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Simulating Z, topological insulators with cold atoms in a one-dimensional optical lattice
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We propose an experimental scheme to simulate and detect the properties of time-reversal invariant topological
insulators, using cold atoms trapped in one-dimensional bichromatic optical lattices. This system is described by
a one-dimensional Aubry-Andre model with an additional SU(2) gauge structure, which captures the essential
properties of a two-dimensional Z, topological insulator. We demonstrate that topologically protected edge states,
with opposite spin orientations, can be pumped across the lattice by sweeping a laser phase adiabatically. This
process is an elegant way to transfer topologically protected quantum states in a highly controllable environment.
We discuss how density measurements could provide clear signatures of the topological phases emanating from

our one-dimensional system.
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I. INTRODUCTION

The quantum Hall (QH) effect, discovered in 1980,
provided the first example of a quantum phase that has
no spontaneously broken symmetry. Besides, its universal
character and remarkable robustness have been shown to be
related to the existence of topological invariants [1-3]. The
recent discovery of the quantum spin Hall (QSH) effect, in
materials displaying strong spin-orbit coupling, has opened the
path for a new family of topological states: the Z, topological
insulators [1,2]. Since then, the search for topological phases
of matter has become an important topic in condensed-matter
physics [3]. In general, topological insulators are insulating in
bulk, but they feature gapless edge or surface states at their
boundary. These edge modes are very robust and therefore
persist in the presence of impurities. The delicate control
over these edge modes has attracted considerable interest
for the realization of quantum spintronic and magnetoelectric
devices [3]. Furthermore, in the proximity of superconductors,
topological insulators lead to non-Abelian excitations that
could lead to a new architecture for topological quantum
computation [4].

Nowadays, cold atoms trapped in optical lattices are widely
recognized as powerful experimental tools to mimic a wide
range of systems originally stemming from condensed-matter
physics [5,6]. Recently, many experimental efforts have been
focused on the experimental realization of synthetic magnetic
fields and spin-orbit coupling for ultracold atoms [7-11],
which set the stage for the simulation of topological insulators
and fractional quantum Hall states. In particular, several
proposals have been suggested to realize the QH and QSH
states using these technologies [12,13].

The QH and QSH phases are realized in two-dimensional
(2D) systems subjected, respectively, to strong magnetic and
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spin-orbit couplings. Surprisingly, several properties associ-
ated with these topological states can be probed through a
one-dimensional (1D) reduction of these systems. This idea
has been explored theoretically and experimentally in 1D
quasicrystals [14], which reproduce the Hofstadter-Aubry-
Andre QH model [15,16]. This elegant discovery opens the
possibility of investigating QH physics using 1D optical
lattices [17].

In this paper, we propose an experimental scheme to
simulate and detect Z, topological states with cold atoms
trapped in a 1D optical lattice. We show that these topological
phases can be described by a generalized 1D Harper equation
with an additional SU(2) gauge structure, which could be
simulated with a two-component atomic gas trapped in a 1D
bichromatic optical lattice. By adjusting the corresponding
laser configuration, we are able to probe several properties
of Z, topological states. In particular, we can transfer the
spin-resolved edge states from one edge to the other and
measure these states through density measurements. We also
discuss the possibility of defining a Z, topological invariant
in this 1D framework, allowing us to distinguish between
trivial and nontrivial topological states. Finally, we describe
how density measurements could provide an efficient tool to
measure these invariants in the present context.

II. THE MODEL AND DIMENSIONAL REDUCTION

Let us start by presenting a specific 2D tight-binding
model, which has been introduced in Ref. [13] to simulate
a Z, topological insulator with two-component fermions in
an optical square lattice. The corresponding second-quantized
Hamiltonian reads

Z T ifx T ify(m
H=t Cm-H,ne Cm,n + cm,n-He 4 )Cm,ﬂ + H.c.
m,n

+ g (=1, yCmn ()

m,n
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where ¢, , 1s a tWwo-component (spin %) field operator defined
on the lattice site (x = ma, y =na), a =1 is the lattice
spacing, and ¢ is the nearest-neighbor hopping amplitude.
Here, the spin—% structure derives from the fact that each site
hosts atoms in two internal states [11]. The second line of
Eq. (1) describes an on-site staggered potential with amplitude
Astag» along the x direction, which has been introduced to drive
transitions between different topological phases. The Peierls
phases 6, and 6, (m), which accompany the hopping along the
x and y directions, are engineered within this tight-binding
model to simulate the analog of spin-orbit couplings and
are expressed in terms of the Pauli matrices oy, .. The
space-dependent operator 6,(m) = 2rmao, reproduces the
effect of the intrinsic spin-orbit coupling [18]: It corresponds to
opposite “magnetic” fluxes o for each spin component and
generates QSH phases. The constant operator 6, = 2wy o,
corresponds to a spin-mixing perturbation and thus simulates
a Rashba spin-orbit coupling term [18].

Because the Hamiltonian (1) is translationally invariant
along the y direction, we can explore its properties by
imposing periodic boundary conditions along this direction.
Considering this cylindrical geometry, the single-particle wave
function is expressed as V(m,n) = exp(ik,n)W(m), where k,
is the quasimomentum along the periodic coordinate and the
two-component wave function WV, = (\IJ,T,,\I',f,)T satisfies a
generalized 1D Harper equation [15,16]:

EW,,(ky) = t[e'* Wpp1(ky) + e W, (ky)]
+ R(m,ky )W, (ky). 2)

‘We have introduced the on-site 2 x 2 matrix

R(m,k,) = 2tdiag[cosQram + k), cosQRmam — k)]
+ )"stag(_l)mla (3)

where [ is the identity matrix. The Harper Eq. (2) therefore
describes the dimensional reduction of the initial system (1) but
still captures the essential properties of its topological phases.
The energy spectrum E = E(k,) obtained by solving Eq. (2)
displays several energy bands that describe the bulk but also
several gapless states which constitute clear signatures of QSH
topological phases [13,18]. We note that Eq. (2) generalizes
the spinless Harper equation obtained by Aubry-Andre in their
study of Anderson localization [16]. Recently, the Aubry-
Andre model has been simulated in a 1D bichromatic optical
lattice [19], which motivates us to propose a generalization
of their setup to investigate the physics stemming from our
spin-1 Eq. (2).

Let us first focus on the case Y = Ag,e = 0, where the spin-
mixing perturbation 6, and the staggered potential are absent.
The realization and implication of these terms is discussed at
the end of this work. In this case, the spin-% model described
by Eq. (2) can be realized by trapping a two-component atomic
gas in a primary 1D optical lattice Vi (x) = V| cos?(k;x), with
wave number k. In this configuration, and for a sufficiently
deep potential, the atomic system is governed by the tight-
binding Hamiltonian

H, =thichm—|—chlcm, 4)
m
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where ¢, is atwo-component (spin-%) field operator defined on
the lattice site (x = ma) and m = 1, ..., L. Then, the on-site
term characterized by the 2 x 2 matrix R(m) can be realized
by two weak state-dependent lattices, with wave number k5,
which act independently on the two atomic states [20]. For
our purpose, the optical potentials associated with these state-
dependent lattices have the form Vi (x) =V; cos?(kyx £
¢/2), which can be produced by two counterpropagating
laser beams with linear polarization vectors forming an angle
¢ [5,21,22]. These additional lattices interfere with the primary
lattice, and supposing that V; < V|, simply lead to the on-site
perturbation term [19,23,24]

H,=A Z CjnTCmT cos(2rBm + ¢)

+ C,Twcmi cos2mBm — ¢), ®))

where A ~t K Vi, B = kp/k;. Although the phase ¢ could
be affected by an overall shift of V;(x) with respect to V; (x),
this parameter can be monitored through various technics
(cf. the experimental methods in Ref. [24], but also the
studies of Refs. [25] on the effects of uncontrolled phases
in cold-atom Aubry-Andre models). Besides, we note that the
topological properties described in this work remain constant
for small variations of the parameter ¢ (cf. below). In this
configuration, the single-particle equation associated with the
total Hamiltonian H,,, = H; + H, reads

EV,(9) =t [Wint1(@) + V1 (@)] + S(m, )W, (9), (6)

where S(m,¢) = Adiag[cos2rBm + ¢), cosQnBm — ¢)].
Therefore, a direct mapping from this 1D Aubry-Andre system
to the 2D setup of Ref. [13] is obtained by associating the
commensurability parameter 8 with the “magnetic” flux «,
the potential strength A with twice the tunneling amplitude 2¢,
and the phase ¢ with the quasimomentum k. In other words,
our spin-% generalization of the Aubry-Andre model, which
could be simulated using 1D state-dependent lattices [19],
could already reveal the topological properties emanating from
Egs. (1) and (2). It is worth emphasizing that although a direct
mapping exists between the energy spectra E(k,) and E(¢) that
respectively correspond to the 2D model of Ref. [13] and the
present Aubry-Andre-type model, the parameter ¢ is fixed in
the latter experimental scheme. Therefore, the energy “bands”
depicted by the spectrum E(¢) involves the union of different
configurations of the system, obtained by continuously varying
the parameter ¢.

III. TOPOLOGICAL PHASES

Let us investigate the spectral properties of Eq. (6): For
a fixed value of the parameters ¢ and A (in the following
A =2t =2 and ¢ € [0,27]), and for a rational value of the
commensurability parameter 8 = p/q, the spectrum splits
into g continua of states [cf. Fig. 1(a)]. These states are
delocalized and describe the bulk of our 1D system. In the
example illustrated in Fig. 1(a), we have set 8 = %, which
leads to three “bulk subbands.” Between these continua of bulk
states, and within certain ranges of the parameter ¢, we find
two degenerate states with opposite spin, whose amplitudes
are localized at the two edges of the system [cf. the states
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FIG. 1. (Color online) (a) Energy spectrum as a function of
the phase ¢ for a 1D lattice with L = 38 sites. Here g =%
and A = 2¢. (b) The amplitudes |W,,|* (respectively, |W,,|*) are
represented in blue (respectively, red) as a function of the site index
m and correspond to the three states highlighted in panel (a) at
¢ = 1,m,2m — 1. (c) The spin-resolved particle densities p4(m) and
py(m), are depicted in blue and red respectively, for Eremi = —t and
¢ = 1,m,2mr — 1. These densities have been computed for infinitely
sharp boundaries. Note the inversion of the spin structure at the
opposite edges as ¢ is varied.

in Fig. 1(a), which are highlighted by a dot (respectively,
a star) for ¢ = 1 (respectively, ¢ =27 — 1)]. As depicted
in Fig. 1(b), the spin orientation of these edge states are
opposite at the two edges: When ¢ = 1, we find a spin-up
(respectively, down) state at E &~ —t, which is localized at
m = L (respectively, m = 1). The opposite situation, that is,
a spin-up (respectively, down) state at m = 1 (respectively,
m = L), occurs at the same energy by setting ¢ = 2w — 1 [cf.
Fig. 1(b)].

In the analogous 2D system, these two pairs of states
constitute helical edge states, which is a hallmark of the
QSH effect [18]: When the Fermi energy is set in the first
bulk gap Eremi & —t, each edge is populated by opposite
spins traveling in opposite directions. In contrast, in the
present context of a 1D lattice, the parameter ¢ is fixed, and
therefore, each edge is populated by a single spin species.
However, by adiabatically varying the phase ¢ between [0,2r],
following a gapless edge state within the lowest “bulk gap,” we
derive an interesting transition between a nontrivial edge-state
configuration (e.g., spinup atm = 1 and spindown atm = L)
to the opposite configuration (e.g., spin up at m = L and spin
down at m = 1). While the total charge is conserved at each
edge, this exquisite process leads to spin pumping. We note
that the edge states remain localized during the whole process,
except at singular points (e.g., ¢ = 7 in the example presented
in Fig. 1), where these states connect to the bulk. Therefore,
the edge states survive for small variations of the parameter
¢, a fact which is in agreement with the topological argument
discussed below.

In standard 2D QSH systems, the existence of gapless
helical edge states inside a bulk gap is guaranteed by a

PHYSICAL REVIEW A 85, 013638 (2012)

topological invariant, the so-called Z; index (v = 0, 1), which
can be evaluated from the bulk states [18]. When the Fermi
energy is fixed in a bulk gap characterized by the nontrivial
value v = 1, an odd number of helical edge state pairs are
located at each edge, in which case the system realizes the
QSH effect. As long as the bulk gap remains open, the index
v remains constant, which guarantees the robustness of the
edge states against external perturbations. Now, if we map
the example presented in Figs. 1(a) and 1(b) to the analogous
2D system (i.e., ¢ — k,, where k, takes all the values within
the range k, € [0,27]), we observe that each bulk gap of the
spectrum E(ky) hosts two pairs of helical edge states (i.e.,
one pair for each edge). Therefore, the bulk gaps presented in
Fig. 1 would both correspond to the Z; index v =1 in a 2D
realization of the system [13]. Mapping this example back to
our 1D context (i.e., k, — ¢, with ¢ fixed), this resultindicates
that as long as the bulk gap remains open, there will always be
a range ¢ € [¢;,¢,] between which such edge states will be
detected.

Obviously, this topological argument is based on the anal-
ogy between our 1D system and its analogous two-dimensional
QSH system, whose dimensionality allows us to properly
define the topological invariant v [18]. However, we can show
that this topological invariant can also be rigorously defined in
the 1D framework. Indeed, when y = 0, the Z, index is simply
related to the spin Chern number v = SChNmod 2, where
SChN = (ChN; — ChN,)/2 and where ChN; ; are the Chern
numbers associated with the up and down spin respectively
[26]. When y = 0, the spin components are decoupled and
the Chern numbers ChN; ; can be evaluated individually
from the standard Thouless-Kohmoto-Nightingale-den Nijs
expression [27]

1
ChN} = -— >

E; < EFermi

2 dkyd¢ F|Wplke, )], (7)

where .% is the Berry curvature associated with the single-
particle state |\Wy,(ky,¢)), which is characterized by the band
index A situated below the Fermi energy Egemi, and where k,
is the quasimomentum. In this expression, we suppose that the
parameter ¢ evolves continuously along the interval [0,27]:
Namely, the definition of the Chern number (7) requires the
union of all the Hamiltonian operators H(¢). In fact, it was
recently shown that such a Chern number could be rigorously
defined for each ¢ [14] and that it remains constant for
all ¢ € [0,27]. This result, which is in agreement with the
argument based on the 2D analogy (cf. above), guarantees the
existence of edge states for certain ranges of the parameter
¢ [14]. Finally, we stress that for the general situation, where
spin mixing is present y # 0, the topological Z, index and
the SChN are no longer expressed in terms of the individual
Chern numbers ChN; ;. However, their values obtained in
the limit y — O remain constant for finite y, as long as their
associated bulk gap remains open [26]. We note that for the
example illustrated in Fig. 1(a), the Chern numbers are given
by ChN; | = %1 in the first gap and ChN; ;| = F1 in the
second, which indeed leads to the nontrivial Z, index v =1
in both cases.

We stress that the presence of spin-polarized edge states,
for a fixed value of the parameter ¢, does not necessarily
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FIG. 2. (Color online) (a) Energy spectrum as a function of the
phase ¢ for a 1D lattice with L = 41 sites. Here g = é and A = 2t.
(b) The amplitudes |\Il,,,¢|2 (respectively, |, ¢|2) are represented
in blue (respectively, red) as a function of the site index m and
correspond to the four states highlighted in (a), i.e., the states labeled

by a dot, a rectangle, a star, and a hexagon respectively.

mean that the Z, index is nontrivial (v = 1): Indeed, we
should count the number of such states within the whole
range ¢ € [0,27] to determine whether the number of such
helical edge state pairs is odd (v = 1) or even (v =0) at
each edge. This counting procedure, which could be performed
experimentally by continuously varying the phase ¢, allows us
torigorously classify the phases of our 1D model in terms of the
Z, topological index. To illustrate a configuration displaying
trivial and nontrivial Z, phases, we have computed the energy
spectrum and edge-state structures for the case § = 1/6 (cf.
Fig. 2). Here, the first bulk gap is characterized by a nontrivial
Z, index v = 1, as for the previous example discussed above
for B = % However, in the second bulk gap around E ~ —t,
we observe two helical edge state pairs at each edge, by
varying ¢ € [0,2r] [cf. Fig. 2(b)]: The second gap is therefore
associated with the trivial phase v = 0. This latter result is in
agreement with the value SChN = 2, which can be computed
from Eq. (7) for Epermi = —t and 8 = é.

IV. DETECTION METHODS

Now, let us show how the detection of Z, topological
phases already could be obtained from density measurements.
The first strategy would be to directly detect the edge states,
which is a realistic task for systems featuring infinitely sharp
boundaries and low Fermi energy. Indeed, in this configuration,
the edge states will contribute to the particle density in a
detectable way. We illustrate in Fig. 1(c) the spin densities,
defined by

pramy= Y W am), ®)
E3 < Efermi
for¢ = 1,m and 27 — 1 and Egermi = —1. The wave functions

W, ,2.(m) are computed from a numerical diagonalization of
Eq. (6). We clearly observe sharp peaks in the spin densities,
which correspond to opposite spins at the two edges. As ¢
is progressively varied from ¢ =1 to w = 2w — 1, we first
observe a transition into the “bulk” regime and finally a spin
inversion at the edges [cf. Fig. 1(c)]. Let us stress that such
a result is valid only for abrupt walls: In the presence of an
external confining trap, the edge states and their corresponding
signatures will be destroyed. In order to overcome this
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problem, we induce the tunneling ¢ by laser-assisted tunneling
methods and create synthetic walls within the confined system
by abruptly changing the tunneling amplitude in the central
region [13]. Then, the sharp peaks illustrated in Fig. 1(c) and
corresponding to the edge states will be observed at these
synthetic walls. Consequently, by varying the parameter ¢ and
performing in situ spin-resolved density measurements [28],
we directly detect the spin-pumping process illustrated in
Figs. 1(b) and 1(c).

Another method would be to measure the spin Chern
number SChN, which could also be evaluated from density
measurements. This method is based on the fact that the Chern
number of individual spin species, ChN; |, can be computed
from the density through the Streda formula [29],

ChN; (Ererm) = S22 ©)

ApB

Here, the (local) Fermi energy is supposed to lie in a bulk
gap, which is associated with a plateau in the density pro-
files,and AB = B — B', Apy = p+(B) — p4(B'). This equation
expresses the fact that the Chern number associated with a
bulk gap can be evaluated by comparing the density plateaus
obtained from two configurations of the system (i.e., with §

and B'). In Fig. 3, we show the density profiles for g = %
and ' = }t, in a system confined by a harmonic poten-
tial Vipap(m) = Veont (m — ¢)*, where ¢ = L/2. Considering
a local-density approximation, we define the Fermi energy
locally as Efermi(m) = E?ermi — Viap(m): In this regime, where
the confining potential is considered to vary smoothly, the
density profiles depict several plateaus that correspond to the
bulk gaps located below the chemical potential EY, .. InFig. 3,

the Fermi energy is set at E?ermi =0, and thus the density
plateaus correspond to the lowest bulk gap of Fig. 1(a). The
formula (9) yields ChN,(1st gap) = 1, and therefore v =1,
as already evaluated in Eq. (7). We note that this result is
independent of the parameter ¢, which highlights the fact
that the topological invariants (i.e., ChNy ;, SChN, and v)
can indeed be defined at each value of the parameter ¢ (cf.
discussion above and Ref. [14]). Consequently, a density
measurement at ¢ fixed allows us to directly determine the Z,
class of our 1D system in the presence of an external confining
trap. Finally, we note that this detection scheme is also suited
for finite spin-mixing perturbations, that is, y # 0, as long as
the bulk gaps remain open.

V. PHASE TRANSITIONS

It was shown in Ref. [13] that the combination of a
spin-mixing perturbation y # 0 and an additional staggered
potential Agae 7 O leads to interesting phase transitions be-
tween trivial and nontrivial Z, phases. These transitions occur
individually in the different bulk gaps and can be obtained by
solving the Harper Eq. (2). Exploring these topological phase
transitions with our 1D model requires us to engineer the
Peierls operator 6, as well as the staggered potential, which
both act along the x direction (i.e., the direction of our 1D
system). The realization of the hopping operator 8, demands
controlling the tunneling in a spin-dependent manner, which
can be achieved with several Raman transitions that act individ-
ually on the two atomic internal states (cf. Refs. [11,13]). On
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FIG. 3. Spin-up density p;(m)/Ap for a 1D lattice with L =
50 sites. Here g = 1 (line) and B’ =  (dotted line), AB = — B/,
the Fermi energy EQ,.., = 0, and ¢ = 7/2. The system is confined
by a harmonic trap Veons (m — ¢)?, with Ve = 0.02¢. Comparing
the two plateaus indicates that ChN; = 1 inside the first bulk gap
[Eq. (9)]: This density measurement attributes a nontrivial Z, index
v = 1 to the lowest bulk gap illustrated in Fig. 1(a).

the other hand, the staggered potential could be easily produced
by a weak lattice Vi, ~ f, with wave number k., = k1/2.
Using this configuration, we directly detect topological phase
transitions by varying the staggered potential strength and
performing spin-resolved density measurements, since the
latter provide sufficient information to classify our system
in terms of the Z, index v (cf. above). For example, the
trivial phase v = O corresponding to 8 = %, Efermi = —t, and
Astag = O (cf. Fig. 2) will evolve into a QSH phase with v =1
for Agag > 1.5¢ (cf. Ref. [13]).

VI. SUMMARY

In summary, we have proposed an experiment scheme to
simulate Z, topological phases with cold atoms trapped in
a 1D bichromatic optical lattice. Our scheme is based on the
dimensional reduction of a 2D model exhibiting Z, topological
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insulating phases, which captures its essential properties.
Our 1D atomic system is described by a generalized Harper
equation, which can be simulated by a spin-% generalization
of the Aubry-Andre system recently realized with cold atoms
[19]. The latter can be practically engineered using the current
technology offered by optical lattices, exploiting the interfer-
ences of a primary lattice with weak state-dependent lattices.
Interestingly, our simple scheme is able to transfer spin-
resolved edge states, with opposite spin components, from
one edge to the other. This manipulation, which can be easily
performed by varying the secondary lattice configuration [22],
constitutes an elegant manner for transporting topologically
protected quantum states [30]. Besides, we have discussed the
possibility of driving topological phase transitions by varying
an additional staggered potential. Furthermore, we have shown
that the spin Chern number, which allows us to classify the
topological phases of our 1D system, can be evaluated using
spin-resolved atomic density measurements. In the presence
of sharp boundaries, we have shown that spin-resolved density
profiles would already present clear signatures of edge states,
with opposite spin components at the two edges. Therefore,
the Z, phases emanating from our 1D system could be
probed with the current technologies, such as in situ imaging
techniques. Let us mention that additional signatures could be
obtained through cyclotron-Bloch dynamics [31]. We note that
state-dependent lattices generally lead to large spontaneous
emission rates for fermionic species, a drawback which could
be avoid by considering an atom-chip realization of our
model [13]. Finally, we stress that our dimensional reduction
approach may be generalized to explore three-dimensional
topological phases [32] using 2D optical lattice.
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