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Quantum phase transition of two-mode Bose-Einstein condensates with
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The ground-state entanglement of the two-mode Bose-Einstein condensate is investigated through a quantum-
phase-transition approach. The entanglement measure is taken as the order parameter and this is a nonlocal
order parameter, which is different from the conventional order parameter of the Mott-insulator–superfluid-phase
transitions. For this nonlocal order parameter, the scaling behavior corresponding to a continuous phase transition
is obtained and a power-law divergence near the critical region follows it. This scaling behavior of quantum
entanglement is analyzed by the finite-size scaling and the critical exponents are obtained as ν = 1.01 and
γ = 0.86. A close connection between quantum fluctuations and the phase transition of entanglement is also
obtained.
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I. INTRODUCTION

Quantum entanglement is a key feature of quantum in-
formation theory and is one of the most active research
areas in recent years [1], especially in combination with
condensed-matter systems [2]. Beyond its generation and
application, one of the essential questions is how to understand
the process that occurs in a physical system when it transitions
from nonentangled to entangled states. One approach to study
this phenomenon is to treat it as a quantum phase transition,
where the order parameter is the entanglement measure. This
approach combines the theory of critical phenomenon with the
theory of quantum information. For spin-lattice models, many
results have been obtained. The concurrence [3,4] is often used
as the entanglement measure in spin models. Entanglement
exhibits scaling behavior near the critical region and the critical
behavior is shown to be logarithmic [5–8]. The phase transition
is second order for the ferromagnetic case and first order for
the antiferromagnetic case [9].

While the critical behavior of quantum entanglement in spin
models has widely been studied, there are very few studies on
that in boson systems. It is thus of interest to investigate the
critical behavior of quantum entanglement in boson systems.

One extensively studied boson system in quantum entangle-
ment is the two-mode Bose-Einstein condensates coupled via
Josephson tunneling [10]. It is described by the Hamiltonian
[11]

H = K

8
(N1 − N2)2 − �μ

2
(N1 − N2) − εJ

2
(a†

1a2 + a
†
2a1),

(1)

where a1,a2 are the annihilation operators for the two modes
(1 and 2), respectively, and N1 = a

†
1a1,N2 = a

†
2a2 are the
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corresponding number operators. The parameter K provides
the atom-atom interaction, �μ is the difference in the chemical
potential between the two modes, and εJ is the coupling for
tunneling. This Hamiltonian describes both the double-well
Bose-Einstein condensate and the two-level Bose-Einstein
condensate in a single potential. For the first case, the tunneling
between the two wells must be small to use this Hamiltonian,
while for the second case, there is no such restriction. We will
show in this paper that the phase transition occurs at very
small couplings, so the quantum-phase-transition approach
can describe both cases. The entanglement production in this
system has been extensively studied [10,12–15]. The von
Neumann entropy [16] E(ρ) is the usually used entanglement
measure, where ρ is the density matrix of the system, and
for a system size of N particles, the maximum entropy is
Emax = log2(N + 1).

This Hamiltonian (1) is, in fact, a two-site version of the
Bose-Hubbard model [17]. When varying the ratio between
the interaction term and the coupling term through a critical
value, a quantum phase transition occurs in the Bose-Hubbard
model, which is the Mott-insulator to the superfluid transition
[18]. This phase transition is driven by quantum fluctuations
and the order parameter is the conventional wave function. In
the Mott-insulator phase, atoms are localized in lattice sites,
while in the superfluid phase, atoms spread out over the whole
system. Although the insulator-superfluid phase transition is
studied extensively [19–23] both in theory and in experiment,
it is interesting to investigate what would happen to the Bose-
Hubbard model when taking a nonlocal order parameter, rather
than the conventional order parameter.

In this paper, we present such a study for the simplest
two-site Bose-Hubbard system, i.e., the two-mode Bose-
Einstein condensate. The entanglement measure, namely, the
von Neumann entropy, is taken as the nonlocal order parameter.
We show that there is a critical point and entanglement
exhibits scaling behavior near the critical point, which can
be analyzed using the theory of critical phenomena. We
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identify this as a continuous phase transition. This phase
transition is different from the insulator-superfluid phase
transition because it is obtained for a nonlocal order parameter,
rather than the conventional order parameter. The critical
behavior of quantum entanglement is shown to be power-law
divergent, which is different from the logarithmic divergence
of spin-lattice models. Our work may improve the combination
of methods in critical phenomena and quantum information
theory for the boson systems, especially for the Bose-Hubbard
model. A further extension of this work is to investigate
quantum phase transitions in the Bose-Hubbard model of
dozens of lattice sites, where a new entanglement measure
is also needed to be derived.

II. CONTINUOUS PHASE TRANSITION

In this paper, we only consider the case K > 0, which
corresponds to a repulsive interaction between atoms. The
total particle number is conserved and we set �μ = 0. By
using the angular momentum operators

Jz = 1
2 (N2 − N1),

Jx = 1
2 (a†

1a2 + a
†
2a1),

Jy = i
2 (a†

1a2 − a
†
2a1),

and neglecting constant terms, the Hamiltonian (1) is rewritten
as

H = χJ 2
z − �Jx, (2)

where χ = K/2 and � = εJ . As we are only interested in
the ratio between the two competing energy terms, it is
convenient to introduce the dimensionless parameter �/χ in
the calculation, so the Hamiltonian can be reduced to

H = J 2
z − �Jx, (3)

where we have redefined � using the dimensionless parameter,
i.e., �/χ → �. This dimensionless coupling parameter can be
viewed as an “external field” by analogy with Ising models. We
also define the dimensionless entropy E(ρ)/Emax → E(ρ) to
make it easier to compare the results of different system sizes.
We use numerical diagonalization to calculate [24,25] the
ground-state entanglement and its susceptibility with respect
to the external field �.

We first calculate the susceptibility dE(ρ)
d�

with respect to
the coupling � for various system sizes, which is shown
in Fig. 1. We see that there is a critical point �m for each
system size, where the susceptibility reaches its critical value
dE(ρ)
d� m

. The critical susceptibility dE(ρ)
d� m

increases with the
system size and would be divergent for an infinite system size
that corresponds to the thermodynamic limit, which implies
that this is a continuous phase transition where there is no
discontinuity in the order parameter, as depicted by the inset
for the system of N = 2700 particles. This will be verified
further in Sec. IV.

From Fig. 1, the critical point �m lies in the small coupling
regime, which means the phase transition occurs shortly after
the external field is switched on. We could easily figure that
the critical value is �c = 0 for an infinite system size of the
thermodynamic limit. When � = 0, the Neumann entropy is
zero and there is no two-mode entanglement in the system;

FIG. 1. (Color online) The susceptibility dE(ρ)
d�

of the quantum
entanglement with respect to the external field � for system sizes
of N = 240, 400, 700, 1000, 2100, and 2700. A continuous phase
transition occurs as the susceptibility diverges with the system size.
The critical point �m where the susceptibility attains its maximum
dE(ρ)
d� m

lies in the Fock regime, and this critical susceptibility
diverges with the system size. The inset depicts the change of the
order parameter—the ground-state entanglement for the system of
N = 2700, which increases continuously from zero. We choose
even particle numbers because for odd particle numbers there is a
degeneracy of the ground state when � = 0.

when � > 0, the Neumann entropy gets a finite value and
entanglement is generated in the system. That means the
system transitions from nonentangled to entangled states, i.e.,
two essentially different states, once � is switched on from
0, so the critical value is just 0. This will be verified further
in Sec. III, where we numerically fit the critical point and
the critical susceptibility for various system sizes. The critical
point �m is well fitted to N by choosing �c = 0.

III. POWER-LAW DIVERGENCE

The well-behaved relationship between the critical point
and the system size in Fig. 2 is not just a coincidence. Actually
it manifests the scaling behavior of quantum entanglement for
this quantum system, which is typical in critical phenomenon.
From Fig. 2, we obtain the scaling relationship

�m = 0.319225N−0.989062 (4)

for the critical point, and the scaling relationship

dE(ρ)

d� m
= 0.393037N0.846662 (5)

for the critical susceptibility. The scaling behavior of the
susceptibility is power-law divergent, in contrast to the
logarithmic divergence of spin-lattice systems [5].

This power-law divergence of the susceptibility can be
understood in the thermodynamic limit using a simple analysis.
The basic idea is to truncate the Fock space of the system to
just three basis states and use them to approximate the state of
the system. The validity of this approximation lies in the fact
that the critical point is �c = 0 and the delocalization process
is very weak near this critical point, which means that the
transitions between different basis states of the original Fock
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FIG. 2. (Color online) The scaling behavior of the quantum phase
transition with the critical value �c = 0. The critical point �m ap-
proaches 0 asymptotically by �m ∼ N−0.989062 and the susceptibility
diverges in a power-law behavior captured by dE(ρ)

d� m
∼ N 0.846662,

which is different from the logarithmic divergence of spin-lattice
models.

space are very weak and we can use the three most important
basis states for approximation. This is verified at the end of
the calculation in Eq. (6), where a power-law behavior of the
susceptibility is obtained and the divergent exponent does not
differ much from that of the numerical simulation.

We choose the Fock space basis |N1,N2〉 for the system,
where N1 is the particle number on the first site and N2 is the
particle number on the second site. When � = 0, the ground
state is |N/2,N/2〉 with energy E = 0, that is, the system is in a
self-trapping state without particle tunneling between the two
sites. As � increases, the particles begin tunneling between
the two sites and this delocalization process connects different
basis states, so the system is described by

∑N
n=0 cn|n,N − n〉.

The critical value is �c = 0 and the delocalization process
is very weak near this region, so we can truncate the Fock
space of the system to just three basis states, i.e., |N/2,N/2〉,
|N/2 − 1,N/2 + 1〉, and |N/2 + 1,N/2 − 1〉, then the state of
the system is |ψ〉 = c0|N/2,N/2〉 + c1|N/2 − 1,N/2 + 1〉 +
c2|N/2 + 1,N/2 − 1〉, where we assume the coefficient ci to
be real numbers for simplicity. As the probabilities of tunneling
between the two sites are equal, the coefficients c1 and c2 are
equal. By combining with the normalization condition c2

0 +
c2

1 + c2
2 = 1, we get the relationship c0 =

√
1 − 2c2

1. We next
calculate the approximate ground state to determine the value
of the coefficients,

H|ψ〉 = −�N

2
c1

{ ∣∣∣∣N2 ,
N

2

〉
+

−�N
4

√
1 − 2c2

1 + c1

−�N
2 c1

×
[∣∣∣∣N2 − 1,

N

2
+ 1

〉
+

∣∣∣∣N2 + 1,
N

2
− 1

〉] }

= E|ψ〉,
where the approximation

√
N/2(N/2 + 1) ∼ N/2 is taken.

The critical point �c = 0 determines that c1 is a small num-
ber. From |ψ〉 = c0[|N/2,N/2〉 + c1/c0(|N/2 − 1,N/2 +
1〉 + |N/2 + 1,N/2 − 1〉)], we obtain

E = −�N

2

c1

c0
,

which is approximately zero and is the ground-state energy
near �c = 0, and

−�N
4

√
1 − 2c2

1 + c1

−�N
2 c1

= c1√
1 − 2c2

1

,

which gives the value

c2
1 = 1

4

⎛
⎝1 − 1√

1 + �2N2

2

⎞
⎠ .

There are two values of c2
1 and we choose the smaller

one. Substituting the values of the coefficients into the von
Neumann entropy,

E(ρ) = −c2
0 log2 c2

0 − c2
1 log2 c2

1 − c2
2 log2 c2

2,

and taking its derivative with respect to � gives

dE(ρ)

d�
∼ �N2

�4N4
∼ N0.97, (6)

where the relationship �N ∼ N0.01 from Eq. (4) in the thermo-
dynamic limit is used. Thus we briefly illustrate the power-law
divergence of the susceptibility in the thermodynamic limit.

The divergent exponent obtained in the analytic calculation
is 0.97 and it is different from the value 0.85 of the numerical
simulation in Eq. (5). This difference may be accounted for
by the finite-size effects and the truncation errors. First, the
analytic calculation manifests the thermodynamic limit, where
there is no finite-size effect. The numerical result, however, is
influenced by the finite-size effects, so this may be one of the
reasons for the difference between the divergent exponents.
Second, we adopt approximation in the analytic calculation
by truncating the Fock space of the system to just three
basis states. The numerical simulation, however, includes the
full Fock space. The neglected basis states would certainly
contribute to the result, although their amplitudes are small
near the critical point. So the difference between the divergent
exponent is also influenced by the truncation errors.

IV. FINITE-SIZE SCALING

A key feature of the critical phenomenon is the finite-size
scaling. Phase transitions only occur at the thermodynamic
limit, while numerical simulations can only deal with finite
system sizes. To extract information from the results obtained
from the finite system, finite-size scaling is required, where
the effects of finite system sizes are eliminated by collecting
all of the data of various system sizes onto a single curve
and deducing the critical exponent in this process. In the phase
transition of thermal order parameters, e.g., the magnetization,
the critical exponent ν of the correlation length satisfies |T −
Tc| ∼ N−1/ν . By analogy, we obtain ν = 1/0.989062 ∼ 1.01
from Eq. (4), which is the critical exponent for the quantum
phase transition of quantum entanglement. This critical expo-
nent gives the reduced coordinate Nν(� − �m) for all of the
finite system sizes. From Eq. (5), the susceptibility is reduced
to N−0.85[ dE(ρ)

d�
− dE(ρ)

d� m
]. If the quantum entanglement of

this model manifests quantum phase transitions, then all of the
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FIG. 3. (Color online) The finite-size scaling for the quantum
phase transition of quantum entanglement. After the susceptibility is
reduced by the system size to N−0.85[ dE(ρ)

d�
− dE(ρ)

d� m
], it becomes a

function of N 1.01(� − �m). Data from a broad range of system sizes
are collected on this single curve. The critical exponents obtained are
ν = 1.01 and γ = 0.86.

data of various system sizes could be collected onto a single
curve using the above reduced coordinates. This is indeed the
case, as exhibited in Fig. 3. Again, this relationship is not
just a coincidence. It illustrates that quantum entanglement
of this model indeed belongs to a critical phenomenon. By
resorting to the phase transition of the magnetization, where the
susceptibility χ of the magnetization is reduced to N−γ /νχ , we
obtain the critical exponent γ = 0.85ν ∼ 0.86 in this model.

V. QUANTUM FLUCTUATIONS

The Mott-insulator–superfluid-phase transition is driven
by quantum fluctuations, which is common for quantum
phase transitions. Here we show that a close connection also
exists between quantum fluctuations and the phase transition
of entanglement. In the dynamical regime of entanglement
production, the system is required to undergo a delocalization
process, where large quantum fluctuation exists, to generate
entanglement. So the quantum phase transition of entangle-
ment should be closely related to quantum fluctuations. In the
angular momentum representation |j,jz〉, where j = N/2 and
jz = −N/2, − N/2 + 1, . . . ,N/2, the quantum fluctuation is
(�Jz)2 = 〈J 2

z 〉 − 〈Jz〉2. We show that (�Jz)2 and E(ρ) have a
similar behavior, which indicates their close connection with
each other. We plot (�Jz)2, E(ρ) and their derivatives with re-

FIG. 4. (Color online) Comparison between (�Jz)2, E(ρ) and
their derivatives with respect to �. Their values are reduced to 1
by their maximum values. The increase of the quantum fluctuation
corresponds to the increase of the order parameter, which indicates
its connection with the phase transition of entanglement. There is
a small “delay” between the derivative of the fluctuation and the
susceptibility, with the susceptibility obtaining maximum value first.
This delay comes from the finite-size effects.

spect to � in their reduced value in Fig. 4. We see that both the
quantum fluctuation and the quantum entanglement grow with
the external field �, and their growth corresponds to each other,
which can be seen from their derivatives. As quantum entangle-
ment is a nonclassical correlation, it is consistent that its quan-
tum phase transition is closely related to quantum fluctuations.

There is a “delay” between the derivative of E(ρ) and
that of (�Jz)2, where the derivative of E(ρ) reaches its
maximum value earlier than the derivative of (�Jz)2. This
is due to the finite-size effects. We are not working in the
thermodynamic limit, so the derivatives between the quantum
fluctuation and the quantum entanglement are not in complete
correspondence. This is further confirmed by Table I, where
the delay �� between the maximum points of the derivatives
is calculated for various system sizes. We see that the delay
between them is decreasing as the system size grows, so we can
figure that in the thermodynamic limit, the growth behavior
of the entanglement and the fluctuation will approximately
correspond to each other.

VI. SUMMARY

In summary, we have studied the entanglement of a boson
system from the quantum-phase-transition approach. It is
shown that in this system, there is a continuous phase transition

TABLE I. The “delay” �� between the maximum points of the derivatives of E(ρ) and (�Jz)2 for various system sizes. As the system
size increases, the delay decreases, which means the growth behavior of the entanglement and the fluctuation are more closely related. This
suggests that in the thermodynamic limit, the two growth behaviors will correspond to each other.

N 200 400 600 800 1600 2700

�� 0.000 675 0.000 375 0.000 263 0.000 188 0.000 075 0.000 055
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for the nonlocal order parameter, and entanglement exhibits
scaling behavior near the critical point, with the critical
exponents calculated to be ν = 1.01 and γ = 0.86. The critical
behavior under discussion is different from that of the spin-
lattice models because a power-law divergence is obtained for
the boson system, while it is logarithmic divergence for the spin
models. A further study of this phenomenon may consist of
deriving an entanglement measure for boson systems of more
lattice sites, i.e., investigating the quantum phase transition of
the Bose-Hubbard model of more lattice sites and obtaining its
universality class. The renormalization group method that is
specifically used for taking into account the effect of quantum
entanglement [26–28] may be used in that case.
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