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Unitary cavity spin squeezing by quantum erasure
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Deterministic light-induced spin squeezing in an atomic gas is limited by photon shot noise or, equivalently,
by atomic state information escaping with the light field mediating the effective atom-atom interaction. We show
theoretically that the performance of cavity spin squeezing [M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić,
Phys. Rev. A 81, 021804 (2010)] can be substantially improved by erasing the light-atom entanglement, and
propose several methods for doing so. Accounting for light scattering into free space, quantum erasure improves
the scaling of cavity squeezing from S−1/2 to S−2/3, where S is the total atomic spin.
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I. INTRODUCTION

Squeezed spin states [1] are among the simplest many-
body entangled states to describe and characterize, since
their quantum correlations appear as an improved signal-
to-noise ratio in certain measurements. This improvement
makes squeezed spin states potentially useful for precision
metrology beyond the standard quantum limit (SQL) that
is set by the quantum fluctuations of independent particles.
In particular, spin squeezing might increase the stability
of atomic clocks, magnetometers, and other measurements
based on atom interferometry [2–5]. Many approaches to
spin squeezing have been proposed [2,6–21] and a number
of them have been demonstrated experimentally, including
atomic absorption of squeezed light [22], entangling gates
in an ion trap [23], projection by quantum nondemolition
(QND) measurement [24–26], atom-atom collisions [27–29],
and light-mediated interaction between distant atoms in an
optical resonator [30,31]. This last method, cavity squeezing
[19,20], has generated the strongest spin squeezing to date,
with 5.6 dB observed (no noise subtracted) and 10 dB inferred
(detection noise subtracted) [30].

Cavity squeezing relies on the off-resonant interaction
between an ensemble of atoms and a light field circulating in an
optical resonator cavity [19]. The atoms’ state-dependent index
of refraction modifies the cavity resonance frequency. If the
cavity is driven by a probe laser, the atom-induced resonance
frequency shift changes the optical power circulating in the
cavity, modifies the ac Stark shift it imparts to the atoms, and
thus affects the phase of the atomic state. This phase shift,
which depends on the states of all atoms in the ensemble,
introduces correlations between them and produces a squeezed
state of the total atomic spin. In the cavity squeezing scheme
analyzed in Ref. [19], the atomic spin is entangled with the
outgoing light field so that an outside observer can gain
information about the atomic state. While that information
can be used to reduce the variance of a transverse spin
component [6,32,33] and hence to perform conditional spin
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squeezing by QND measurement [24–26], it is ignored in
unconditional cavity squeezing and thus causes non-unitary
evolution in the spin subspace. Equivalently, the ac Stark shift
fluctuations associated with the probe-photon shot noise cause
an undesirable growth of the spin uncertainty region, reducing
the achievable cavity squeezing.

In this paper we propose schemes that suppress the effects of
photon shot noise, disentangle the outgoing light field and the
atomic spin, and ideally result in unitary evolution in the spin
subspace. We show that the photon shot noise suppression can
be achieved either by creating effective photon number states
using high-efficiency photodetectors and classical feedback
or by a spin-echo technique for canceling quantum noise.
Practically, this proposal shows that the performance of
unconditional light-induced squeezing can be improved well
beyond the limit set by photon shot noise or light-atom
entanglement. Fundamentally, it shows that one can engineer
light-mediated interactions between distant atoms without
leaving a trace of the atomic state in the light field.

A related idea has recently been proposed [35] in a
modification of the free-space scheme put forward by Takeuchi
et al. for spin squeezing by twofold light-atom interaction [15].
The modified scheme of Ref. [35] can produce exponential
squeezing for short times, but is ultimately limited by light
scattering into unobserved free-space modes. The near-unity
single-atom cooperativity readily available in optical res-
onators [36] reduces the rate of this scattering relative to the
squeezing, and allows the scheme we present here to achieve
substantially greater spin squeezing for a given atom number
than any free-space technique.

In Sec. II we analyze cavity squeezing in a one-sided
cavity where the coupling of the intracavity light field to
the continuum of external light modes is treated exactly in
the input-output formalism [37,38]. For an input light field
prepared in a near-monochromatic photon number state, no
information about the atomic state is contained in the outgoing
light field and the spin dynamics are therefore unitary. We
show that the evolution of the collective atomic spin is then
described by the one-axis twisting Hamiltonian introduced by
Kitagawa and Ueda [1]. In Sec. III we introduce the effects of
nonideal input light states, and in Sec. IV we use the results to
evaluate several practical implementation strategies: one using
a spin-echo technique to erase the phase information from the
outgoing light field, one using a squeezed input light field,
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and one using high-efficiency photodetectors to generate an
effective photon number state of the light field. In Sec. V we
consider the unavoidable effects of light scattering into free
space by the atomic ensemble, deriving the associated limit on
cavity squeezing with quantum erasure.

II. UNITARY CAVITY SQUEEZING USING AN INPUT
PHOTON FOCK STATE

In Ref. [19] the authors analyze cavity squeezing for
atoms in a symmetric Fabry-Pérot cavity driven by a coherent
field tuned to the slope of the resonance [Fig. 1(b)(i)]. The
performance of the scheme is limited by the entanglement
of the atomic spin variables with the light field leaving the
resonator. If the information in the light field is not used, then
it must be traced over, leading to decoherence of the atomic
state. This adds spin uncertainty which ultimately limits the
attainable amount of spin squeezing.

That this decoherence can be eliminated is most easily seen
in a setup with a one-sided cavity [Fig. 1(b)(ii)]. Provided
that the cavity is lossless, all incident light is reflected, and
nothing about the intracavity dynamics can be inferred from
the reflected power. If the near-monochromatic input light is
in a photon number state rather than a coherent state, then any
phase shift imparted to the reflected light cannot be measured
either. With no way for an outside observer to learn the state
of the atoms inside the cavity, their dynamical evolution must
be unitary, as we show explicitly below.

Briefly, we model the system with an effective Hamiltonian
that dispersively couples the atoms’ pseudospin degrees of
freedom to the optical resonator mode. After diagonalizing
this Hamiltonian, we use it to analyze the evolution of an
arbitrary initial pseudospin state under the action of an incident
light pulse with definite photon number. For a sufficiently
monochromatic pulse, the system evolves into a product state

FIG. 1. (Color online) Setup for cavity squeezing. (a) Atoms with
two pseudospin states |↑〉 , |↓〉 optically coupled to an excited state
|e〉. (b) The atoms are uniformly coupled to an optical cavity, either
symmetric (i) or one sided (ii), whose resonance frequency ωc lies
between the two optical transition frequencies. (c) The cavity is driven
by a pulse detuned from its resonance frequency, so that the intracavity
intensity depends on the atom-induced cavity frequency shift. (d) The
resulting ac Stark shift imparts an Sz-dependent phase shift to the
atoms, shearing the uncertainty distribution of a coherent spin state
on the Bloch sphere of total atomic spin S.

of the field and pseudospin degrees of freedom, where the
transformation of the pseudospin state is generated by the
one-axis twisting Hamiltonian [1].

The system we consider consists of N identical atoms
uniformly coupled to an optical resonator that, in contrast
to the system considered in Ref. [19], is one sided (Fig. 1).
The atoms have two stable states separated in energy by h̄ωa ,
such as hyperfine or magnetic sublevels, which we label as
the pseudospin states |↑〉i and |↓〉i for the ith atom. We define
total pseudospin operators 2Sz = ∑N

i=1(|↑〉i 〈↑|i − |↓〉i 〈↓|i),
the population difference between the stable states, and
S+ = Sx + iSy = ∑N

i=1 | ↑〉i〈↓ |i , S− = S
†
+. For simplicity,

we consider the case where the two optical transitions |↑〉 ↔
|e〉 and |↓〉 ↔ |e〉 connecting the stable states to the optically
active excited state |e〉 couple to the resonator with the
same single-photon Rabi frequency 2g. The cavity resonance
frequency ωc is chosen halfway between the two optical
transition frequencies, so that their single-photon detunings
±� = ±ωa/2 are of equal magnitude and opposite sign.
Within the rotating-wave approximation and neglecting, for
now, the scattering of photons into free space by the atoms,
the Hamiltonian for the intracavity system is

Hcav

h̄
= ωaSz +

N∑
i=1

ωc |e〉i 〈e|i + ωcc
†c

+
N∑

i=1

[g(|↑〉i〈e|i + |↓〉i〈e|i)c† + H.c.]. (1)

In this equation the first two terms describe the energy
of the atoms, the third describes the energy of the cavity
mode with photon annihilation operator c, and the terms
proportional to g describe the coupling of the atoms to the
light field. We are interested in the linear, dispersive regime
of atom-field interactions where � is large compared to g, to
the cavity linewidth κ , and to the excited-state linewidth �.
Assuming that the intracavity photon number c†c remains low
enough to keep the excited-state population negligible (i.e.,
〈c†c〉g2/�2 � 1), we adiabatically eliminate the excited state
|e〉 to replace the full atom-cavity interaction by an ac Stark
shift of the two pseudospin states. In so doing we also neglect
stimulated Raman processes which, under the same set of
assumptions, are too far off resonance to be significant. Using
the input-output formalism [37,38] to describe the coupling
with the field outside the cavity, we obtain the following
effective Hamiltonian for the dynamics of the pseudospin and
of the light field:

H

h̄
= ωaSz + ωcc

†c +
∫

dωωb†ωbω

+�c†cSz + i

√
κ

2π

∫
dω[b†ωc − c†bω]. (2)

The first three terms of the Hamiltonian account for the energy
of the atoms, of the cavity field, and of the field outside the
cavity with its continuous spectrum of creation operators b†ω.
The fourth term represents the dispersive coupling between
the cavity field and the atoms, and may be interpreted either
as an ac Stark shift of the atomic levels by the light field or
as a modification of the cavity resonance frequency by the

013803-2



UNITARY CAVITY SPIN SQUEEZING BY QUANTUM ERASURE PHYSICAL REVIEW A 85, 013803 (2012)

atomic index of refraction [19]. The coefficient � = 2g2/�

is both the cavity frequency shift per atomic spin flip and
the atomic transition frequency shift per intracavity photon.
The final integral is the coupling between the cavity and the
external field through the cavity’s partially transmissive input
mirror, leading to a damping of the energy stored in the cavity
field at rate κ .

The Hamiltonian H may be exactly diagonalized. First, note
that both Sz and the total photon number c†c + ∫

dωb†ωbω are
conserved. Thus, all product states |m〉 ⊗ |0〉 of an atomic
eigenstate |m〉 of Sz with the electromagnetic vacuum |0〉
are eigenstates of the full Hamiltonian. The eigenstates with
nonzero photon number require additional labels to specify the
spectral distribution of the photons. To find those eigenstates,
we follow Fano’s procedure for diagonalizing a discrete state
(the cavity mode) coupled to a continuum (the external field)
[39], which yields an operator that annihilates a photon in an
eigenstate of the total field:

aω = 1√
(ω − ωc − �Sz)2 + κ2/4

[
i

√
κ

2π
c

+ κ

2π
P

∫
dω′ bω′

ω − ω′ + (ω − ωc − �Sz)bω

]
. (3)

P is a reminder that the Cauchy principal value of the integral
must be taken over the pole at ω = ω′. This field operator
has the usual commutation relation [aω,a

†
ω′ ] = δ(ω′ − ω) and

allows us to rewrite the Hamiltonian (2) into the much simpler
form

H

h̄
= ωaSz +

∫
dωωa†

ωaω (4)

in which the first term is just the bare energy of the atoms
and the second describes, for a given atomic eigenstate
|m〉, a set of decoupled harmonic oscillators. The excitations
created by the a†

ω operators are photons with amplitudes to
be either in the cavity (c†) or in the outside continuum (b†ω′),
with the intracavity component resonantly enhanced near the
atom-shifted cavity resonance frequency ω ≈ ωc + �Sz. A
one-photon eigenstate can now be generated by acting with
the total field raising operator a†

ω on any of the vacuum states,

Ha†
ω|m〉 ⊗ |0〉 = h̄(ωam + ω)a†

ω|m〉 ⊗ |0〉, (5)

and repeated applications of a†
ω can yield arbitrary n-photon

states.
We are now equipped to calculate the evolution of the

atomic spin state under the action of input light pulses. In
particular, we consider an incident pulse containing exactly n

photons incident on the cavity, as described by the initial state

|	(−t0)〉 = |ψa〉 ⊗ 1√
n!

(∫
dωeiωt0B(ω)b†ω

)n

|0〉 , (6)

where |ψa〉 is an arbitrary state of the atoms and B(ω) is
the pulse amplitude spectrum. We have written this initial
state explicitly as a product state of the atoms and field,
emphasizing that the creation operator b†ω acts only on the
field outside the cavity. We take the initial time −t0 to be
far in the past, before the pulse arrives at the resonator

[specifically t0 � max |dB(ω)/dω|2/3]. Reexpressed in terms
of field eigenstates, the initial state is

|	(−t0)〉 =
√

(−i)n

n!

(∫
dωei(ωt0−�ω)B(ω)a†

ω

)n

|ψa〉 ⊗ |0〉 ,

(7)

where we have introduced an atom-dependent operator

�ω = arctan

(
κ/2

ω − ωc − �Sz

)
− π

4
(8)

which represents the phase lag of the intracavity field’s
response to an external drive at frequency ω. In this form,
all components of |	〉 evolve with known frequency, so it is
straightforward to find the final state at +t0, long after the light
pulse has reflected from the cavity. Writing this final state in
terms of operators that act separately on the field (b†ω) and on
the atoms (Sz), we see that it is, in general, entangled:

|	(+t0)〉 = (−i)ne−2iωa t0Sz

√
n!

×
(∫

dωe−i(ωt0+2�ω)B(ω)b†ω

)n

|ψa〉 ⊗ |0〉. (9)

However, for a near-monochromatic input pulse centered on a
frequency ωp with a bandwidth much less than κ , the atomic
operator �ω is approximately �ωp

over the spectrum of the
pulse and the state factorizes into

|	(+t0)〉 = e−2i(n�ωp +ωat0Sz) |ψa〉

⊗ (−i)n√
n!

(∫
dωB(ω)e−iωt0b†ω

)n

|0〉. (10)

In this limit of an incident monochromatic n-photon Fock state,
the final field state is independent of the atomic state (the pulse
has simply been reflected by the one-sided cavity), while the
atomic state has been transformed by the unitary operator

Un = e−2i(n�ωp +ωat0Sz). (11)

The dynamics of interest in the spin subspace are encoded
in the nonlinear operator �ωp

. When the pulse frequency is
tuned to the slope of the Lorentzian cavity resonance, ωp =
ωc + κ/2, and provided that N� � κ so that the atoms do not
shift the cavity resonance frequency by a large fraction of the
cavity linewidth, we can expand �ωp

to second order in the
spin rotation angle φ0 = 2�/κ imparted by a single incident
photon. We find

Un = e−i(2ωat0Sz+nφ0Sz+ n
2 φ2

0S2
z ), (12)

where the terms linear in Sz generate a precession of the atomic
pseudospin and the term quadratic in Sz generates a shearing
or Sz-dependent rotation.

To isolate the shearing term it is convenient to apply
this transformation twice, separated by a π pulse on the
atoms which inverts Sz. The overall effect is the two-pulse
transformation

Uρ,μ = e−i(ρSz+ 1
2 μS2

z ) (13)

obtained by the sequence Un1 –π–Un2 with photon numbers
n1 and n2. Here ρ = (n2 − n1)φ0 is the phase rotation angle
and μ = (n2 + n1)φ2

0 is the strength of the shearing action
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expressed as an atomic phase shift per unit change in Sz. In
the ideal case where the incident photon number is identical
in the two pulses, n1 = n2, we find the one-axis twisting
transformation U0,μ = e−iμS2

z /2 considered by Kitagawa and
Ueda [1]. Their results for the spin squeezing achievable by
this transformation are reviewed in Appendix A.

Thus we find that the twofold interaction of an n-photon
pulse with the atom-cavity system can realize the S2

z one-axis
twisting Hamiltonian, at least when scattering into free space
is ignored (see Sec. V). The unitary evolution in the spin
subspace can be understood as a consequence of the absence
of photon shot noise, or equivalently, of the absence of phase
information in the reflected light that would reveal the atomic
state. While the same transformation can be accomplished with
a single input pulse followed by a photon-number-dependent
rotation of the atomic spin, it is easier to implement using the
double-pulse sequence, as we shall see below.

III. EFFECTS OF UNCERTAIN PHOTON NUMBER

For input pulses with uncertain photon number, we can find
the expectation value of an atomic observable by averaging
over the possible photon numbers of the input state. In general,
such an average will depend on all moments of the photon
number distribution. However, an important special case arises
when the phase per photon φ0 is small and the photon numbers
are large such that the distributions for n1 and n2 approach
Gaussians. In the common case where the fluctuations in the
photon number difference (n2 − n1) have a variance which
scales with the total photon number, the rotation angle variance
can be expressed as 〈�ρ2〉 = γ 〈μ〉, with γ a proportionality
constant which is 1 for the case of independent photon shot
noise fluctuations on n1 and n2. The variance of the shearing
〈�μ2〉, meanwhile, is higher order in φ0 and vanishes in the
limit we are considering, so we will not distinguish between
μ and its expectation value 〈μ〉 hereafter. In this regime the
squeezing is determined only by the total number of atoms 2S,
the shearing μ set by the mean total photon number 〈n1 + n2〉,
and the ratio γ of rotation uncertainty to shearing set by the
variance of the photon number difference n1 − n2 between the
two pulses. For large S, an initial atomic pseudospin polarized
along x̂, μ � 1, and 〈ρ〉 = 0, the final spin expectation values
are approximated as

〈Sx〉 = Se− 1
2 v, (14)

〈Sy〉 = 〈Sz〉 = 0, (15)〈
S2

y

〉 = S

2
[1 + S(1 − e−2v)], (16)

〈
S2

z

〉 = S

2
, (17)

〈SySz + SzSy〉 = 2
〈
S2

z

〉
μ〈Sx〉 = S2μe− 1

2 v, (18)

where v = γμ + μ2〈S2
z 〉 is the characteristic phase variance

resulting both from the uncertainty on the photon number
and from the shearing. The mean spin length 〈Sx〉 is reduced
as the phase broadening v wraps the uncertainty region around
the Bloch sphere. The transverse variance 〈S2

y〉 is initially
the projection noise S/2, then grows as the phase variance
scaled by the length of the Bloch vector S2v, before saturating

0 2 4 6 8
0.001

0.01

0.1

1

103μ

ζ

FIG. 2. (Color online) Cavity squeezing for S = 104 and varying
degrees of photon shot noise suppression: none (γ = 1, dotted red),
90% (γ = 0.1, dashed blue), 99% (γ = 0.01, chain dotted green),
and complete (γ = 0, solid black). In this figure, noise due to photon
scattering into free space is ignored, corresponding to a cavity with
single-atom cooperativity parameter η � 1 (see Sec. V).

near S2/2 when the uncertainty distribution has completely
wrapped around the Bloch sphere. The cross correlation
〈SySz + SzSy〉 is the product of the variance of Sz, the phase
change μ per unit Sz, and the change in Sy per unit phase. Using
Eq. (A7) to compute the minimum transverse spin variance
〈�S2

min〉 and comparing this variance to the reduced mean spin
length 〈Sx〉 gives the metrological squeezing parameter [2,3]

ζ = 2S
〈
�S2

min

〉
〈Sx〉2

. (19)

ζ−1 is the squared signal-to-noise ratio, relative to the standard
quantum limit, of a measurement of the total pseudospin’s
direction.

Figure 2 shows the squeezing parameter calculated as a
function of shearing strength μ for S = 104 and residual
fractions of photon shot noise γ of 1, 0.1, 0.01, and 0. In general
the squeezing parameter first decreases as ζ ≈ 2γ /(Sμ) under
the action of the shearing before rising again as ζ ≈ S2μ4/24
as the curvature of the Bloch sphere deforms the uncertainty
region. In the limit γ → 0 we recover the ideal squeezing
from perfect one-axis twisting as considered in Ref. [1] and
Appendix A: ζ ≈ (Sμ)−2 + S2μ4/24, leading to an optimum
squeezing that scales as ζ ≈ 122/3/(8S2/3).

Even if the input field contains a definite photon number,
imperfections in the resonator can introduce optical loss. Since
the loss of photons is a random process, it reintroduces noise on
the number of photons which interact with the atoms, and thus
decoherence. Such optical loss processes can quite generally
be understood as coupling the cavity to a second continuum
of modes into which the photons are scattered. For example,
we might imagine a second continuum of modes b′

ω behind
the right-hand cavity mirror of Fig. 1(b)(i) and then allow this
mirror to be partly transparent. Since the cavity field c couples
to a weighted sum of the incident field mode bω and the various
independent unobserved modes b′

ω we can, following Fano,
identify a single linear combination of all the field modes at
a given frequency that couples maximally to the cavity mode
and one or more orthogonal combinations (as many as there
are unobserved fields) that do not couple to the cavity mode
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at all [39] (see Appendix B for a practical consequence of this
separation into coupled and uncoupled modes). If the average
fraction lost of the input pulse at one half-linewidth detuning
is � � 1, then the probability of an incident photon being in
one of these uncoupled modes and failing to interact with the
cavity mode is 1

2 (1 − √
1 − 2�) ≈ �/2, yielding a binomial

distribution for the cavity-coupled photons whose variance is
γ ≈ �/2 times photon shot noise. In other words, the noise in
the photon number difference n2 − n1 to which the squeezing
is sensitive is just the shot noise of the lost photons.

IV. PRACTICAL PHOTON SHOT NOISE
SUPPRESSION SCHEMES

In this section we show how to achieve reduced photon shot
noise γ < 1 using several schemes of practical interest.

A. Spin-echo quantum eraser for coherent input pulses

If the input consists of two independent coherent pulses
(Fig. 3, top), 〈�(n2 − n1)2〉 = 〈n2〉 + 〈n1〉 and γ = 1. In this
case we recover the scaling obtained by Takeuchi et al.
[15] for their polarization-feedback scheme in free space:
ζ ≈ 2/(Sμ) + S2μ4/24, with the best squeezing, obtained
for a shearing parameter μ ≈ 121/5/S3/5, scaling as ζ ≈
5/(3841/5S2/5). Note that these results do not take into account
free-space scattering, which can be ignored only if a cavity
with cooperativity η > 1 is used (see Sec. V).

However, if the same coherent pulse is reused for both
interactions by storing it in an optical delay line while the π

pulse is applied to the atoms (Fig. 3, bottom), then ideally
n2 = n1 and ρ = γ = 0. Information about Sz is encoded
in the optical phase shift of the coherent pulse after its first
reflection from the cavity, but this is erased during the second
reflection, which applies the opposite phase shift since Sz has
changed sign in the interim. Thus the light is disentangled
from the atoms at the end of the sequence and the overall
evolution of the atoms is unitary. In a real implementation

n1
n2

n1

n1

FIG. 3. (Color online) Cavity squeezing with coherent pulses.
Previous experimental demonstrations of cavity squeezing [30] used
two separate coherent pulses with statistically independent photon
numbers n1 and n2 (top). If, instead, a single coherent pulse is used
for both interactions with the cavity (bottom), the two photon numbers
n1 and n′

1 differ only by the optical losses between the two interactions
and the effect of their correlated fluctuations can be canceled out by
a spin-echo sequence.

there will be losses in the delay line used to store the pulse
between its two interactions with the cavity, such that n2 will
not be precisely equal to n1 and ρ will not exactly vanish. If a
fraction � of the photons is lost between the two pulses, then
〈�(n2 − n1)2〉 = 〈n1〉� ≈ (〈n2〉 + 〈n1〉)�/2, where the second
approximation holds for small losses, giving γ ≈ �/2. Again,
the squeezing is limited by the shot noise of the lost photons.

B. Squeezed input pulses

One demonstrated approach to improving optical atom de-
tection for a given number of photons is to use a squeezed state
of the input light field [40]. We therefore consider the effect of
incident pulses whose fluctuations in phase with the coherent
amplitude α are squeezed so as to reduce intensity noise in
the cavity. The photon number variance of such pulses can be
parametrized as [41,42] 〈�n2〉 = |α|2e−2s + 2 sinh2 s cosh2 s

where α is the coherent amplitude of the pulse. The usual
optical squeezing parameter s is related to the shot noise sup-
pression factor by γ = e−2s + (2 sinh2 s cosh2 s)/〈n2 + n1〉.
Note that γ does not decrease monotonically with s but
reaches a minimum which improves with photon number as
γ ∼ (n2 + n1)−1/3, because squeezing reduces the fluctuations
in a quadrature of the incident electric field rather than in its
magnitude. Delivering such squeezed light to the cavity in the
presence of optical losses remains experimentally challenging,
but sources providing 9-dB-squeezed light to gravitational
observatories have been demonstrated [43], so that suppression
factors of order γ ∼ 10−1 may be attainable by this approach.

C. Generation of effective Fock states by measurement

Another approach to suppressing photon shot noise relies on
the conservation of total photon number in this scheme: every
photon sent into the cavity must leave it and, for a single-ended
cavity with negligible loss, every photon leaves in the same
reflected mode. This identity between photon numbers of the
input and output fields allows an effective input Fock state to be
produced using high-efficiency photon counters and classical
feedback. Such feedback-generated Fock states were studied in
the early days of light squeezing research [44] but have not seen
wide use because, in the absence of a QND photodetector, the
photon Fock state is destroyed in the very detection process that
generates it. However, since the spin-squeezing setup does not
change the photon number we may place it inside the feedback
loop, before the photodetector (Fig. 4), thus sidestepping this
difficulty.

In the simplest scheme, a coherent laser pulse is sent into the
cavity and the reflected light is collected by a photon counter.

FIG. 4. (Color online) By counting photons after their interaction
with the cavity, the squeezing light pulse can be projected onto a
definite photon number state. With fast classical feedback it can even
be steered to a predetermined number state for unconditional photon
shot noise suppression.
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If a perfect photon counter detects n photons in the light pulse
reflected from the cavity, then the system is projected into
the state obtained for an incident n-photon Fock state. The
photon-counting measurement has removed the uncertainty
on the energy of the incident light pulse and has destroyed
the complementary information in the phase of the light field,
which would have revealed the atomic state via the cavity
frequency shift. Conditioned on the reflected photon number,
the atomic dynamics are unitary: although the evolution of the
spin state depends a priori on the uncertain photon number
in the incident pulse, a posteriori the experimenter knows
exactly which unitary operation was performed by the light
pulse whose photon number was measured. Note that no useful
information can be obtained from the photon arrival times at
the counter. Since the spectrum of the incident light must be
much narrower than the cavity linewidth, the arrival time of
the photons has a Fourier-limited uncertainty much larger than
the cavity lifetime and one cannot determine whether a photon
entered the resonator or merely bounced off the input mirror.

Rather than contenting oneself with conditional unitary
evolution, one can deterministically generate the equivalent of
an input Fock state by applying direct feedback to the incident
light. One must merely count reflected photons and switch the
light source off once some target photon number n has been
reached.

Finite photodetector quantum efficiency will introduce an
uncertainty on the number of input photons for a given detected
photon count. The residual photon shot noise obtained by
this technique will therefore be at best γ = 1 − Q, where
Q is the quantum efficiency of the photodetector. Note that
a transmission-based QND measurement of the atomic spin
as used in Ref. [25] can squeeze initially as ζ ≈ 2/(SμQ),
which is slower than the ζ ≈ 2γ /(Sμ) of cavity squeezing
for any finite quantum efficiency. Even a perfect photon-shot-
noise-limited phase measurement of the light reflected from
a one-sided cavity could squeeze only as ζ ≈ 1/(4SμQ),
so that for Q � 85% conditional squeezing by measurement
still proceeds more slowly than cavity-feedback squeezing
using the same photodetector to suppress photon shot noise
fluctuations.

V. EFFECTS OF SCATTERING INTO FREE SPACE

So far, we have neglected scattering of photons into free
space. Like atom loss in collisional squeezing of Bose-Einstein
condensates [45], such photon loss degrades the performance
of light-induced spin-squeezing schemes [13,14] unless a
suitable level scheme is used to avoid its effects [18]. In the
simple and symmetric model we consider, the average number
of photons scattered into free space per atom in the ensemble
is given by

2r = (n1 + n2)
φ0

2

�

�
= μ

2η
,

where the numbers of photons Raman and Rayleigh scattered
are equal to each other and to r . The scattering depends only
on the shearing μ and the cavity cooperativity η = 4g2/(κ�),
so that for any finite single-atom cooperativity η scattering into
free space is inescapable at any detuning �. Scattering leads
directly to atomic decoherence by revealing the state of certain

atoms to a hypothetical observer outside the cavity and, in the
case of Raman scattering, by randomly flipping some spins
in the ensemble. Here we apply the treatment of these effects
given in Ref. [19] to the case of unitary cavity feedback.

All photons scattered into free space reveal the internal
state of the scattering atom to a hypothetical observer. For
Raman scattering, the state is encoded in the frequency of the
scattered light. For Rayleigh scattering, it is encoded in the
phase of the scattered field, because the laser detuning from
resonance has opposite sign for the two spin states [46]. Any
atom which scatters a photon into free space therefore acquires
an unknown phase, entangled with the information lost in the
scattered field and uncorrelated with that of the other atoms
in the ensemble. The mean length of the Bloch vector is thus
reduced from S by a factor of C = e−2r corresponding to the
fraction of atoms which have scattered no photons.

Raman scattering, in addition, modifies the relative popu-
lation of |↑〉 and |↓〉, and forces us to distinguish between
the spin component Sz found at the end of the squeezing
and its time-averaged value S̄z during the squeezing process.
The distribution of Sz is unaltered by the Raman scattering,
since it already corresponded to the sum of independent
random ±1/2 contributions from the uncorrelated atoms in
the initial state. But since spins which flip partway through
the squeezing pulse contribute less to the time average, 〈S̄z

2〉
is reduced to (1 − 2r/3)S/2, to leading order in r . Since it
is S̄z which sets the average atom-induced shift of the light
intensity inside the cavity, and thus the phase shift imparted
to the atoms by the Stark effect, the phase variance in turn
is reduced to v′ ≈ γμ + μ2〈S̄z

2〉. Similarly, the factor of
〈S2

z 〉 in the Sy-Sz correlation [Eq. (18)]—which expressed the
correlation between the Sz found at the end of the squeezing
and the atom-induced change to the light shift that modifies
Sy—becomes 〈SzS̄z〉 ≈ (1 − r)S/2, again to leading order
in r .

Combining these effects, we find an adjusted set of spin
moments

〈Sx〉 = SCe− 1
2 v′

, (20)

〈Sy〉 = 〈Sz〉 = 0, (21)〈
S2

y

〉 = S

2
[1 + SC2(1 − e−2v′

)], (22)

〈
S2

z

〉 = S

2
, (23)

〈SySz + SzSy〉 = S2(1 − r)Cμe− 1
2 v′

. (24)

Note that photon number fluctuations due to atomic absorption
can be neglected because, while the fraction of atoms which
scatter a photon is fixed by μ and η, the fraction of photons
scattered vanishes in the large-photon-number limit considered
here. The resulting squeezing is plotted in Fig. 5 for different
cavity cooperativities η and for perfect photon shot noise
suppression (γ = 0).

For the weak- and moderate-coupling regimes where
scattering is the dominant limitation on squeezing (η < 1), we
find ζ ≈ (Sμ)−2 + μ/(3η). As in the ideal case, the squeezed
variance is initially suppressed by the square of the squeezing
parameter, but the noise from scattering into free space adds
a variance which scales linearly with the shearing. This leads
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FIG. 5. (Color online) Cavity squeezing for S = 104 with input
pulses of definite photon number for a perfect cavity (solid black),
and for finite single-atom cooperativities η = 1 (chain dotted green),
η = 0.1 (dashed blue), and η = 0.01 (dotted red). For reference, the
gray curve shows squeezing for a perfect cavity (η → ∞) without
photon shot noise suppression (γ = 1).

to an optimum squeezing ζ ≈ 61/3/2(Sη)2/3 for a shearing
parameter μ ≈ (6η)1/3/S2/3. Note that 4Sη corresponds to
the resonant optical depth of the atomic ensemble probed
through the cavity, and that the achievable squeezing therefore
scales as optical depth to the −2/3. This is the same scaling
reported by Trail et al. for their analogous polarization-based
spin-squeezing scheme [35]. The dashed curve of Fig. 5 shows
the squeezing achievable with photon shot noise suppression
in a setup otherwise similar to that used in Ref. [30], using
2S = 2 × 104 atoms of 87Rb (�/ |�| = 1.8 × 10−3) in a
resonator with a single-atom cooperativity for the relevant
transitions of η = 0.1 so that φ0 = η�/ |�| = 1.8 × 10−4.
For a shearing parameter of μ = 1.8 × 10−3 corresponding
to a photon number of 2.7 × 104 in each incident pulse, the
squeezing reaches 20 dB, a substantial improvement over the
13dB achievable in the same system without photon shot noise
suppression.

For the strong-coupling regime η � 1 the curvature be-
comes significant before scattering can decohere the ensemble,
and the ideal squeezing behavior of Sec. II is restored. Note
that the scaling of the achievable squeezing with atom number
(as S−2/3) is the same for finite η as it is in this ideal limit
of η → ∞. Once the effect of photon shot noise has been
suppressed, the scattering into free space costs only a constant
factor in squeezing performance.

VI. CONCLUSION

In this paper we have shown how to improve cavity
squeezing performance by disentangling the atomic variables
from the light field which mediates the interatomic interaction.
We have suggested several ways of doing this, including a
spin-echo sequence that erases the phase information in a
coherent light pulse, and the use of photodetectors and classical
feedback to generate effective Fock states of the input field.
Once the entanglement between atoms and outgoing light field
is eliminated, even a moderate cavity cooperativity η ∼ 1
suffices to obtain squeezing performance close to the limit
set by the curvature of the Bloch sphere. This limit, in turn,

could be overcome by two-axis countertwisting [1], which
can be realized by alternating periods of one-axis twisting
with rotations of the atomic spin [47]. Furthermore, since
unitary S2

z evolution in combination with rotations suffices,
in principle, to implement any unitary map on the Bloch
sphere [34], the techniques we have presented could enable
the production of non-Gaussian entangled states of ensembles
comprising tens of thousands of atoms. Further studies are
needed to determine which states are attainable given realistic
experimental imperfections.
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APPENDIX A: SQUEEZING BY ONE-AXIS TWISTING

This appendix summarizes the results for squeezing by one-
axis twisting first obtained by Kitagawa and Ueda [1]. In order
to prepare a squeezed state, we begin with the atoms in a totally
symmetric but unentangled coherent spin state (CSS) along the
x̂ axis of pseudospin,

|ψa〉 =
( |↑〉 + |↓〉√

2

)⊗N

(A1)

=
S∑

m=−S

√
1

22S

(
2S

S + m

)
|m〉. (A2)

The second form explicitly shows the CSS’s binomial dis-
tribution of Sz eigenvalues. In this state 〈Sx〉 = S = N/2,
〈Sy〉 = 〈Sz〉 = 0, 〈SySz + SzSy〉 = 0, and 〈S2

y〉 = 〈S2
z 〉 = S/2.

Afer the transformation Uρ,μ defined in Eq. (13), the Sz

distribution is unmodified but the phases between |m〉 levels
have acquired a quadratic dependence on m. The expectation
values become

〈Sx〉 = S cos(ρ) cos2S−1
(μ

2

)
, (A3)

〈Sy〉 = S sin(ρ) cos2S−1
(μ

2

)
, (A4)

〈
S2

y

〉 = S

2

[
1 +

(
S − 1

2

)
[1 − cos(2ρ) cos2S−2(μ)]

]
, (A5)

and 〈
SySz + SzSy

〉 = S(2S − 1) cos(ρ)

× sin
(μ

2

)
cos2S−2

(μ

2

)
. (A6)

For ρ = 0 the mean spin remains aligned along x̂ and the
minimum variance transverse to this direction is given by〈

�S2
min

〉 = 1
2 (u+ −

√
u2− + 〈SySz + SzSy〉2) (A7)

with u± = 〈S2
y 〉 ± 〈S2

z 〉. For large S and in the region of signifi-
cant squeezing S−1 � μ � S−1/2, the squeezing parameter is
approximately ζ ≈ (Sμ)−2 + S2μ4/24, decreasing under the
action of the shearing until the curvature of the Bloch sphere
deforms the uncertainty region. The best squeezing obtained
is ζ ≈ 122/3/8S2/3 for a shearing parameter μ ≈ 121/6/S2/3.
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FIG. 6. (Color online) Equivalence of one-sided (top left) and
two-sided (top right) cavities: the left and right ports of a symmetric
Fabry-Pérot resonator can be combined on a beam splitter to isolate
the linear combination of the two fields that couples to the intracavity
field (bottom right). Conversely, the single input of a one-sided cavity
can be mixed with an auxiliary mode to yield an effective two-sided
resonator (bottom left).

APPENDIX B: SIMULATING A ONE-SIDED CAVITY

Throughout this paper we have considered a single-ended
cavity. Many cavity-QED experiments find it convenient to
use two-sided Fabry-Pérot resonators. Such two-sided cavities
would mix a Fock state input from one end with vacuum

fluctuations admitted through the other end of the cavity,
restoring much of the photon shot noise we wish to suppress.
Equivalently, information on the cavity detuning (and hence
the atomic state) is available in the ratio of transmitted to
reflected photon numbers, and this information leak entails
atomic decoherence. Fortunately, it is possible to convert a
symmetric cavity into an effective one-sided cavity using only
external optics.

Figure 6 illustrates the principle of this conversion. For
any given frequency, transverse mode, and polarization, the
symmetric cavity couples to two spatially separated input
fields (right and left). Since there is only one cavity mode
near the given frequency with the given transverse mode and
polarization, it must couple only to some linear combination,
labeled here as b†, of the two input fields. The orthogonal
combination d† does not couple to the cavity mode at all.
Classically, b† (d†) corresponds to simultaneous illumination
from left and right with phases chosen so as to give constructive
(destructive) interference within the resonator. Enclosing the
Fabry-Pérot in a Sagnac interferometer overlaps the left and
right fields at the input, so that with appropriately chosen path
lengths the maximally coupled superposition b† is isolated
from the uncoupled mode d†. To an observer looking into the
b† port of the input beam splitter, the apparatus appears to be
a single-ended cavity which couples to no other field modes.
The d† input, uncoupled from the cavity, remains available for
interferometer stabilization.
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