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Inherent Mach-Zehnder interference with “which-way” detection for single-particle
scattering in one dimension
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We study the coherent transport of a single photon in a one-dimensional coupled-resonator array, nonlocally
coupled to a two-level system. Since its inherent structure is a Mach-Zehnder interferometer, we explain the
destructive interference phenomenon of the transmission spectra according to the effect of which-way detection.
The quantum realization of the present model is a nanoelectromechanical resonator array with two nearest
resonators coupled to a single spin via their attached magnetic tips. Its classical simulation is a waveguide of a
coupled-defected cavity array with double couplings to a side-defected cavity.
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I. INTRODUCTION

In quantum mechanics, Bohr’s complementarity principle
for wave-particle duality could be displayed in various double-
slit experiments (DSEs) [1]. It manifests that a detection about
which way a particle takes in a DSE inevitably destroys
quantum interferences, thus, the particle behavior (spatially
localized) emerges while wavelike behavior (interference)
disappears. Otherwise, if the detectors (apparatuses or envi-
ronments) cannot distinguish the different possible paths well,
the interference recovers [2–4]. Many experiments have tested
this duality property through the which-way detection [5–8]. In
this paper, we show the effect of which-way detection in a class
of experimentally accessible systems with an inherent structure
of the Mach-Zehnder interferometer where two virtual paths
intrinsically are embedded.

We illustrate this observation with a single particle (pho-
ton or phonon) propagating in a one-dimensional coupled-
resonator array (CRA) where a localized two-level system
(TLS) simultaneously interacts with the confined electromag-
netic (EM) field modes in two nearest resonators [illustrated
in Fig. 1(a)]. The transported boson is scattered by the TLS
when it enters one of these two nearest resonators, and then,
the transmission and reflection spectra exhibit the interference
pattern of the two scatterings. One may superpose these two
local EM modes according to their couplings to the TLS [as
illustrated in Fig. 1(b)]. Their antibonding superposition is
decoupled with the TLS, while the only interaction between
the bonding superposition and the TLS performs a which-
way detection for the two virtual paths corresponding to
the bonding and antibonding modes. In this inherent Mach-
Zehnder interferometer with a which-way detector by the
TLS, as the coupling strength increases gradually, the intrinsic
interference in the scattering spectrum (the reflection and
transmission spectra) disappears progressively. The reason is
that the which-way detection only observes the particle motion
in the antibonding branch. Therefore, the de-interference
phenomenon for a single-particle scattering is understood in
terms of the inherent Mach-Zehnder interferometer under the
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intrinsic which-way detection, which seems to be absent in the
real configuration.

The paper is arranged as follows: In Sec. II, we introduce
the model for demonstrating the Mach-Zehnder interference.
In Sec. III, we study the single-photon propagating properties
on this structure. The physical mechanism of the observed
phenomena is explored in Sec. IV by taking advantage of the
Mach-Zehnder interference. The possible physical realizations
of the system are discussed in Sec. V. We conclude the paper
in Sec. VI.

II. MODEL SETUP

The present system consists of a CRA and a side-coupled
TLS. In contrast to the previous model [9–11], the TLS is
coupled to two modes supported by two nearest resonators as
illustrated in Fig. 1(a). The CRA is described by the model
Hamiltonian under the nearest-neighbor approximation,

HC =
∑

j

ωca
†
j aj −

∑

j

ξ (a†
j+1aj + H.c.), (1)

with the annihilation-creation operator aj/a
†
j of a confined

boson (photon in a single-mode cavity or cooled phonon in a
nanomechanical resonator) in the j th resonant cavity mode.
This is a typical tight-binding boson model. For simplicity, we
assume that all cavities have the same eigenfrequency ωc and
the intercavity coupling has the same strength ξ . In this array,
waves propagate freely and are characterized by the dispersion
relation,

ωk = ωc − 2ξ cos k, (2)

which forms a frequency band in a continuum spectrum.
The TLS with ground state |g〉, excited state |e〉, and energy-

level spacing �, is coupled to two nearest cavities of the one-
dimensional (1D) CRA with corresponding strengths g0 and
g1. Under the rotating-wave approximation, the dynamics of
the TLS interacting with the electromagnetic field is described
by the Jaynes-Cummings Hamiltonian,

HI = �σee + σ−(g0a
†
0 + g1a

†
1) + H.c., (3)
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(a)

(b)

FIG. 1. (Color online) Schematic of the studied system and
the physical mechanism. (a) The single boson (photon or phonon)
scattered by a nonlocal TLS simultaneously coupled to two nearest
resonators in a one-dimensional CRA and (b) the equivalent Mach-
Zehnder interferometer with which-way measurement where the
bonding and antibonding superpositions of the two local cavity modes
form two paths for interference, one of which is probed by the TLS
while the other is decoupled with it.

where the first term describes the free energy of the TLS with
σee = |e〉〈e|. The operator σ− = |g〉〈e| and its adjoint σ+ are
the corresponding lowing and rising operators. We remark
that the present model can be implemented physically with a
nanoelectromechanical resonator array or a defect resonator
array on a photonic crystal. The detailed description will be
presented in Sec. V.

III. SINGLE-PHOTON SCATTERING

It is clear that the number of excitations is conserved in this
hybrid system. In the one-excitation subspace, two mutually
exclusive possibilities are considered: The particle either is
propagating inside the cavity or is absorbed by the TLS. It
indicates that the eigenstate has the form

|Ek〉 =
∑

j

[ukja
†
j |0g〉 + uke|0e〉]. (4)

From the Schrödinger equation (HC + HI )|Ek〉 = Ek|Ek〉, we
derive a series of coupled stationary equations for the excited-
state amplitude uke and the amplitudes ukj of single-photon
states [9,10] in the j th cavity. Here, the part concerning the
excited state,

(Ek − �)uke = (g0uk0 + g1uk1)

leads to a dispersive coupling strength between the zeroth and
the first resonators and a nonlocal effective potential,

V (j ) = G(Ek)(|g0|2δj0 + |g1|2δj1), (5)

which is proportional to the Green’s function G(Ek) =
(Ek − �)−1. The single-excitation transport is described by
the discrete-scattering equation,

(ωc − Ek)ukj = ξ (ukj−1 + ukj+1) + G(Ek)(gjδj0

+ gj δj1)(g0uk0 + g1uk1). (6)

The first term on the right of Eq. (6) characterizes the hopping
between different sites as the kinetic term. And the double-δ

potentials in the send term are induced from the couplings
between the TLS and the CRA. However, such δ potentials are
nonlocal compared with the one-site coupling in Refs. [9–11].
Therefore, the coherent scattering by the two sites will bring
different physical effects.

The process that an incident wave impinges upon the
structure, where transmitted and reflected waves emerge, is
formulated by assuming

uk(j ) = exp(ikj ) + rk exp(−ikj ) (7)

for j � −1 and

uk(j ) = tk exp(ikj ) (8)

for j � 2 with reflection and transmission amplitudes rk and tk .
Concerning Eq. (6) with the zeroth and first resonators, with the
above assumptions, we immediately obtain the transmission,

tk = 2i sin k[(Ek − �)ξ − g0g1]

2i sin k(Ek − �)ξ − 2g0g1eik − (
g2

1 + g2
0

) , (9)

and reflection amplitudes,

rk = 2i sin kg2
1e

ik + 2g0g1e
ik + (

g2
1 + g2

0

)

2i sin k(Ek − �)ξ − 2g0g1eik − (
g2

1 + g2
0

) . (10)

The eigenenergy Ek = ωk is obtained by applying Eq. (6)
to the resonators far away from the resonators at j = −1 to
2. It is checked that the reflection coefficient R = |rk|2 and
transmission coefficient T = |tk|2 satisfy the identity |rk|2 +
|tk|2 = 1.

In Eqs. (9) and (10), it is clear that the transmission
generally vanishes at the band edges with k = 0,π . However,
constructive interference is found at k = π when g0 = g1 = g

(red solid line in Fig. 2). Compared to the case of one-site
coupling (solid dotted line in Fig. 2), the transmission does
not vanish at Ek = � with the nonvanishing amplitude,

tk�
= 2ig0g1 sin k�

2g0g1 exp(ik�) + (
g2

1 + g2
0

) , (11)

FIG. 2. (Color online) Transmission coefficient T with transition
energy � = ωc = 2 as a function of the photon incident energy Ek .
The coupling strengths g0 = 0.5 and g1 = 0 for the black dotted line,
g0 = g1 = 0.5 for the red solid line, g0 = 1 and g1 = 1.5 for the green
dot-dashed line, and g0 = 1 and g1 = 2.5 for the blue dashed line.
All parameters are in units of ξ .
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due to the nonlocal coupling between the TLS and the CRA.
Obviously, the position of transmission zero is shifted to
� + g0g1/ξ . When the coupling gets stronger, the transmis-
sion dip gradually moves outside the spectrum band, thus, no
transmission zero appears as shown in Fig. 2. The coupling
between the TLS and the CRA induces effective double-δ
potentials in the way of photon propagation. The strength
tends to infinite potentials at Ek = �, which indicates the
total reflection. However, the straightforward physics picture
fails to explain the nonvanishing transmission at Ek = � in
the case of nonlocal coupling.

IV. DE-INTERFERENCE AND WHICH-WAY
EXPLANATION

To give an intuitionistic explanation about the nonvanishing
point of transmission, we now introduce the bonding and
antibonding modes,

B = a0 cos θ + a1 sin θ,

D = −a0 sin θ + a1 cos θ,

where tan θ = g1/g0. When g0 = g1 = g, modes B and D

present two virtual paths without direct coupling between
each other, then the CRA virtually becomes an equivalent
Mach-Zehnder interferometer [see Fig. 1(b)] where arm B

experiences a which-way measurement by the TLS. Those
cavities on the left of the cavity at j = −1 or on the right
of the cavity at j = 2 are regarded as the left and right leads,
which are connected to each other via two arms. The lower arm
corresponds to the antibonding model D of eigenfrequency
ωD = ωc + ξ sin 2θ , while the upper arm corresponds to
the bonding mode B of eigenfrequency ωB = ωc − ξ sin 2θ

coupled to the TLS with coupling strength
√

2g. The effective
hopping strengths between the bonding mode B and the
nearby cavities are ξ cos θ and ξ sin θ . It is emphasized that
antibonding mode D indeed is decoupled with the TLS.

In the above equivalent configuration, the propagating state
is a superposition of four mutually exclusive possibilities: (i)
the particle propagating inside left and right leads, represented
by state a

†
j |0g〉 with possibility amplitude ukj , (ii) absorbed by

the TLS, by uke|0e〉, (iii) propagating from the left to right lead
via the upper arm by B†|0g〉 with amplitude ukB , or (iv) via the
lower arm by D†|0g〉 with amplitude ukD . The superposition
of these four possibilities forms a stationary state |Ek〉 with the
band energy Ek . Here, three scattering channels are implied,
i.e., a single particle travels through the excited TLS or via
the bonding and antibonding branches, respectively, with the
TLS unexcited. In the reduced dimensionality, particles follow
two different paths defined by two virtual modes. We refer to
these two paths as paths B and D corresponding to the B slit
and the D slit. A dispersion δ potential is localized in path
B since the particle passing the B slit interacts with the TLS.
The total transmission amplitude is the sum of the amplitudes
in the two branches, and the interference pattern is determined
by the phase difference between the two paths. Therefore, the
suppression of quantum interference depends on the dwell time
of the single particle absorbed by the TLS.

An incoming wave with energy Ek , incident from the left
lead, is split into two branches at the first junction and joins
again into the outgoing wave at the second junction. The

propagation of the single particle around the ring [consisting
of sites −1, D, B, and 2 shown in Fig. 1(b)] is described as
follows: the discrete-scattering equation in path B,

(Ek − ωB)ukB =
√

2guke − ξ√
2

(uk2 + uk−1), (12)

which is coupled to the local atomic excitation characterized by

(Ek − �)uke =
√

2gukB.

In path D, the particle propagates freely with the motion
equation (Ek − ωD)ukD = ξ (uk2 − uk−1)/

√
2. However, on

the nodes with j = −1,2, the amplitudes for the single
particle are coupled to those two splitting nodes B and D,
respectively, with the following forms:

(Ek − ωc)uk−1 = −ξuk−2 − ξ√
2

(ukB + ukD), (13)

(Ek − ωc)uk2 = ξ√
2

(ukD − ukB) − ξuk3. (14)

Then, it follows from the above discrete-scattering
equation that the transmission amplitude tk = tDk + tBk
is given by the partial-wave transmission amplitude
tDk = i sin (k/2) exp(−ik/2) and

tBk = e−ik/2ξ (Ek − �) cos(k/2)

ξ (Ek − �) − g2 + ig2 tan−1(k/2)
, (15)

in paths D (B), respectively, in the absence of paths B (D).
When the incident single particle is resonant to the TLS, the

emitted wave from the TLS and the propagating modes in the
1D continuum lead to the complete suppression of the wave
transmission in path B, then photons take path D. Therefore,
the TLS prevents single-particle interference of paths B and
D. In this sense, the TLS serves as a which-path detector. It is
the potential exerted by the TLS that makes waves accumulate
a phase on path B, then the wave interference of paths B and
D displays a transmission zero in tk . However, the coupling
strength characterizes the time that the single-particle dwells
in the TLS. Consequently, the interference pattern is expected
to diminish as the coupling strength increases. Figure 3
shows the contour plots of transmission coefficient |tk|2 as
a function of the incident energy Ek and coupling strength
g. Here, we can see that, as coupling strength g increases,
the complete suppression of the wave transmission begins at
Ek = �, gradually shifts to the band edge, and then disappears.
One also may find that the perfect transmission at k = π

is independent of the potential exerted by the TLS. When
k = π , the probability amplitudes ukj = (−1)j for j �= 0,1
lead to destructive interference at the B slit since ukB = 0 and
constructive interference at the D slit. In this case, the TLS
effectively is decoupled from the CRA.

V. PHYSICAL IMPLEMENTATIONS

The above nonlocal coupling obviously distinguishes the
present investigation from the previous extensive ones [9,
10,12–14] where the TLS only is coupled to the EM field
in a single cavity. Experimentally, the previous setups are
feasibly implemented with the confined photons or the single-
mode phonon in some confined nanostructures [15], e.g., the
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FIG. 3. (Color online) Transmission coefficient |tk|2. Its contour
plot with respect to Ek and coupling strength g. All parameters are in
units of ξ .

circuit QED system, a semiconductor quantum-dot coupling
with nanoscale surface plasmons or the defect cavities of a
photonic crystal, and the nano-electromechanical-resonator
arrays where every resonator is coupled to a localized spin
[16]. To implement the present nonlocal coupling seems
difficult in the photonic CRA, but it could be feasible for
the nano-electromechanical-resonator array coupled to a local
spin, where two of the resonators are attached by magnetic
tips producing magnetic fields in the x direction (see Fig. 4).
With the charged resonators oscillating in the z direction and
under the rotating-wave approximation, the inter-resonator
coupling is realized via Coulomb forces [16], while two
of them simultaneously interact with a single spin through
the magnetic-field gradients [17]. In nano-electromechanical-
resonator experiments, parameters ωc, ξ , and � easily can
reach a 106-Hz frequency scale, and the cavity-TLS coupling
strength is on the order of 100 kHz. The second implementation
of the nonlocal coupling could be in a two-dimensional (2D)
photonic crystal [18], which is made up of a square lattice of
high-index dielectric rods as illustrated in Fig. 4. Here, two
nearest cavities in a waveguide of coupled-defected cavity
arrays is coupled to a side-defected cavity. In the single-
excitation subspace, the side cavity with two states (vacuum
and single photon) simulates the TLS in our general setup.

We note that, in reality, there are no ideal resonators, leads,
for example, different eigenfrequencies and coupling constants
in the CRA. To study all the limiting factors due to material
and device imperfections is not possible analytically since it
would be necessary to use a microscopic model. So here, we
only consider that the eigenfrequencies in the zeroth and first
resonators are different, which are denoted as ωc + ξω̄0 and
ωc + ξω̄1, and the coupling strength between zeroth and first
cavities is different from the others, which is denoted by ξη.
Then, the Hamiltonian for the system reads

H =
∑

j

[ωcja
†
j aj − ξj (a†

j+1aj + H.c.)] + HI ,

0

y

z

x
0

yyyy

z

x

(a)

(b)

FIG. 4. (Color online) Two physical implementations: (a) nano-
electromechanical-resonator arrays where two nearest resonators with
ferromagnetic particles in the tips are coupled to a localized spin. The
origin of the coordinate frame is at the spin. Here, all the resonators
are charged so that they interact with neighboring ones via Coulomb
forces (b). In the 2D photonic crystal, a side-defected cavity with
double couplings to a waveguide of coupled-defected cavity arrays.
In the single-excitation subspace, the side cavity with two states
behaves as a TLS.

where the eigenfrequency of each resonator and the coupling
strength between the resonators are defined as

ωcj = ωc + ξω̄0δj0 + ξω̄1δj1,

ξj = ξ + ξ (η − 1)(δj0 + δj1).

The transmission spectrum has the following form

tk = e−ik2i sin k[ηξ (Ek − �) − g1g
∗
0 ]

ηkξ (Ek − �) − (g1g
∗
0 + g0g

∗
1 )η − ḡk

,

where we have defined

ηk = η2 − (e−ik + ω̄0)(e−ik + ω̄1)

ḡk = |g0|2(e−ik + ω̄1) + |g1|2(e−ik + ω̄0).

It can be seen that the position of the total reflections shift from
� to � + g1g

∗
0/(ηξ ), which is related to coupling strength ηξ

between the zeroth and the first cavities but is independent of
the unequal eigenfrequencies of resonators in the CRA. This
observation can be found in the scattering process of a photon
on a CRA with one different eigenfrequency of resonators [19].
When only one resonator of the CRA has a different eigenfre-
quency, there is no total reflection unless the different eigenfre-
quencies tend to infinity. Different from Eq. (9), the phase near
the transmission dip does not change by π here. It is due to the
nonvanishing value of coupling parameter q in the Fano spec-
trum [20], which qualitatively measures the interference be-
tween the bound states and the propagating continuum states.

VI. CONCLUSION

In conclusion, we have studied the effect of which-way
detection inherent to a class of experimentally accessible
systems with some intrinsic Mach-Zehnder interferometer
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configuration to enjoy the quantum-classical interference of
two virtual paths. This observation is used to explain the
discovered progressive de-interference in the transmission
spectrum of single photons propagating in a 1D CRA as the
nonlocal couplings of a TLS to two nearest resonators in-
crease its strength gradually. Besides the quantum realizations
with the nano-electromechanical-resonator arrays where two
nearest resonators with magnetic tips simultaneously interact
with a single spin, the classical analog is proposed based on
a waveguide of a coupled-defected cavity array with double
couplings to a side-defected cavity.

We note that it seems there are two paths for the single
photon (or boson) as shown in Fig. 1(a): direct coupling via
coupling ξ (denoted as path 1) and indirect coupling via the
TLS with coupling strengths g0 and g1 (denoted as path 2),
which may make the whole interpretation simple. However, we
would like to emphasize that path 1 is not a well-defined path
for which-way detection for the following two reasons: First,
let us review the double-slit experiment where a single photon
passing through two independent paths (actually there might
be infinite paths, but we can divide them into two parts by
considering which slit the photon passes through) can exhibit
an interference pattern far away from the two slits. It is said
there are two paths because one can place a detector on any one
of the two paths to directly identify which path the photon has
taken. However, our setup is in the discrete coordinate space,
and there are no media between resonator 0 and resonator 1 on

path 1. Namely, one cannot use a detector to directly observe
that the single photon indeed passes through path 1. Second,
in the double-slit experiment, the amplitude of a photon at
a fixed point far away from the slits is the sum of the two
different paths. But in our model, the transmission amplitude
is not a sum of those from paths 1 and 2. However, in the
interpretation with paths B and D, one can identify which path
the photon has taken by placing a detector on B or D, and the
total transmission amplitude is exactly the sum of tBk and tDk ,
where tBk (tDk ) are acquired by ignoring paths D (B). So paths
B and D are well-defined independent paths. The introduction
of operators B and D is necessary besides understanding the
competition between the δ effective potentials and the effective
dispersive coupling strength as well as the total transmission
on the upper bound of the spectrum g0 = g1.
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