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Collective modes of a strongly interacting Bose gas: Probing the Mott transition
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We analyze the collective modes of a harmonically trapped, strongly interacting Bose gas in an optical lattice in
the vicinity of the Mott-insulator transition. For that aim we employ the dynamical Gutzwiller mean-field method,
by performing real-time evolution and by solving the equations in linear response. We find a strong dependence
on the spatial dimension of the system: while in one dimension the frequency of the dipole mode vanishes at the
Mott transition, in higher dimensions the dominant dipole mode is featureless and we find a signature only in the
breathing mode. We discuss implications for experiments with bosonic and fermionic atoms.
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I. INTRODUCTION

Both bosonic and fermionic particles in a lattice undergo
the Mott-insulator transition at integer filling, when the
repulsion between the particles exceeds a critical value. There
is ample experimental evidence for the existence of those
strongly correlated states of matter. The bosonic Mott-insulator
transition has been observed in systems of ultracold atoms,
trapped in optical lattices [1]. The fermionic Mott state is
well known in solid-state systems. Signatures of the fermionic
Mott transition in an optical lattice have also been reported
recently [2,3].

The zero-temperature phase diagram of the Bose-Hubbard
model is well known [4] and is reproduced in Fig. 1. It consists
of superfluid phases when the ratio of the on-site repulsion
to the hopping constant is small, and Mott-insulating phases
when this ratio is sufficiently large. Within the Mott phases,
the on-site particle number is constant and integer. At nonzero
temperature the superfluid has a phase transition—and the
Mott phases a crossover—to the normal phase.

There are two observables by which this phase diagram
is characterized: compressibility and off-diagonal superfluid
long-range order. The high-temperature normal phase is
compressible and nonsuperfluid. The low-temperature su-
perfluid phase possesses off-diagonal long-range order and
is also compressible. The zero-temperature Mott phase is
incompressible and not superfluid. There are thus in principle
two possible phase transitions: one involving the existence of
superfluid long-range order and one involving the compress-
ibility. However, these two transitions coincide at the zero-
temperature bosonic Mott transition, where both observables
change: superfluid long-range order disappears and the system
becomes incompressible.

To confirm this experimentally, it is desirable to have
independent probes for both of these transitions. This need
is even stronger for the case of fermionic atoms, for which
only the compressible-incompressible transition takes place at
the Mott transition.

In past experiments with bosonic atoms, primarily the
superfluid-normal transition has been confirmed. This follows
directly from the investigation of interference peaks after
time-of-flight spectroscopy. The compressible-incompressible
transition in bosonic atoms has been probed by the observation
of the wedding-cake structure [5–7]: for values of the bosonic
repulsion exceeding the critical interaction, and sufficiently

high filling, a Mott plateau appears, surrounded by a superfluid
[8]. For even higher filling a second superfluid emerges in
the center, which reaches a new Mott plateau at still higher
filling, thus giving rise to a series of alternating superfluids
with smoothly varying density and Mott plateaus with constant
integer density.

For fermionic atoms, two other methods have been used to
probe the reduction of the compressibility at the Mott-insulator
transition: observation of the cloud size [3] and the fraction
of doubly occupied sites [2]. Both methods, however, have
the disadvantage that in an inhomogeneous system, the Fermi-
liquid regions of the system also contribute to the signal. This
implies that even at zero temperature these observables do not
show a sharp feature at the Mott-insulating transition. This
makes it difficult to use these methods to locate the Mott
transition precisely.

In this paper we propose to use the frequencies of the col-
lective modes as probes of the Mott transition, in particular to
probe the compressibility. We find a strong dependence on the
dimension: while in one dimension the frequency of the dipole
mode vanishes at the transition, in higher dimensions this clear
signature disappears. In particular, in two and three dimensions
the dominant dipole mode is featureless at the transition.
Therefore, more subtle signatures have to be be sought. They
are most pronounced in the breathing mode, because exciting
a breathing mode indeed compresses the system, in contrast
to the dipole and quadrupole modes. However, the signal is
nongeneric and depends on the choice of probing the mode
frequencies while increasing the particle number at constant
interaction or while increasing the repulsion at constant
particle number. In the former case there is no sharp signature
at the onset of the Mott insulator, because the support of the
breathing mode smoothly moves to the edge when the particle
number is increased. There is a sharp signal when a superfluid
appears on top of the Mott insulator, because then a new
mode, with very low frequency, appears. When the interaction
is increased keeping the particle number constant, the signal
depends on the particle number. When the particle number is
sufficiently high, a sharp signal is found: when the onset of the
Mott insulator in the trap center is approached, the breathing
mode turns into a bimodal structure; the low-frequency mode,
corresponding to excitations in the trap center, vanishes at the
transition and only the high-frequency mode, corresponding
to excitation of the edge of the system, survives. For lower
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FIG. 1. Zero-temperature phase diagram of the Bose-Hubbard
model resulting from the Gutzwiller mean-field approximation. The
phase diagram includes a superfluid (SF) phase and Mott-insulating
(MI) phases.

particle numbers, however, these two modes show an avoided
crossing, and the sharp signal at the transition disappears.

We also find that when a Mott plateau is present in the trap
center, the breathing mode and the subdominant dipole and
quadrupole modes approach each other.

We provide explicit calculations of the frequency of the
modes in the case of bosonic particles, for which aim we use the
time-dependent Gutzwiller (mean-field) approximation. From
this we can build up a physical picture, which enables us to
extend the result to the collective modes of inhomogeneous
fermionic systems in an optical lattice. We now present the
model in Sec. II and the method in Sec. III. The results
are presented in Sec. IV. We close with a discussion and
conclusions in Sec. V.

II. MODEL

For a deep optical lattice and moderate filling, both
fermionic and bosonic particles can be described by a single-
band Hubbard Hamiltonian in the tight-binding approxima-
tion. Here we consider bosons, which are described by the
Bose-Hubbard model [4]:

H = −J
∑
〈ij〉

{b†i bj + H.c.}

+
∑

i

{
U

2
n̂i(n̂i − 1) + [V (i,t) − μ]n̂(i)

}
. (1)

Here bi (b†i ) is the annihilation (creation) operator at site i

and we defined n̂i = b
†
i bi . Furthermore, μ is the chemical

potential, J is the hopping amplitude, and U is the on-site
repulsion. J and U can be expressed in terms of the atomic
interparticle scattering length a, atomic mass m, and laser
wavelength and intensity [9]. We will use them as effective
parameters. V (i,t) is the underlying harmonic potential which
we take equal to

V (i,t) = V0(t)|xi − x0(t)|2. (2)

Here we have indicated a possible time dependence of the
trap center and the trap constant, which is used to induce the
collective modes. In the following we set the lattice constant

equal to a = 1. We express the mode frequencies in terms
of the frequency associated with the harmonic trap, ωtrap =
2
√

V0/J .

III. METHOD

We use the time-dependent Gutzwiller mean-field approx-
imation [10], in which the hopping between the lattice sites is
treated in a mean-field approximation. For inhomogeneous
systems, this procedure has to be carried out in a space-
resolved version, where a different order parameter is associ-
ated with each site. The total many-body wave function within

this approximation is given as |�〉 = ∏
i

∑nc

n=0 f i
n

(b†i )n√
n!

|0〉.
Here we have introduced a cutoff nc on the number of Fock
states we take into account. The value of this cutoff should be
chosen such that the results are independent of it; it depends
on the strength of the interaction and the local density. In the
strongly interacting, low-filling regime we focus on here, nc

can be chosen to be a small number. The dynamics is governed
by the set of coupled differential equations [10]

iḟ i
n = −J

∑
〈ij〉

(√
n + 1 �∗

j f i
n+1 + √

n �j f i
n−1

)

+
(

U

2
n(n − 1) + V (i,t) − μ

)
f i

n, (3)

where �i = 〈bi〉 = ∑
n

√
n(f i

n−1)∗f i
n .

A. Linear response

When the deviation from equilibrium is small, the dy-
namical Gutzwiller equation can also be solved in linear
response [11]. After obtaining the equilibrium ground state,
characterized by the coefficients f i

n0, we write f i
n(t) = f i

n0 +
δf i

n(t). Expansion of the equations of motion in Eq. (3) up
to linear order in δf i

n(t) yields the linearized equations for
the collective modes. However, one has to make sure that the
excitations are orthogonal to the ground state and therefore
first a projection to this orthogonal subspace is needed.

For a homogeneous system one can use momentum
conservation to perform this procedure for each momentum
separately. However, in an inhomogeneous system, such as we
study here, this is not possible. This means that a large matrix,
of size 2V nc (V being the number of lattice sites), has to be
diagonalized. For a one-dimensional system this is possible for
realistic system sizes, but for higher dimensions the real-time
evaluation of Eq. (3) turns out to be more efficient.

B. Validity

The Gutzwiller approximation is a highly efficient method
for studying dynamics of lattice bosons. It conserves energy
and particle number with a very good accuracy. The latter,
however, is true only if the sites are sequentially updated; a
parallel update of all sites together is numerically unstable with
respect to particle-number conservation [12]. The validity of
the Gutzwiller approximation is further justified by the fact
that for small interactions it incorporates the Gross-Pitaevskii
dynamics [10]. For a fully connected lattice (i.e., in the infinite-
dimensional limit), the Gutzwiller mean-field equations have
been shown to be exact [13].
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Although this mean-field approximation can thus be justi-
fied only in high-dimensional lattices, we apply the Gutzwiller
mean-field dynamics here also to one- and two- dimensional
systems. This is outside the strict regime of validity of the
approximations, and therefore we do not expect quantitative
accuracy. Within this mean-field approximation only local
quantum fluctuations are taken into account, whereas long-
wavelength fluctuations are very important in one dimension,
because they destroy true superfluid long-range order. For the
trapped systems at zero temperature that we consider, this
is less of an issue, because the harmonic potential provides
a natural cutoff for the long-wavelength fluctuations. On a
quantitative level the critical interaction for the Mott transition
is strongly renormalized compared to the mean-field predic-
tion: the equilibrium Gutzwiller mean-field approximation
predicts that the Mott-insulating transition for a homogeneous
system with n particles per site happens at U/zJ = 2n + 1 +
2
√

n(n + 1) (z being the number of lattice neighbors). For
n = 1 this gives reasonable agreement with quantum Monte
Carlo predictions for a three-dimensional cubic lattice [14],
but for a square lattice [15] and a one-dimensional lattice [16]
quantum fluctuations significantly lower the critical repulsion
and hence increase the Mott-insulating lobes.

However, we are not so much interested here in a quan-
titative determination of the critical interaction, but in the
qualitative, lattice-geometry-dependent features accompany-
ing this transition. We expect them to be unaffected by quantum
fluctuations.

C. Deduction of the mode frequencies

We induce the collective modes by starting the simulation
with the system prepared slightly away from equilibrium as
sketched in Fig. 2. The breathing mode is induced by a sudden
change in the spring constant V0(t), which experimentally
corresponds to a sudden change in trapping frequency. Ex-
perimentally, the breathing mode is also excited when the
optical lattice is ramped up, because the increasing U/J ratio
pushes particles away from the center [17]. The dipole mode is
induced by a sudden change in the trap center x0 [18–21]. The
quadrupole mode is obtained by starting with an anisotropic
trap V (i,t) = ∑

α Vα(t)[xα − x0α(t)]2.
Note that in one dimension the quadrupole does not exist.

There we can induce only the dipole and breathing modes. The
breathing mode is unique; the dipole and quadrupole modes
are degenerate in higher dimensions.

After following the time evolution, we deduce the modes
by fitting the cloud size and center-of-mass position to a sum

(a) (b) (c)

FIG. 2. (Color online) Symmetry of the collective modes. Here
we depict the two-dimensional situation: (a) breathing mode;
(b) quadrupole mode; (c) dipole mode.

of cosines, using the frequencies and amplitudes as fitting
parameters. By taking a sum of cosines we are able to identify
the frequency of the dominant mode as well as the frequencies
of the subdominant modes.

Note that throughout this paper we always restrict ourselves
to small initial perturbations and hence small deviations
from equilibrium. To induce the dipole mode we shifted
the trap minimum by only one-tenth of the lattice constant;
the monopole and quadrupole modes were induced by a
1% change in the trap parameter. These small perturbations
guarantee that we are in the linear-response regime, such
that the absolute magnitude of the perturbation is not an
independent quantity of physical interest.

IV. RESULTS

We present the results of the numerical simulations for
the collective modes. Because we want to study the signal
in the collective modes at the Mott-insulating transition, we
need to locate this transition in the equilibrium case. This
is a subtle issue, because of the inhomogeneous system:
the superfluid adjacent to the Mott insulator leads to an
exponentially decaying superfluid order parameter, instead of
one that is exactly vanishing. Therefore we accompany the
plots of the frequencies with pictures showing the evolution
of the radial density profiles n(r) and the absolute value of the
local superfluid order parameter squared |〈b̂〉|2(r), when the
total particle number or the ratio U/J is changed.

A. One dimension

First we present results in one spatial dimension. As
argued before, in this case the Gutzwiller dynamics cannot
be trusted quantitatively. However, one dimension allows
for a comparison with beyond-mean-field methods [22–27].
Moreover, since the number of sites is limited, we can compare
the numerical time evolution with the mode frequencies
from a linear-response calculation even for realistic trapping
frequencies.

1. Mode frequency as a function of N for constant U/J

We start by directing our attention to the frequency of the
modes for constant U/J as a function of N , as depicted in
Fig. 3. First of all we note the excellent agreement between the
linear-response calculation and the numerical time evolution,
except for a few points close to the phase transition.

To begin with, we look at the dominant frequencies,
indicated by the large dots, and concentrate on the dipole mode.
For small particle numbers, i.e., in the weakly interacting
limit, we observe that the dipole mode approaches the trap
frequency, which coincides with the dipole frequency in the
noninteracting limit. This will be true for all further plots
as well. Mean-field interactions indeed do not change the
frequency of the dipole mode [28]. However, the interactions
beyond the mean field included in the dynamical Gutzwiller
equations do change the frequency, as we observe for larger
particle numbers, since these include (partial) localization of
the particles and depletion of the superfluid.

In Fig. 3(a) we have chosen U/J = 9, which is below the
critical interaction for the formation of a Mott insulator. Still
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FIG. 3. (Color online) Frequencies of the collective modes scaled
to the trapping frequency in one dimension as a function of particle
number N for fixed U/J = 9, 17, and 29. Red lines represent the
result of the linear-response calculation. Blue dots and brown squares
indicate the results of the numerical time evolution after a quench
inducing a dipole and a breathing mode, respectively. The small dots
and squares denote the frequencies of the subdominant modes. The
trap parameter is V0 = 0.01J . Magenta (darker) vertical lines denote
the onset of a Mott insulator in the center; orange (lighter) lines denote
the onset of a superfluid. The small panels denote the radial profiles
of the density and |〈b̂〉|2(r) for some values of N .

we see a minimum in the dipole mode frequency, at the point
that the compressibility in the trap center is mimimal. When

U/J is increased, the minimum in the dipole mode frequency
becomes progressively smaller, until it completely vanishes at
the onset of the Mott insulator for U/J > (U/J )c. We see this
in Fig. 3(b). At this point, the breathing mode frequency also
has a minimum.

When the particle number is increased further, the Mott
plateau in the center broadens and is completely immobile.
This means that action can happen only within the superfluids
at the edges, which oscillate at high frequency. We note that the
dipole mode frequency and monopole frequency coincide in
this region. This is because they correspond to the in-phase and
out-of-phase oscillations of the two superfluid edges, which
have the same frequency.

For even higher particle number, a second superfluid
emerges at the trap center. This has a dramatic effect on the
frequencies: they jump to a much lower value since now the
particle currents can be carried by the superfluid particles in
the center.

When U/J is chosen even higher, we can observe multiple
Mott plateaus forming when the particle number is increased,
as visible in Fig. 3(c). We see the same pattern occurring each
time the Mott insulator forms in the center: the dipole mode
frequency vanishes and the breathing mode frequency has a
minimum, followed by high and coinciding frequencies. At
the onset of the superfluid in the center, the frequencies jump
down again.

The fact that the dipole mode vanishes at the transition can
be understood by the following simple argument: In the super-
fluid the Bogoliubov sound modes have a linear spectrum, with
a sound velocity that vanishes at the onset of the Mott insulator
[29]. This means that mass transport becomes increasingly
slow and totally vanishes at this point. For the dipole mode,
this leads to a vanishing frequency, because this mode involves
particle transport across the trap center; the point where the
sound velocity vanishes. However, we also observe that an
increasing fraction of the particles is reflected by this almost
incompressible trap center, leading to the appearance of a
second frequency (indicated by smaller dots) in the dipole
spectrum. The breathing mode does not vanish at the transition,
because the particles in the center, where the sound velocity
vanishes, are not involved in the particle transport carrying
this mode. The fact that the breathing mode frequencies
shoot up when a Mott insulator is formed in the center
follows from the fact that then transport through the center
is completely suppressed, because the modes are gapped in
this region. Only the edges fluctuate with a high frequency.

We thus see that in one dimension there is a clear signal in
the collective modes when the Mott transition takes place,
if one scans the mode frequencies as a function of the
particle number for constant U/J . This signal was also found
for fermionic particles [26]. However, in that case it was
observed that the breathing mode frequency also vanishes at
the transition. In contrast, here we observe that, although the
breathing mode frequency has a minimum at the onset of the
Mott insulator, it does not vanish.

2. Mode frequency as a function of U/J for constant N

We now investigate the one-dimensional mode frequencies
when N is kept constant, but U/J is varied. Some represen-
tative plots are shown in Fig. 4. In this case the behavior of
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FIG. 4. (Color online) Frequencies of the collective modes scaled
to the trapping frequency in one dimension as a function of the
interparticle repulsion U for fixed particle number N . Red lines
represent the result of the linear-response calculation. Blue dots and
brown squares indicate the result of the numerical time evolution after
a quench inducing a dipole and a breathing mode, respectively. The
small dots and squares denote the frequencies of the subdominant
modes. The trap parameter is V0 = 0.01J . Magenta (darker) vertical
lines denote the onset of a Mott insulator in the center; the green
(lighter) vertical line denotes the onset of a Mott insulator away from
the center. The small panels denote the radial profiles of the density
and |〈b̂〉|2(r) for some values of U/J .

the modes across the Mott transition depends strongly on the
particle number. When the particle number is too low, no Mott
transition takes place, as shown in Fig. 4(a). The frequencies
are smooth in this case.

When the particle number is increased, the Mott transition
takes place in the center as shown in Fig. 4(b). In this case the
dipole mode vanishes at the transition, but the breathing mode
does not vanish, as we saw in the previous section. However,
we observe that the breathing mode has a kinklike structure
at the transition: it goes up sharply when the transition is
approached and then reaches a constant value when the Mott
state is present. We can understand that the amplitude goes
up before the transition, because as the transition approaches
the central region (where the insulator forms) becomes more
and more incompressible, thus pushing the mobile particles
supporting the breathing mode to the edges, where the
frequencies are naturally higher. We also observe that the mode
structure at this point has the form of an avoided crossing
between modes localized in the center and at the edge.

When the particle number is even higher, the Mott transition
does not take place first in the center, but in a shell surrounding
the center. As a consequence, both the dipole mode and the
breathing mode vanish at this transition, because in both modes
particles with a vanishing sound velocity are involved. This is
shown in Fig. 4(c).

After the Mott insulator has taken place away from the
center, the superfluid center and the superfluid edges are
effectively decoupled. This leads to independent oscillations
of the edges and the superfluid center, leading to additional
low-lying modes in this region.

When the full center is Mott insulating, the mode frequen-
cies become practically independent of U/J . This reflects
the fact that the density profiles become independent of the
repulsion for sufficiently large repulsion and sufficiently low
total particle number, as also visible in the panels in Fig. 4
showing the radial density profiles. The reason for this is that
even within the superfluid the fraction of doubly occupied sites
at those large values of U/J is very small, such that effectively
the hard-core limit is reached.

We thus see that in this scheme also the collective modes
show a clear signature at the Mott-insulating transition in one
spatial dimension.

B. Two dimensions

The results for two-dimensional systems are shown in
Figs. 5 and 6, for the cases that the particle number is increased
at constant U/J and the particle number is kept constant but
U/J is increased, respectively.

We first of all note the important difference between
the one- and two-dimensional cases regarding the frequency
of the dipole modes: whereas in one dimension the dipole
mode shows a clear signal at the Mott-insulator transition by
completely vanishing, in two dimensions the dominant dipole
mode is completely featureless at the transition.

This is a purely geometrical effect, which can be understood
in a simple way [see Fig. 5(a)]: In one dimension particles
contributing to the dominant dipole mode have to cross the
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FIG. 5. (Color online) (a) Difference between the dipole modes in
one and two dimensions: in one dimension particles have to cross the
insulating center, whereas in two (and higher) dimensions the particles
can avoid it. (b)–(d) Frequencies of the collective modes scaled to the
trapping frequency in two dimensions as a function of particle number
N for fixed U/J . Blue dots, red triangles, and brown squares indicate
the dipole, quadrupole, and breathing mode frequencies, respectively.
The small dots, squares, and triangles denote the frequencies of the
subdominant modes. The trap parameter is V0 = 0.05J . Magenta
(darker) vertical lines denote the onset of a Mott insulator in the
center; orange (lighter) lines denote the onset of a superfluid. The
small panels denote the radial profiles of the density and |〈b̂〉|2(r) for
some values of N .
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FIG. 6. (Color online) Frequencies of the collective modes scaled
to the trapping frequency in two dimensions as a function of
interaction U/J for fixed particle number N . Blue dots, red triangles,
and brown squares indicate the dipole, quadrupole, and breathing
mode frequencies, respectively. The small dots, squares, and triangles
denote the frequencies of the subdominant modes. The trap parameter
is V0 = 0.05J . Magenta (darker) vertical lines denote the onset of a
Mott insulator in the center; green (lighter) vertical lines denote the
onset of a Mott insulator away from the center. The small panels
denote the radial profiles of the density and |〈b̂〉|2(r) for some values
of U/J .
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trap center, where the Mott insulator is formed and the
sound velocity tends to zero. In contrast, in two and higher
dimensions, particles carrying the dominant dipole mode can
circumvent the incompressible trap center. Therefore, the
dominant trap frequency is not sensitive to the Mott transition
at all. This same argument applies to the quadrupole mode.
When looking for signs of the Mott-insulator transition, we
therefore have to concentrate on the breathing mode. Indeed,
when this mode is excited, the cloud is compressed, such that
this mode should give information about the compressibility.

1. Mode frequencies as a function of N for constant U/J

We again first investigate the case that U/J is kept fixed
and the particle number is increased. This does not lead to a
sharp signal in the breathing mode frequency at the onset of
the Mott insulator, as shown in Fig. 5. Slightly before, but not
exactly at, the Mott transition the dominant monopole mode
has a minimum. After the Mott insulator has settled in the
center, the dominant breathing mode and the second dipole
and quadrupole modes approach each other.

However, a very clear signal appears in this scheme when
a superfluid forms in the center: this leads to the sudden
appearance of low-lying collective modes in the spectrum.
The nature of these low-lying modes depends on U/J : when
the repulsion is only slightly larger than the critical repulsion
[as in the case shown in Fig. 5(c)], the superfluids at the
edge and in the center are strongly coupled. This leads to
a mode with a very low frequency, corresponding to the
coupled motion of the superfluids in the center and at the edge.
We observe that this mode becomes dominant immediately
after the superfluid forms in the center. In contrast, when the
repulsion is chosen larger [as in the case shown in Fig. 5(e)],
the superfluids at the edge and in the center are separated
by a large Mott plateau and hence only weakly coupled. This
means that the edge and the center in the first instance oscillate
independently, and the superfluid at the edge still supports
the dominant mode. For larger particle number the superfluid
in the center contains progressively more particles and takes
over the dominant breathing mode. As a subdominant mode
we then observe the appearance of a mode with a very low
frequency, corresponding to the coupled in-phase motion of the
superfluids in the center and at the edge. This mode becomes
dominant for even larger particle numbers. For larger U/J [see
Fig. 5(e)] we also see the appearance of a Mott plateau with
two localized particles per site. However, because U/J is so
large, we do not observe the low-lying mode corresponding to
the coupled superfluids at the edge and in the center.

2. Mode frequencies as a function of U/J for constant N

When the repulsion is increased for constant particle
number, the two-dimensional situation is rather similar to the
one-dimensional situation, as shown in Fig. 6. The signal at
the Mott-insulator transition depends on the particle number.
When the particle number is sufficiently low such that the Mott
transition happens in the center [see Fig. 6(a)], the dominant
breathing mode shows a (more or less sharp) kink at the
transition. We observe again the avoided crossing between
modes localized in the center and at the edge. In contrast,
when the particle number is sufficiently high, such that the

Mott transition happens in a shell away from the center [as
shown in Figs. 6(b) and 6(c)] the dominant breathing mode
vanishes, thus providing a clear signal. However, we see
that the breathing mode frequency vanishes in this case only
after the Mott-insulating plateau is strong enough: when the
repulsion is only a little bit larger than the critical interaction,
the Mott plateau is so small that particle transport through it
can still happen.

C. Three dimensions

The situation in three dimensions is similar to the two-
dimensional situation and is shown in the plots in Figs. 7 and 8.
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FIG. 7. (Color online) Frequencies of the collective modes scaled
to the trapping frequency in three dimensions as a function of
particle number N for fixed U/J . Blue dots, red triangles, and
brown squares indicate the dipole, quadrupole, and breathing mode
frequencies, respectively. The small dots, squares, and triangles
denote the frequencies of the subdominant modes. The trap parameter
is V0 = 0.04J . Magenta (darker) vertical lines denote the onset of a
Mott insulator in the center; orange (lighter) lines denote the onset of
a superfluid. The small panels denote the radial profiles of the density
and |〈b̂〉|2(r) for some values of N .
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FIG. 8. (Color online) Frequencies of the collective modes scaled
to the trapping frequency in three dimensions as a function of
interaction U/J for fixed particle number N . Blue dots, red triangles,
and brown squares indicate the dipole, quadrupole, and breathing
mode frequencies, respectively. The small dots, squares, and triangles
denote the frequencies of the subdominant modes. The trap parameter
is V0 = 0.04J . Magenta (darker) vertical lines denote the onset of a
Mott insulator in the center; the green (lighter) vertical line denotes
the onset of a Mott insulator away from the center. The small panels
denote the radial profiles of the density and |〈b̂〉|2(r) for some values
of U/J .

This is because the topology in two and three dimensions is the
same: only in one dimension are the two superfluids at the edge
disconnected once a Mott insulator has formed in the center
and particles carrying the dipole mode have to cross the center.
In all higher dimensions the superfluids form connected shells,
which can sustain a dipole mode that does not have to enter
the insulating regime. When the particle number is increased
at constant U/J , we therefore see a smooth dependence of the
collective modes when the repulsion is chosen smaller than
the critical value for the Mott-insulator transition [Fig. 7(a)],
and the sudden appearance of a low-frequency breathing

mode at the onset of a superfluid in the center when the
repulsion exceeds the critical value [Fig. 7(b)]. Note that in
Fig. 7(b) the repulsion is chosen only slightly larger than
the critical interaction, such that the superfluids at the edge
and in the center are coupled, and a very low-lying mode
appears when the superfluid appears in the center, as we saw in
Fig. 5(c).

When the repulsion is increased at constant particle number,
we see a kink in the breathing mode at the onset of the Mott
insulator when the particle number is chosen such that the
Mott transition happens in the trap center [Fig. 8(a)]. When
the particle number is larger, the Mott insulator occurs in a shell
outside the center, leading to a sharp signal in the breathing
mode: a jump of the dominant breathing mode to a high value
and a subdominant breathing mode that vanishes when the
Mott insulator approaches the center.

V. CONCLUSIONS

In this paper we studied the behavior of the collective modes
of a trapped strongly interacting Bose gas in an optical lattice.
Our main goal was to investigate whether this can be used as a
probe for the Mott-insulator transition. We found a particularly
strong signature in one spatial dimension, because there the
dominant dipole mode completely vanishes at the transition.
This is no longer true in two (and higher) spatial dimensions,
where the dominant dipole mode is completely featureless at
the transition.

The strongest signature in two (and higher) dimensions
appears in the breathing mode when the particle number is
sufficiently high: when U/J is increased at constant particle
number the breathing mode vanishes at the transition, followed
by a jump to a high value, indicating that the mode is
completely supported by the edge of the system. When the
repulsion is kept constant and the particle number is increased,
there is no sharp signal in the collective modes at the onset of
the Mott insulator. However, the appearance of a superfluid on
top of the insulator leads to the sudden appearance of low-lying
modes and thus a clear signal.

Although our simulations were performed for bosonic
particles, we can use these results to predict the behavior of
fermionic particles at the Mott transition as well. That is, since
we can understand the behavior of the modes in terms of
the compressibility, we expect similar behavior for fermionic
atoms. For fermionic atoms also we therefore predict that
the dipole mode vanishes completely in one dimension at the
Mott-insulator transition (as has indeed been confirmed [26])
but is featureless in higher dimensions. We expect signatures
in the breathing mode in the same fashion as found for
bosons: a vanishing breathing mode frequency at sufficiently
high particle number when the repulsion is increased through
the insulator transition and a sharp downward jump of the
breathing mode frequency at the point that a metallic region
appears on top of the Mott insulator when the particle number
is increased at constant repulsion.
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