) when the
shape parameter is very near m

impulse
max � 0.717, meaning that

the force’s impulse is the quantity properly controlling CDT
in two-level quantum systems, at least in the limit of small
periods. Remarkably, the larger the ratio E/(2π/T ), the more
sensitive is the localization scenario to the force’s impulse (i.e.,
the greater is the curvature of the one-dimensional manifolds;
cf. Fig. 2). This means that the localization scenario is highly
nonlinear in the sense that it is different for small and large
amplitudes, and that the standard Bessel-function-induced
discretization of the suitable values of E/ (2π/T ) for CDT
is only a particular case associated with the sinusoidal wave
form.

III. OPTICAL DL

Consider now light propagation in a simple photonic
lattice: a one-dimensional periodically curved array of coupled
waveguides [24]. For single-mode waveguides, in the NNTB
approximation and assuming that the lowest Bloch band of the
array is excited, the following coupled-mode equations can be
derived [11,24]:

i
dψn

dz
+ C (λ) [ψn+1 + ψn−1] = n0d

..
x0 (z) nψn

λ
(10)

for the amplitudes ψn of the field in the individual waveguides,
where the overdot indicates the derivative with respect to
z (the propagation distance along the waveguides), n is
the waveguide number, n0 is the refractive index of the
medium, the coefficient C(λ) is the coupling strength between
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FIG. 3. (Color online) Top: Bending profile x0(z) [cf. Eq. (11)]
versus z/L, with L being the spatial period, for A = 1 and three
values of the shape parameter: m = 0 (sinusoidal bending), m =
0.9999 (intermediate bending), and m = 1 − 10−14 (nearly square-
wave bending). Bottom: One-dimensional manifolds associated with
zeros of the function J ∗ (βm=0,m) [cf. Eq. (14)] in the plane β(m =
0)-m, with m ∈ [0,0.99]. The quantities plotted are dimensionless.

the neighboring waveguides, λ ≡ λ/ (2π ) is the normalized
wavelength, d is the waveguide spacing, and

x0(z) = x0(z; m,L) ≡ A arcsin{√msn[4Kz/L; m]}
arcsin(

√
m)

(11)

is a function describing periodic waveguide bending in our
curved array, in which A is the bending amplitude, L is
the bending period, and the shape parameter m controls
the bending wave form (see Fig. 3, top). When m = 0,
then x0 (z; m = 0,L) = A sin (2πz/L), i.e., one recovers the
previously studied case of a sinusoidally bent array [11,24],
while for the limiting value m = 1 one has a square-wave
bending profile. Note that the area enclosed by the periodic
bending profile and the z axis plays the role of the force’s
impulse, Ix0 = Ix0 (m,L), which is a monotonically increasing
function of m reaching its supremum (least upper bound)
at m = marea

max = 1. Optical DL corresponds to periodic self-
imaging in the planes z = 0,L,2L,3L, . . .. In the NNTB
approximation, the condition for DL is

∫ L

0
cos

[
n0d

.
x0 (ζ )

λ

]
dζ = 0. (12)
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By substituting

.
x0 (ζ ) = 4A

√
mK

L arcsin(
√

m)
cn[4Kζ/L; m] (13)

into Eq. (12), and after some simple algebraic manipulation
(see the Appendix), one obtains the final condition for DL:

J ∗(βm=0,m) ≡ Jcn(β; m) = 0, (14)

where

β = 2βm=0
√

mK

π arcsin(
√

m)
,

(15)

βm=0 = 2πn0dA

λL
,

while Jcn(β; m) is the generalized Bessel function (A1)–(A3).
Note that J ∗(βm=0,m = 0) = J0(βm=0), i.e., one recovers the
standard case of a sinusoidally bent array [11,24], as expected.
Figure 3 (bottom) shows a contour plot of the zeros of the
function J ∗(βm=0,m) in the plane βm=0-m. One sees that op-
tical DL occurs on one-dimensional manifolds of zeros of the
function J ∗(βm=0,m) in the plane βm=0-m, which begin at the
zeros of J0(βm=0) for m = 0. This cancellation of diffraction
occurs on each of such manifolds at ever smaller values of
the ratio 2πn0dA/(λL) as the shape parameter approaches
marea

max = 1, meaning that the aforementioned enclosed area
or “the force’s impulse” is the quantity properly controlling
DL in periodically curved waveguide arrays, at least in the
NNTB approximation. In the limiting case m = 1 associated
with an exact square-wave waveguide, DL is impossible since
for pieces of straight waveguides the curvature

..
x0 is zero.

Indeed, one has limm→1 β = ∞ [cf. Eq. (15)], and hence
condition (14) is improperly satisfied according to properties
(A5) and (A6) (see Fig. 4). Remarkably, the larger the ratio
2πn0dA/(λL), the more sensitive is the localization scenario
to the force’s impulse (i.e., the greater is the curvature of
the one-dimensional manifolds; cf. Fig. 3, bottom)—again
showing its highly nonlinear character in the sense that it is
different for small and large values of the ratio 2πn0dA/(λL).

IV. CONCLUSIONS

In summary, for ac-driven space-periodic systems, it has
been shown that the impulse transmitted by the (effective)
force is an essential quantity for the optimal control of the
phenomena of coherent destruction of tunneling and dynamic
localization. The result, demonstrated here for driven two-
level systems in the limit of small periods and periodically
curved waveguide arrays in the nearest-neighbor tight-binding
approximation, reveals a common nonlinear scenario of
wave-packet localization—in contrast to the standard Bessel-
function-based scenario—and provides a powerful principle
to systematically develop the notion of quasienergy band
engineering [9], while it can be easily implemented experi-
mentally, for example in photonic lattices [24]. This principle,
which can be straightforwardly applied to other phenomena,
such as field-induced barrier transparency [25], inhibition of
light tunneling in waveguide arrays [26], and dynamics of
ultracold atoms held in optical-lattice potentials [27], opens up
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FIG. 4. (Color online) Top: Function J ∗(βm=0,m) [cf. Eq. (14)]

versus β(m = 0) for two values of the shape parameter: m = 0 [J0(z),
dashed line] and m = 0.99. Bottom: Function J ∗(βm=0,m) (dashed
line) and asymptotic behavior [cf. Eq. (A6)] versus β(m = 0) for
m = 1 − 10−14. The quantities plotted are dimensionless.

new avenues for applications of the wave-packet localization
effect in diverse physical contexts including optical lattices,
semiconductor superlattices, waveguide arrays, and quantum
dots.

ACKNOWLEDGMENTS

The author is grateful to Charles Creffield for useful
discussions and for developing the numerical code used to
calculate the Floquet quasienergies, and to Yuri Kivshar
for useful discussions and kind hospitality at the Canberra
Nonlinear Physics Centre where part of this work was carried
out.

APPENDIX : ELLIPTIC GENERALIZATION OF THE
BESSEL FUNCTION J0(Z)

The cn-based elliptic generalization of the Bessel function
J0(z) is defined by the integral

Jcn(z; m) ≡ 1

2π

∫ 2π

0
exp{−izcn[2Kθ/π ; m]}dθ, (A1)

which, after changing to variables θ = πp/(2K) and ζ =
am (p; m) (elliptic amplitude [21]), and using the relationship
1 = msn2 (p; m) + dn2 (p; m), can be recast into the form

Jcn(z; m) = 1

4K

∫ 2π

0

exp(−iz sin ζ )√
1 − m sin2 ζ

dζ. (A2)
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By expanding the square root in a power series and using
standard integral tables, one finally obtains

Jcn(z; m) = π

2K

∞∑
n=0

cn

(
m

z

)n

Jn (z) , (A3)

where cn = ( n − 1/2
n )(2n − 1)!! and Jn (z) is the nth-order

Bessel function. By using standard properties of the Bessel

functions [28], one straightforwardly obtains

Jcn(z; m = 0) = J0(z), (A4)

lim
m→1

Jcn(z; m) = 0, (A5)

Jcn(z → ∞; m) ∼
√

π

2zK2
cos

(
z − π

4

)
, (A6)

Jcn(z → 0; m) ∼ π

2K

∞∑
n=0

cn

n!

(m

2

)n

. (A7)
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