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We propose a one-dimensional model of spinor bosons with SU(2) symmetry and a two-body finite-range
Gaussian interaction potential. We show that the model is exactly solvable when the width of the interaction
potential is much smaller than the interparticle separation. This model is then solved via the asymptotic Bethe-
ansatz technique. The ferromagnetic ground-state energy and chemical potential are derived analytically. We also
investigate the effects of a finite-range potential on the density profiles through the local-density approximation.
Finite-range potentials are more likely to lead to quasi-Bose-Einstein condensation than zero-range potentials.
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I. INTRODUCTION

Integrable one-dimensional (1D) models of interacting
bosons and fermions with δ-function interaction [1–3] have
had a tremendous impact on quantum statistical mechanics.
In particular, recent breakthrough experiments on trapped
ultracold bosons and fermions atoms confined to 1D have
provided a better understanding of quantum statistical effects
and strongly correlated phenomena in quantum many-body
systems. These models contain two-body zero-range potentials
which allows the wave functions to be written as a superposi-
tion of plane waves by means of Bethe’s hypothesis [4]. This
assumption is true based on the fact that every particle can
move freely without experiencing the presence of others when
no collision takes place.

However, Calogero [5] showed that certain models with
long-range potentials can also be solved exactly, though not
by using Bethe’s hypothesis. He first solved the three-body
problem with a harmonic potential and a g/r2 potential, and
then generalized it to the N -body problem to obtain the exact
expression for the ground-state energy and a class of excited
states. Sutherland [6] then derived the exact solutions for the
ground-state energy, pair correlation function, low-lying exci-
tations, and thermodynamics of the model with g/r2 potential
for both fermions and bosons in the thermodynamic limit by
employing the asymptotic Bethe-ansatz (ABA), which uses
Bethe’s hypothesis in the asymptotic limit. Since then, many
models with nonlocal interaction have been solved exactly
through the ABA method. Among them are the isotropic
Heisenberg antiferromagnetic chain [7], the quantum lattice
model with inverse sinh squared potential [8], the t-J model
with long-range interaction [9], the nonliner Schrödinger
model [10], and so on.

The main idea of the ABA is that one restricts oneself to
the asymptotic region where the particles are considered to be
sufficiently far apart, such that their influence on neighboring
particles is negligible [11]. Then one has to show by some
unspecified method that the system is integrable, i.e., that
it has a complete set of independent integrals of motion.
For example, various authors [12] have shown that for g/r2

potentials one can find N integrals of motion for the N -particle

system. Once this is done, one can then conclude that the wave
function is nondiffractive and thus asymptotically given by
the BA. Since the exact scattering data are known, one can
then obtain the exact thermodynamics of the system [13]. It
should be pointed out that a common misconception is that
the ABA is only a low-density approximation, i.e., N/L → 0.
This is not true, and in fact it gives the exact thermodynamics
for systems with finite density in the thermodynamic limit
(see [11] for explanations). When using the ABA, the low-
density limit N/L → 0 is reached only when the width of the
interaction potential between neighboring particles becomes
large. However, for the purpose of this investigation, we restrict
ourselves to a finite-density system where the width of the
interaction potential between particles is small. A physical
example of systems with such properties is given by dilute
gases, whose interparticle interactions are almost local.

In this paper, we investigate the ground state of two-
component spinor bosons with finite-range Gaussian inter-
actions in 1D. The interaction potential for this system can
be expressed in terms of the sum of even-powered derivatives
of a δ function. It gives rise to certain nonlinear behavior not
observed in systems with spin-independent potentials [14].
This kind of velocity- or state-dependent potential leads to
more versatility in studying spin waves, ferromagnetic behav-
ior, and the relation between superfluidity and magnetism in
low-dimensional many-body systems, as shown in Ref. [15]
for two-component 87Rb atoms on a quantum chip. By using
a state-dependent dressed potential, spin degrees of freedom
in two-component spinor bosons are tunable. This technique
for controlling nonequilibrium spin motion allows one to
study quantum coherence in interacting quantum systems and
to experimentally explore predictions of the thermodynamic
Bethe ansatz in a system of two-component spinor bosons.

We first introduce the model in Sec. II. In Sec. III, we show
that the Hamiltonian for this model is integrable. In Sec. IV, we
derive the distribution functions for the charge and spin degrees
of freedom from the ABA equations. The ground-state energy
and thermodynamics are evaluated in Sec. V in the limits
where the interaction strength between particles is large and
the width of the interaction potential is small. In Sec. VI, we

013629-11050-2947/2012/85(1)/013629(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.013629


LEE, GUAN, DEL CAMPO, AND BATCHELOR PHYSICAL REVIEW A 85, 013629 (2012)

apply the local-density approximation to obtain the density
profiles for this model. And finally, in Sec. VII, we conclude
with a summary of our results.

II. THE MODEL

Let us consider N bosons with SU(2) symmetry confined
to a 1D wire of length L with periodic boundary conditions.
Here we denote the internal hyperfine spin states as |↑〉 and |↓〉.
The interaction potential between adjacent particles is given
by a generic non-negative function v(xj − xl) that is even in
the interparticle separation, i.e., v(x) = v(−x), and vanishes
at large enough distances, i.e., limx→∞ v(x) = 0. For such a
system, the first-quantized Hamiltonian is given by

H = − h̄2

2m

N∑
j=1

∂2

∂x2
j

+ 2c
∑
j<l

v(xj − xl) − H

2
(N↑ − N↓),

(1)

where m is the mass of each boson and c characterizes
the interaction strength, which is the same for all possible
collisions, i.e., between two |↑〉 bosons, two |↓〉 bosons, or
one |↑〉 and one |↓〉 boson. The interactions are repulsive
when c > 0 and attractive when c < 0. The external magnetic
field is represented by H , and the total particle number is
given by N = N↑ + N↓. For the rest of this paper we use the
dimensionless units of h̄ = 2m = 1 for convenience. These
units are also used in all figures.

In the case when

v(x) = 1√
2πα2

exp

(
− x2

2α2

)
, (2)

the model can be exactly solved in the region x1 � x2 �
· · · � xN where the width of the Gaussian potential α is small
relative to the interparticle separation, i.e., |xi+1 − xi | 	 α

or (N/L)α � 1 for every i < N . In this limit, all particles
scatter nondiffractively. This implies that the asymptotic wave
function can be written as a sum of N ! terms corresponding
to the permutations P of the set of asymptotic momenta {ki}.
Explicitly, the wave function can be expressed in Bethe-ansatz
form as

ψ(x) =
∑
P

A(P ) exp

⎛
⎝i

N∑
j=1

kPj
xj

⎞
⎠ . (3)

The argument that supports nondiffractive scattering is as
follows. Consider the two-body problem N = 2 where the
particles are far apart, i.e., x1 � x2. Since |x2 − x1| 	 α, the
particles behave as free particles; therefore the wave function
is a product of plane waves with total momentum and energy
given by

P = k1 + k2, E = k2
1 + k2

2 . (4)

Through the scattering process, the total momentum and
energy have to be conserved. This yields a new set of momenta
which is either (k′

1,k
′
2) = (k1,k2) or (k′

1,k
′
2) = (k2,k1).

For the N -body problem, we can think of it as a succession
of two particles colliding and then scattering to the asymptotic
region as free particles, where each two-body collision
gives rise to a permutation of the momenta. A product of

transpositions acting on the permutation P leads to another
permutation P ′. Hence, the scattering is nondiffractive for
any number of particles. When α → 0 in the fully polarized
case, v(x) → δ(x), which allows us to recover the Lieb-Liniger
interacting spinless Bose gas [1].

III. INTEGRABILITY OF THE HAMILTONIAN

We know that in the limit α → 0, the Gaussian function
tends to a δ function. The δ function is not a function in
the classical sense and should be treated as a generalized
function [16] instead. Notice that if the potential v(x) is an
even function, its Fourier transform v̂(k) = ∫∞

−∞ v(x)eikxdx is
also an even function, i.e., v̂(k) = v̂(−k). This implies that the
Taylor expansion of v̂(k) in the neighborhood of k = 0 consists
only of even powers of k as given by

v̂(k) =
∞∑

n=0

bnk
2n. (5)

Assuming that the potential meets such restrictions, we can
take the inverse Fourier transform to obtain the potential in
position space as

v(x) = 1

2π

∞∑
n=0

∫ ∞

−∞
bnk

2ne−ikxdk ≡
∞∑

n=0

anδ
(2n)(x), (6)

where an = (−1)nbn. This result is derived from the fact that
the 2nth derivative of the δ function can be expressed as
δ(2n)(x) = 1

2π

∫∞
−∞(−1)nk2ne−ikxdk.

Let us now consider a Gaussian-type potential. The Fourier
transform of the Gaussian function is still a Gaussian function
and is given by

F

[
1√

2πα2
exp

(
− x2

2α2

)]
= exp

(
−α2k2

2

)
. (7)

The Taylor expansion of the right-hand side of Eq. (7) at
k = 0 is

exp

(
−α2k2

2

)
=

∞∑
n=0

(−1)n
1

n!

(
α2

2

)n

k2n. (8)

From Eqs. (5) and (6), we deduce that

v(x) = 1√
2πα2

exp

(
− x2

2α2

)
=

∞∑
n=0

1

n!

(
α2

2

)n

δ(2n)(x). (9)

It seems a little odd at first glance that an analytic
function can be written in the form of an infinite sum of
generalized functions. We emphasize that this equality does
not hold at isolated points, i.e., we cannot, for instance,
say that the equality holds at the point x0. But one can
convince oneself that it holds whenever we consider v(x)
as a continuous linear functional that associates with every
function ψ(x) which vanishes outside some bounded region
and has continuous derivatives of all orders a real number
(v,ψ). Mathematically, v(x) is considered a functional in
the sense that (v,ψ) = ∫

R
v(x)ψ(x)dx where the integration

is performed over the real line for this instance. One can
also check the validity of the expansion v(x) in terms of
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a linear combination of δ(2n)(x), denoted as vδ(x), when
ψ(x) = ∑

P Aσ1···σN
(P |Q) exp(i

∑N
j=1 kPj

xQj
) is the Bethe-

ansatz wave function, by comparing the expressions of (v,ψ)
and (vδ,ψ). In Appendix A, we verify the claim that (v,ψ) =
(vδ,ψ).

With this expression for the potential v(x) and after
verifying that (v,ψ) = (vδ,ψ), we can rewrite the Hamiltonian
in Eq. (1) as

H = −
N∑

j=1

∂2

∂x2
j

+ 2c
∑
j<l

∞∑
n=0

1

n!

(
α2

2

)n

δ(2n)(xj − xl)

− H

2
(N↑ − N↓). (10)

Following Gutkin’s work [19], we can show that this Hamilto-
nian is integrable. The boundary condition imposed by Eq. (10)
(derived in detail in Appendix C) is(

∂

∂xj+1
− ∂

∂xj

)
ψ |xj =x+

j+1
−
(

∂

∂xj+1
− ∂

∂xj

)
ψ |xj =x−

j+1

= 2C

∞∑
n=0

1

n!

(
α2

8

)n (
∂

∂xj+1
− ∂

∂xj

)2n

ψ |xj =xj+1 . (11)

Here the interaction strength C is now a d × d matrix, where
d represents the number of internal energy levels. More
explicitly, C = cI d where I d is a d × d identity matrix.
The superscripts + and − on the position of the (j + 1)th parti-
cle xj have the meaning that x+(−)

j+1 is infinitesimally greater (or
smaller) than xj+1. This boundary condition is a specific case
of the ones derived in Refs. [17,18] for velocity-dependent
δ-function potentials. To compute the matching coefficients
A(λ,μ) and B(λ,μ) that are found in Ref. [19], we assume
that the wave functions before collision and after collision
are

ψ |xj =x−
j+1

= ei(λxj +μxj+1), (12)

ψ |xj =x+
j+1

= A(λ,μ)ei(λxj +μxj+1) + B(λ,μ)ei(μxj +λxj+1). (13)

Next, we substitute these wave functions into Eq. (11) and
use Proposition 1 in Ref. [19], i.e., A(λ,μ) + B(λ,μ) = 1,
which states that there are only two possible plane-wave
solutions after collision. These are where either (i) the
momenta of scattering particles are interchanged, or (ii)
the momenta of scattering particles are left unchanged, with the
sum of their probabilities equal to 1. This yields the solutions
for A(λ,μ) and B(λ,μ), i.e.,

A(λ,μ) = (λ − μ) − iC
∑∞

n=0
1
n!

(−α2

8

)n
(λ − μ)2n

λ − μ
, (14)

B(λ,μ) = iC
∑∞

n=0
1
n!

(−α2

8

)n
(λ − μ)2n

λ − μ
. (15)

From Theorem 2(b) in Ref. [19], the symmetric Bethe
ansatz, i.e., Bethe’s hypothesis for a system of bosons,
is satisfied since we have found a pair of commuting
matching coefficients A(λ,μ) and B(λ,μ) for any matrix
C = cI d . Hence we have shown that this model is BA in-
tegrable. The N -particle symmetric wave function can then be

expressed as

ψ
(
xQ1 � xQ2 � · · · � xQN

)
=
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j=1

kPj
xQj

⎞
⎠ . (16)

This wave function is a superposition of plane waves with
different amplitudes Aσ1···σN

(P |Q) [not to be confused with
the coefficient A(λ,μ)] where P and Q are permutations of the
set of integers {1,2, . . . ,N}. Each plane wave is characterized
by the permutation P of wave numbers {kj }, therefore the sum
contains N ! terms. Here the σj ’s represent the spin coordinates.

It should be noted that the simple procedure of replacing
an analytic function by a linear combination of 2nth-order
derivatives of the δ function may lead one to think that any
Hamiltonian with a pairwise interaction potential which is an
even function can be exactly solved via the ABA. However, this
is not true. The BA integrability conditions met by the Gaussian
function are actually quite restrictive. First of all, any nonlocal
potential we choose has to be well behaved, smooth, and an
even function. Second, it has to vanish quickly as a function of
the distance between neighboring particles in order for us to
make use of the ABA. Third, the Gaussian function is unique
in the sense that it satisfies both previous conditions and can
still be reduced to a δ function as its width vanishes to zero.
This third point enables us to make sure our results reduce to
the Lieb-Liniger case in the limit α → 0, which is a necessary
condition. These three points eliminate many candidates for
the choice of pairwise interaction potential. In Appendix B,
we show that for the case where T = 0 there exists a unique
solution for the Bethe roots, and that they are good quantum
numbers.

IV. THE GROUND STATE

The scattering matrix and the ABA equations for this model
are derived in Appendixes C and D. The ABA equations are
given by

exp(ikjL) = −
N∏

l=1

kj − kl + ic′(kj − kl)

kj − kl − ic′(kj − kl)

×
M∏
i=1

kj − λi − ic′(kj − λi)

kj − λi

, j = 1, . . . ,N,

(17)

N∏
l=1

λi − kl + ic′(λi − kl)

λi − kl

= −
M∏

j=1

λi − λj + ic′(λi − λj )

λi − λj − ic′(λi − λj )
,

i = 1, . . . ,M, (18)

where the effective interaction strength c′(u) = ce−α2u2/8 is
given in Eq. (D13). Here, M denotes the number of spin-down
bosons in a system where the vacuum state (initial reference
state) consists of N spin-up bosons. The rapidities for the spin
degrees of freedom are given by {λi}.

When T = 0 there are no strings involved in the solution
for {λi}, i.e., all λi’s are real. Taking the logarithm of the ABA
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equations gives

kjL = 2πIj −
N∑

l=1

θ

(
kj − kl

c′(kj − kl)

)
+ 1

2

M∑
i=1

θ

(
kj − λi

c′(kj − λi)

)

+
M∑
i=1

ln

√
1 +

[
c′(kj − λi)

kj − λi

]2

, (19)

1

2

N∑
l=1

θ

(
λi − kl

c′(λi − kl)

)
−

N∑
l=1

ln

√
1 +

[
c′(λi − kl)

λi − kl

]2

= 2πJi +
M∑

j=1

θ

(
λi − λj

c′λi − λj )

)
, (20)

where θ (x) = 2 tan−1 x. Here, the quantum numbers Ij are
integers (half-odd integers) when N − M/2 is odd (even)
and Ji are integers (half-odd integers) when N/2 − M is
odd (even). Let us then define the functions h(k) and j (λ) to
represent “particles” when Lh(k) = 2πI and when Lj (λ) =
2πJ . This yields

h(k) = k + 1

L

N∑
l=1

θ

(
k − kl

c′(k − kl)

)
− 1

2L

M∑
i=1

θ

(
k − λi

c′(k − λi)

)

− 1

L

M∑
i=1

ln

√
1 +

[
c′(k − λi)

k − λi

]2

, (21)

j (λ) = 1

2L

N∑
l=1

θ

(
λ − kl

c′(λ − kl)

)
− 1

L

M∑
j=1

θ

(
λ − λj

c′(λ − λj )

)

− 1

L

N∑
l=1

ln

√
1 +

[
c′(λ − kl)

λ − kl

]2

. (22)

In the thermodynamic limit,

h(k) = k +
∫

θ

(
k − k′

c′(k − k′)

)
ρ(k′)dk′ − 1

2

∫
θ

(
k − λ

c′(k − λ)

)

× σ (λ)dλ −
∫

ln

√
1 +

[
c′(k − λ)

k − λ

]2

σ (λ)dλ, (23)

j (λ) = 1

2

∫
θ

(
λ − k

c′(λ − k)

)
ρ(k)dk −

∫
θ

(
λ − λ′

c′(λ − λ′)

)

× σ (λ′)dλ′ −
∫

ln

√
1 +

[
c′(λ − k)

λ − k

]2

ρ(k)dk, (24)

where ρ(k) and σ (λ) are the distribution functions for charge
and spin degrees of freedom, respectively. There are no
“holes” in the ground state; therefore we can safely take
ρh(k) = σh(λ) = 0. Define d

dk
h(k) = 2πρ(k) and d

dk
j (λ) =

2πσ (λ). Taking the derivatives of Eqs. (23) and (24) finally
leads to expressions for the distribution functions in the
form

ρ(k) = 1

2π
+
∫

K1(k − k′)ρ(k′)dk′− 1

2

∫
K1(k−λ)σ (λ)dλ

+
∫

K2(k − λ)σ (λ)dλ, (25)

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

ρ(
k)

α = 0

c = 0.5974
c = 1.7497
c = 3.1149
c = 29.6916

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

ρ(
k)

α = 0.62

c = 0.5730
c = 1.6123
c = 4.0881
c = 27.4406

FIG. 1. (Color online) Two plots of ρ(k) versus k for different
values of c, with fixed density n = 1. The top graph has a value of
α = 0 (where one recovers the Lieb-Liniger Bose gas) and the bottom
graph has a value of α = 0.62. All curves are obtained by numerically
solving Eq. (29).

σ (λ) = 1

2

∫
K1(λ − k)ρ(k)dk −

∫
K1(λ − λ′)σ (λ′)dλ′

+
∫

K2(λ − k)ρ(k)dk. (26)

The functions K1(x) and K2(x) are given by

K1(x) = 1

π

c′(x)
[
1 + α2

4 x2
]

[c′(x)]2 + x2
, (27)

K2(x) = 1

2π

c′(x)

x

c′(x)
[
1 + α2

4 x2
]

[c′(x)]2 + x2
≡ c′(x)

2x
K1(x). (28)

V. THE THERMODYNAMICS IN THE LIMITS
c � 1 AND α � 1

The model described by the Hamiltonian in Eq. (1) does
not include any explicit spin-dependent forces. Therefore the
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ground state is ferromagnetic according to a theorem given by
Eisenberg and Lieb [20]. When the external magnetic field
H > 0, the ground state is fully populated by |↑〉 states,
which were the reference states that we used to derive the
ABA equations. When H < 0, all |↑〉 states will flip into |↓〉
states. The ferromagnetic behavior and thermodynamics of the
special case α = 0 have been studied in the literature [21,22].

When T = 0 and H > 0, our model reduces to the single-
component case. Here σ (λ) = 0 since the distribution of |↓〉
is zero. Therefore we have only one equation to solve:

ρ(k) = 1

2π
+
∫ Q

−Q

1

π

c′(k − k′)
[
1 + α2

4 (k − k′)2
]

[c′(k − k′)]2 + (k − k′)2
ρ(k′)dk′,

(29)

where ±Q are the “Fermi” points. In Figs. 1 and 2, we plot
ρ(k) versus k for different values of c and α by numerically

solving Eq. (29). In both figures, we consider values of α

and c that are beyond the ABA regime, i.e., values that are
outside the limits α � 1 and c 	 1. This is done so that we
can more easily visualize how the distribution function ρ(k)
varies as both parameters vary. We stress that the curves in
Figs. 1 and 2 become less accurate as α tends to larger values
or as c tends to smaller values. It is clear from the figures
that, as the interaction width α increases, the distribution of
quasimomenta k becomes more centered around the origin.
This is because the increase in overlap between single-particle
wave functions causes the system to behave more and more
like a Bose-Einstein condensate where the quasimomenta of
particles occupy a smaller region in momentum space.

Using the relations n = ∫ Q

−Q
ρ(k)dk and E/L =∫ Q

−Q
k2ρ(k)dk, we can approximate ρ(k) by using Taylor’s

expansion to get

ρ(k) = 1

2π
+
∫ Q

−Q

1

π

ce−α2(k−k′)2/8
[
1 + α2

4 (k − k′)2
]

c2e−α2(k−k′)2/4+(k − k′)2
ρ(k′)dk′ = 1

2π
+ 1

πc

∫ Q

−Q

(
1+ 3α2

8
(k − k′)2 + 5α4

128
(k − k′)4 − · · ·

)
ρ(k′)dk′

= 1

2π
+ 1

πc

(
1+ 3α2

8
k2+ 5α4

128
k4

)∫ Q

−Q

ρ(k′)dk′+ 1

πc

(
3α2

8
+ 15α4

64
k2

)∫ Q

−Q

k′2ρ(k′)dk′ + 5α4

128πc

∫ Q

−Q

k′4ρ(k′)dk′ + · · ·

= 1

2π
+ n

πc

(
1 + 3α2

8
k2 + 5α4

128
k4

)
+ 3Eα2

8πLc

(
1 + 5α2

8
k2

)
+ Q5α4

128π2c

(
1 + 2n

c

)
+ O

(
1

c3

)
+ O(α6). (30)

The expression
∫ Q

−Q
k′4ρ(k′)dk′ was evaluated by substituting the dominant terms in ρ(k′) into the integral, which gave

∫ Q

−Q

k4ρ(k)dk ≈
∫ Q

−Q

k4

(
1

2π
+ n

πc

)
dk = Q5

5π

(
1 + 2n

c

)
. (31)

To find an expression for the Fermi point Q, we evaluate the integral

n =
∫ Q

−Q

ρ(k)dk ≈ Q

π

[
1 + 2n

c
+ 3Eα2

4Lc
+ nQ2α2

4c
+ Q5α4

64πc

(
1 + 2n

c

)
+ 5EQ2α4

32Lc
+ nQ4α4

64c

]
.

Hence

Q = πn

[
1 − 2n

c

(
1 − 2n

c

)
− π2n3α2

4c

(
1 − 8n

c

)
− 3Eα2

4Lc

(
1 − 4n

c
− 3Eα2

4Lc

)

−π4n5α4

32c

(
1 − 14n

c

)
− 5π2n2Eα4

32Lc

(
1 − 44n

5c

)]
+ O

(
1

c3

)
+ O(α6). (32)

The ground-state energy per unit length of the system is given by

E

L
=
∫ Q

−Q

k2ρ(k)dk = Q3

3π

[
1 + 2n

c
+ Q3α2

4πc

(
1 + 2n

c

)
+ 9nQ2α2

20c
+ Q6α4

16π2c2
+ 7Q5α4

64πc

(
1 + 106n

35c

)

+15nQ4α4

448c

]
+ O

(
1

c3

)
+ O(α6). (33)

Substituting Q into E/L and collecting similar terms yields

E

L
= 1

3
π2n3

[
1 − 4

γ

(
1 − 3

γ

)
− 4π2n2α2

5γ

(
1 − 10

γ

)
− 3π4n4α4

28γ

(
1 + 21

10γ

)]
+ O

(
1

γ 3

)
+ O(α6), (34)
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where γ = c/n. With this expression for E/L, the Fermi points can be written explicitly as

Q = πn

[
1 − 2

γ

(
1 − 2

γ

)
− π2n2α2

2γ

(
1 − 8

γ

)
− π4n4α4

12γ

(
1 − 82

5γ

)]
+ O

(
1

γ 3

)
+ O(α6). (35)

With the expression for the ground-state energy, the chemical potential can be derived using the relation

μ = ∂

∂n

(
E

L

)
= π2n2

[
1 − 16

3γ

(
1 − 15

4γ

)
− 8π2n2α2

5γ

(
1 − 35

3γ

)
− 2π4n4α4

7γ

(
1 + 189

80γ

)]
+ O

(
1

γ 3

)
+ O(α6). (36)

The ground-state energy is also calculated numerically for
different values of α and c by using ρ(k) in Eq. (29) and
the definition E/L = ∫ Q

−Q
k2ρ(k)dk. We thus show a plot of

E/L versus α and c in Fig. 3. As c tends to infinity, the
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α = 1.0459
α = 0.6041
α = 0

FIG. 2. (Color online) Two numerical plots of ρ(k) versus k for
different values of α, with fixed density n = 1. The top graph has a
value of c = 1.75 and the bottom graph has a value of c = 30. All
curves are obtained by numerically solving Eq. (29).

ground-state energy will approach π2n3/3 as predicted by
our analytical results. In Fig. 4, we compare our analytical
solution given in Eq. (34) with the numerical solution for the
ground-state energy per unit length E/L when α = 0.1279
and n = 1. It is clear that they both agree well when c is
large.

VI. LOCAL-DENSITY APPROXIMATION

In this section, we explore the axial density when the system
is confined by an external harmonic trapping potential. So far
our application of the ABA to solve this model has been limited
to the case where there is no external confinement. When an
external confinement is applied, the model is no longer exactly
solvable. However, if the external trapping potential varies
slowly enough, the local-density approximation (LDA) [23]
can be applied to analyze the density profiles in a harmonic
trap.

In the LDA, the chemical potential varies along the axial
direction x according to the equation

μ(x) = μ(0) − mω2x2

2
. (37)

0
0.2

0.4
0.6

0.8

0

20

40

60

80

0

1

2

3

4

α
c

E
/L

FIG. 3. (Color online) Ground-state energy per unit length E/L

versus the interaction width α and the interaction strength c for a
fixed density n = 1. The surface is generated by numerically solving
the equation E/L = ∫ Q

−Q
k2ρ(k)dk.

013629-6



ASYMPTOTIC BETHE-ANSATZ SOLUTION FOR ONE- . . . PHYSICAL REVIEW A 85, 013629 (2012)
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3.5
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E
/L

α = 0.1279

Numerical solution
Analytical solution

π2/3

FIG. 4. (Color online) Comparison between the analytical and
the numerical results for the ground-state energy per unit length E/L

versus c with α = 0.1279 and n = 1.

Using the result in Eq. (36), we then have

μ(0) − mω2x2

2

=π2n(x)2

[
1− 16

3γ

(
1− 15

4γ

)
− 8π2n(x)2α2

5γ

(
1 − 35

3γ

)

−2π4n(x)4α4

7γ

(
1 + 189

80γ

)]
. (38)

Solving this equation for n(x) gives

n(x)=n(0)

√
1− x2

R2

[
1+ 4π2n(0)2α2

5γ

(
1− 19

3γ

)(
1− x2

R2

)

+ π4n(0)4α4

7γ

(
1 + 28051

1200γ

)(
1 − x2

R2

)2 ]
, (39)

where

n(0) = 1

π

√
μ(0)

1 − 16
3γ

(
1 − 15

4γ

) (40)

and

R2 = 2μ(0)

mω2
. (41)

To obtain the density profiles, we solve the integral

∫ R

−R

n(x)dx = N (42)

numerically with total number N = 1000 particles and particle
density n(0) = 1 at the center of the trap.

−400 −300 −200 −100 0 100 200 300 400
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1.5
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3.5

4

4.5

x

ρ(
x)

γ = 10

α = 0.9
α = 0.6
α = 0.3
α = 0

FIG. 5. (Color online) Axial-density profiles from the local-
density approximation for different values of α. Here γ = 10, total
particle number N = 1000, and the density at the center of the trap
is taken to be n(0) = 1.

In Fig. 5, we show the axial-density profiles for different
values of α. As the interaction width α increases, the particles
become more concentrated at the center of the trap in a way
analogous to a Bose-Einstein condensate.

VII. CONCLUSION

In this paper, we studied a system of interacting SU(2)
spinor bosons in one dimension with a finite-range Gaus-
sian potential. Using Gutkin’s argument [19], this model is
shown to be exactly solvable. We applied the asymptotic
Bethe ansatz to solve this model when the interaction width
α is much smaller than the interparticle separation |xi −
xj |. The Bethe-ansatz equations were derived in Eqs. (17)
and (18) through the quantum inverse scattering method.
We went on to derive the particle distribution functions
for the charge and spin degrees of freedom in Eqs. (25)
and (26). In the limits c 	 1, α � 1, and H > 0, we derived
the ground-state energy (34) and chemical potential (36)
for the system. The spin-independent interaction leads to a
ferromagnetic ground state. Our analytical results were shown
to be consistent with the exact numerical results from the
asymptotic Bethe-ansatz equations. Finally, we applied the
local-density approximation to analyze the density profiles of
the system in a harmonic trapping potential. From our results,
we showed that an increase in interaction width α causes
the spatial- and momentum-density profiles of the system to
more closely resemble those of a Bose-Einstein condensate, in
the sense that density profiles are more concentrated around
the origin.
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APPENDIX A: PROOF OF (v,ψ) = (vδ,ψ)

Given the Bethe-ansatz wave function ψ(x) = ∑
P Aσ1···σN

(P |Q) exp(i
∑N

j=1 kPj
xQj

), it is straightforward to show that

(v,ψ) =
∫ ∞

−∞

1√
2πα2

e
−x2

Qi
/2α2 ∑

P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j=1

kPj
xQj

⎞
⎠ dxQi

=
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j 
=i

kPj
xQj

⎞
⎠F

[
1√

2πα2
exp

(
− x2

Qi

2α2

)]

=
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j 
=i

kPj
xQj

⎞
⎠ exp

(
− α2k2

Pi

2

)
(A1)

and

(vδ,ψ) =
∫ ∞

−∞

∞∑
n=0

1

n!

(
α2

2

)n

δ(2n)(xQi
)
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j=1

kPj
xQj

⎞
⎠ dxQi

=
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j 
=i

kPj
xQj

⎞
⎠F

[ ∞∑
n=0

1

n!

(
α2

2

)n

δ(2n)(xQi
)

]

=
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j 
=i

kPj
xQj

⎞
⎠ ∞∑

n=0

1

n!

(
α2

2

)n

(−1)nk2n
Pi

=
∑
P

Aσ1···σN
(P |Q) exp

⎛
⎝i

N∑
j 
=i

kPj
xQj

⎞
⎠ exp

(
−α2k2

Pi

2

)
, (A2)

which verifies the claim that (v,ψ) = (vδ,ψ).

APPENDIX B: YANG-YANG VARIATIONAL PRINCIPLE

Let us focus on repulsive potentials such that v(x) is positive
definite and c > 0. When T = 0, Eqs. (19) and (20) reduce to

kjL = 2πIj −
N∑

l=1

2 tan−1

(
kj − kl

cṽ(kj − kl)

)
, (B1)

where Ij is an integer and ṽ(k) is the Fourier transform of v(x).
This is the fundamental equation for the Bethe roots, which
can be posed as a variational principle as shown by Yang and
Yang for spinless bosons [25]. In order to show that Eq. (B1)
can be uniquely parametrized, we introduce the action

B(k1, . . . ,kN ) = L

2

N∑
j=1

k2
j − 2πIjkj +

∑
j<l


(kj − kl)

(B2)

with


(x) =
∫ x

0
2 tan−1

(
x ′

cṽ(x ′)

)
dx ′. (B3)

Then we need to show that Eq. (B1) is given by the minima
condition

∂B(k1, . . . ,kN )

∂kj

= 0. (B4)

To prove this, we further introduce the N × N matrix

Bjl = ∂2B

∂kj∂kl

= δjl

[
L + 2c

∑
m

ϑ(kj − km)

c2ṽ2(kj − km) + (kj − km)2

]

− 2c
ϑ(kj − kl)

c2ṽ2(kj − kl) + (kj − kl)2
, (B5)

which is always positive provided that

ϑ(k) = ṽ(k) − kṽ′(k) > 0. (B6)

If that is the case∑
lj

ulBljuj

= L
∑

l

u2
l +
∑
l<j

c
ϑ(kj− kl)

c2ṽ2(kj− kl) + (kj − kl)2
(uj−ul)

2�0

(B7)

for arbitrary real {uj }. Hence, the solutions of the fundamental
equation exist and can be uniquely parametrized by a set of
integer or half-integer numbers Ij , as long as ϑ(k) = ṽ(k) −
kṽ′(k) � 0.

We shall exclusively consider this type of potential. Then,
the Bethe roots are real numbers from Theorem I on p. 11 of
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Ref. [24]. Finally if Il > Im then kl > km and if Il = Im then
kl = km as long as tan−1[k/cṽ(k)] increases monotonically
with k. For the Gaussian potential, ṽ(k) = exp(−α2k2/2),
which gives ϑ(k) = ṽ(k) − kṽ′(k) = ṽ(k)(1 + α2k2) > 0 for
all real k. Therefore, there is a unique solution for the BA
equations when the Gaussian potential is used.

APPENDIX C: DERIVATION OF THE
SCATTERING MATRIX

We employ the coordinate BA to obtain the scattering
matrix between two particles. This technique is well known,
as used by Yang [2] in solving the spin-1/2 fermion model.
First consider the region

R: 0 � xQ1 � · · · � xQj
� xQj+1 � · · · � xQN

� L.

(C1)

Define a wave function in R as

ψ(x) =
∑
P

Aσ1···σN
(P |Q) exp i

(
kP1xQ1 + · · · + kPj

xQj

+ kPj+1xQj+1 + · · · + kPN
xQN

)
, (C2)

where the σj ’s represent the spin coordinates. This wave
function is a superposition of plane waves with different
amplitudes Aσ1···σN

(P |Q) where P and Q are permutations
of the set of integers {1,2, . . . ,N}. Each plane wave is
characterized by the permutation P of wave numbers {kj };
therefore the sum contains N ! terms.

Consider a new region R′ where particles at position xQj

and xQj+1 are interchanged, i.e.,

R′: 0 � xQ1 � · · · � xQj+1 � xQj
� · · · � xQN

� L.

(C3)

In this region, the wave function is defined as

ψ ′(x) =
∑
P

Aσ1···σN
(P |Q′) exp i

(
kP1xQ1 + · · ·

+ kPj
xQj+1 + kPj+1xQj

+ · · · + kPN
xQN

)
. (C4)

From the condition that the wave function has to be continuous
when xQj

→ xQj+1 , we have the relation

Aσ1···σN
(P |Q) + Aσ1···σN

(P ′|Q)

= Aσ1···σN
(P |Q′) + Aσ1···σN

(P ′|Q′), (C5)

where P ′ and Q′ represent the permutations P ′ = (j j +
1)P and Q′ = (j j + 1)Q, i.e., only the positions of the j th
and (j + 1)th terms are transposed to get P ′ from P and Q′
from Q.

The δ-function potential gives rise to a jump in the first
derivative of the wave function at position xQj

= xQj+1 . This
jump can be evaluated by considering the Hamiltonian in the
center-of-mass frame. In this frame, the new coordinates X

and Y are related to the original coordinates xj and xj+1 by

the transformation relations

X = xj + xj+1

2
, Y = xj+1 − xj (C6)

and

xj = X − Y

2
, xj+1 = X + Y

2
. (C7)

Their derivatives are related by

∂

∂xj

= 1

2

∂

∂X
− ∂

∂Y
,

∂

∂xj+1
= 1

2

∂

∂X
+ ∂

∂Y
(C8)

and

∂

∂X
= ∂

∂xj

+ ∂

∂xj+1
,

∂

∂Y
= 1

2

(
∂

∂xj+1
− ∂

∂xj

)
. (C9)

Higher-order derivatives can be similarly expressed in a
straightforward manner.

The time-independent Schrödinger equation Hψ = Eψ in
these new coordinates is then given by{

−1

2

∂2

∂X2
− 2

∂2

∂Y 2
+ 2c

∞∑
n=0

1

n!

(
α2

2

)n

δ(2n)(Y ) + · · ·
}

×ψ(X,Y,x′) = Eψ(X,Y,x′), (C10)

where the new set of coordinates X, Y , and x′ replace the old
one x. Also, the dimension of x′ is less than the dimension of
x by 2, since we replaced those two coordinates by X and Y .
Integrating this equation with respect to the Y coordinate from
−ε to ε and then taking ε → 0 gives

∂ψ

∂Y

∣∣∣∣
Y=0+

− ∂ψ

∂Y

∣∣∣∣
Y=0−

= c

∞∑
n=0

1

n!

(
α2

2

)n
∂2nψ

∂Y 2n

∣∣∣∣
Y=0

, (C11)

where we have repeatedly used integration by parts to obtain
the right-hand side of the equation.

In the new coordinates, the wave functions given in
Eqs. (C2) and (C4) are explicitly written as

ψ(X,Y,x′) =
∑
P

Aσ1···σN
(P |Q) exp

[
i

(
· · ·+(kPj

+kPj+1

)
X

+ 1

2

(
kPj+1 −kPj

)
Y +· · ·

)]
,

(C12)

and

ψ ′(X,Y,x′) =
∑
P

Aσ1···σN
(P |Q′) exp

[
i

(
· · ·+(kPj

+kPj+1

)
X

−1

2

(
kPj+1 − kPj

)
Y + · · ·

)]
. (C13)

Substituting the wave functions defined in Eqs. (C12) and
(C13) into Eq. (C11) separately and then adding both equations
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together yields the relation

i

2

(
kPj+1 − kPj

)[
Aσ1···σN

(P |Q) − Aσ1···σN
(P ′|Q)

]
+ i

2

(
kPj+1 − kPj

)[
Aσ1···σN

(P |Q′) − Aσ1···σN
(P ′|Q′)

]
= c

∞∑
n=0

1

n!

(
α2

2

)n [
i

2

(
kPj+1 − kPj

)]2n [
Aσ1···σN

(P |Q)

−Aσ1···σN
(P ′|Q)

]
. (C14)

We introduce the transposition operator Ti,j which transposes
the ith and j th spatial coordinates of the wave function, i.e.,

Aσ1···σN
(· · ·Pi · · · Pj · · · | · · · Qj · · · Qi · · ·)

= [Ti,j ]
σ ′

1···σ ′
N

σ1···σN
Aσ ′

1···σ ′
N

(· · ·Pi · · ·Pj · · · | · · · Qi · · · Qj · · ·).
(C15)

In matrix form, this operator Ti,j can be written as

[Ti,j ]
σ ′

1···σ ′
N

σ1···σN
= ±δσi ,σ

′
j
δσj ,σ

′
i

∏
r 
=i,j δσr ,σ ′

r
, i.e., Ti,j = Pi,j for

bosons and Ti,j = −Pi,j for fermions, where Pi,j is the
permutation operator.

Combining this relation together with Eq. (C5) transforms Eq. (C14) to

i
(
kPj+1 − kPj

){
Aσ1···σN

(P |Q) − [Tj,j+1]
σ ′

1···σ ′
N

σ1···σN
Aσ ′

1...σ
′
N

(P ′|Q)
}

= c

∞∑
n=0

1

n!

(
α2

2

)n [
i

2

(
kPj+1 − kPj

)]2n [
Aσ1···σN

(P |Q) + I
σ ′

1···σ ′
N

σ1···σN
Aσ ′

1···σ ′
N

(P ′|Q)
]
. (C16)

Rearranging the terms finally gives us an expression which relates the amplitudes of the wave function before and after collision,
i.e.,

Aσ1···σN
(P |Q) =

⎡
⎢⎣ i(kPj+1 − kPj

)Tj,j+1 + c
∑∞

n=0
1
n!

(
α2

2

)n [
i
2 (kPj+1 − kPj

)
]2n

I

i(kPj+1 − kPj
) − c

∑∞
n=0

1
n!

(
α2

2

)n [
i
2 (kPj+1 − kPj

)
]2n

⎤
⎥⎦

σ ′
1···σ ′

N

σ1···σN

Aσ ′
1···σ ′

N
(P ′|Q). (C17)

Here I is the identity operator which is included into the relation so that it can be expressed in matrix form. The general expression
of the scattering matrix is given by the term inside the square brackets as

Yi,j (u) = iuTi,j + ce−α2u2/8I

iu − ce−α2u2/8
, (C18)

which relates any two amplitudes before and after collision between particles at the ith and j th positions, whereby the change in
momentum is u. The sums in Eq. (C17) are the Taylor expansions of the exponential function given in Eq. (C18).

For this model to be integrable, the scattering matrix Yi,j (u) has to obey the Yang-Baxter relations. To see whether this is true,
we shall consider the transposition of two amplitudes through different paths. Without any loss of generality, consider going
from A123(123|Q) to A321(321|Q) along the two different paths

A123(123|Q) = [Y1,2(k2 − k1)]213A213(213|Q) = [Y1,2(k2 − k1)]213[Y2,3(k3 − k1)]231A231(231|Q)

= [Y1,2(k2 − k1)]213[Y2,3(k3 − k1)]231[Y1,2(k3 − k2)]321A321(321|Q) (C19)

and

A123(123|Q) = [Y2,3(k3 − k2)]132A132(132|Q) = [Y2,3(k3 − k2)]132[Y1,2(k3 − k1)]312A312(312|Q)

= [Y2,3(k3 − k2)]132[Y1,2(k3 − k1)]312[Y2,3(k2 − k1)]321A321(321|Q). (C20)

Since the outcome of both paths is the same, they must be equal to each other. In general, the scattering matrices satisfy the
Yang-Baxter relations

Ya,b(u)Yc,d (v) = Yc,d (v)Ya,b(u),

Ya,b(u)Yb,c(u + v)Ya,b(v) = Yb,c(v)Ya,b(u + v)Yb,c(u), (C21)

Ya,b(u)Yb,a(−u) = 1.
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APPENDIX D: DERIVATION OF THE BETHE-ANSATZ
EQUATIONS

1. The quantum inverse scattering method

We will use the quantum inverse scattering method [24] to
derive the ABA equations for this model. On introducing the
operator Ri,j (u) = Pi,jYi,j (u) where Pi,j is the permutation
matrix, we have the Yang-Baxter equations in terms of Ri,j (u),
i.e.,

Ra,b(u)Ra,c(u + v)Rb,c(v) = Rb,c(v)Ra,c(u + v)Ra,b(u).

(D1)

Notice the difference in subscripts between the above equation
and the second equation in Eq. (C21). The R matrices
act on the state space of this N -particle system VN =∏N

n=1 ⊗Vn, i.e., Ra,b(u) acts nonidentically on the tensor
subspaces Va and Vb and identically on the rest of the
subspaces.

Using the Lax representation, we introduce the L operator
which acts on the auxiliary space and a quantum state space,
i.e., Lm(u) ≡ Ra,m(u), where a is the auxiliary space and m

is the quantum state space. In addition, we also introduce the
intertwining operator Ř(u) = PR(u) where the permutation
operatorP has the tensor property on operatorsP(A ⊗ B)P =
B ⊗ A. Hence in Lax representation, the Yang-Baxter relation
becomes

Ř(u − v)Ln(u) ⊗ Ln(v) = Ln(v) ⊗ Ln(u)Ř(u − v). (D2)

The next step is to introduce the monodromy matrix T (u) =
LN (u)LN−1(u) · · · L1(u) which is the transition matrix through
the entire “lattice.” In this form, the Yang-Baxter relation can
be rewritten as

Ř(u − v)T (u) ⊗ T (v) = T (v) ⊗ T (u)Ř(u − v). (D3)

Last, we introduce the transfer matrix τ (u) = traT (u) where
the notation tra implies that the trace is taken in the auxiliary
space. As a consequence of Eq. (D3), there exists a family
of commuting transfer matrices τ (u), i.e., [τ (u),τ (v)] = 0.
Following the introduction of the operators given above, we
can proceed with our derivation of the ABA equations. As

stated earlier, we are interested in the case where this model
has periodic boundary conditions, i.e.,

ψ(x1, . . . ,xj = 0, . . . ,xN ) = ψ(x1, . . . ,xj = L, . . . ,xN ).

(D4)

For this condition to hold, the wave function defined in Eq. (C2)
has to satisfy

A(Pj ,P1, . . . ,PN |Qj,Q1, . . . ,QN )

= exp(ikjL)A(P1, . . . ,PN,Pj |Q1, . . . ,QN,Qj ). (D5)

As a result, we obtain

exp(ikjL)AE(P |Q)

= Rj+1,i(kj+1 − kj ) · · · RN,j (kN − kj )R1,j (k1 − kj ) · · ·
×Rj−1,j (kj−1 − kj )AE(P |Q), (D6)

where AE(P |Q) is the initial amplitude before any transposi-
tion. We can abbreviate this equation as

Rj (kj )AE(P |Q) = exp(ikjL)AE(P |Q), (D7)

with the definition

Rj (kj ) = Rj+1,i(kj+1 − kj ) · · · RN,j (kN − kj )R1,j

× (k1 − kj ) · · ·Rj−1,j (kj−1 − kj ). (D8)

If we define the monodromy matrix to be

TN (u) = LN (kN − u) · · · L2(k2 − u)L1(k1 − u), (D9)

the transfer matrix will have the property

τ (u)|u=kj
= Rj (kj ). (D10)

Hence the eigenvalues of Eq. (D7) coincide with the eigenval-
ues of the equation

τ (u)AE(P |Q) = exp(ikjL)AE(P |Q) (D11)

at the points u = kj for all 1 � j � N .

2. The algebraic Bethe ansatz

The R matrix for SU(2) is a 4 × 4 matrix given by

Ri,j (u) = uI − ic′(u)Pi,j

u + ic′(u)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

u−ic′(u)
u+ic′(u) 0 0 0

0 u
u+ic′(u) − ic′(u)

u+ic′(u) 0

0 − ic′(u)
u+ic′(u)

u
u+ic′(u) 0

0 0 0 u−ic′(u)
u+ic′(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

≡
(

a(u) b(u)
c(u) d(u)

)
, (D12)

where

c′(u) = ce−α2u2/8, (D13)

and the matrix representation of the permutation operator is given by

Pi,j =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ . (D14)
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Similarly,

Ři,j (u) = uPi,j − ic′(u)

u + ic′(u)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

u−ic′(u)
u+ic′(u) 0 0 0

0 − ic′(u)
u+ic′(u)

u
u+ic′(u) 0

0 u
u+ic′(u) − ic′(u)

u+ic′(u) 0

0 0 0 u−ic′(u)
u+ic′(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D15)

By choosing the bases for spin-up and spin-down states as

| ↑〉 =
(

1
0

)
, | ↓〉 =

(
0
1

)
, (D16)

we can then act each 2 × 2 block of the R matrix on the spin-up
basis vector to get

a(u)

(
1
0

)
= u − ic′(u)

u + ic′(u)

(
1
0

)
, (D17)

b(u)

(
1
0

)
= − ic′(u)

u + ic′(u)

(
0
1

)
, (D18)

c(u)

(
1
0

)
= 0, (D19)

d(u)

(
1
0

)
= u

u + ic′(u)

(
1
0

)
. (D20)

Without any loss of generality, we define the vacuum as

|�〉 =
(

1
0

)
1

⊗
(

1
0

)
2

⊗ · · · ⊗
(

1
0

)
N

. (D21)

Hence the action of the monodromy matrix on this state is

T (u)|�〉 = L1(k1 − u)

(
1
0

)
1

⊗ · · · ⊗ LN (kN − u)

(
1
0

)
N

≡
(

A(u) B(u)
C(u) D(u)

)
|�〉. (D22)

Thus the vacuum |�〉 is an eigenvector of A(u), C(u), and
D(u) with eigenvalues

∏N
j=1 a(kj − u), 0, and

∏N
j=1 d(kj −

u), respectively. Meanwhile, B(u) acts as a creation operator
for down spins.

Any arbitrary state 
(λ) can be created in the form of


(λ) = B(λ1)B(λ2) · · ·B(λM )|�〉, (D23)

where M denotes the number of down spins in the system. The
action of the monodromy matrix on this arbitrary state gives

T (μ)
(λ) =
(

A(μ) B(μ)
C(μ) D(μ)

)
B(λ1)B(λ2) · · ·B(λM )|�〉.

(D24)

Since the transfer matrix is the trace of the mon-
odromy matrix over the auxiliary space, we need to
consider only A(μ)B(λ1)B(λ2) · · · B(λM )|�〉 and D(μ)
B(λ1)B(λ2) · · · B(λM )|�〉.

From the Yang-Baxter equation of the form given in
Eq. (D3), we obtain the commutation relations

[A(u),A(v)] = 0, [B(u),B(v)] = 0, (D25)

[C(u),C(v)] = 0, [D(u),D(v)] = 0, (D26)

A(u)B(v) = u − v − ic′(u − v)

u − v
B(v)A(u)

+ ic′(u − v)

u − v
B(u)A(v), (D27)

D(u)B(v) = v − u − ic′(v − u)

v − u
B(v)D(u)

+ ic′(v − u)

v − u
B(u)D(v), (D28)

where we took a negative factor in the argument of the R

matrix because the arguments of the R matrices in Eq. (D9)
are negative with respect to u. Therefore

A(μ)B(λ1)B(λ2) · · · B(λM )|�〉

=
M∏
i=1

μ − λi − ic′(μ − λi)

μ − λi

N∏
l=1

μ − kl + ic′(μ − kl)

μ − kl − ic′(μ − kl)
|�〉

+ unwanted terms (D29)

and

D(μ)B(λ1)B(λ2) · · · B(λM )|�〉

=
M∏
i=1

μ − λi + ic′(μ − λi)

μ − λi

N∏
l=1

μ − kl

μ − kl − ic′(μ − kl)
|�〉

+ unwanted terms. (D30)

The sums of the unwanted terms in Eqs. (D29) and (D30)
vanish when there are no poles in the eigenvalue of Eq. (D11).

From Eq. (D11), we obtain the ABA equations

exp(ikjL) = −
N∏

l=1

kj − kl + ic′(kj − kl)

kj − kl − ic′(kj − kl)

M∏
i=1

kj − λi − ic′(kj − λi)

kj − λi

, j = 1, . . . ,N, (D31)
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N∏
l=1

λi − kl + ic′(λi − kl)

λi − kl

= −
M∏

j=1

λi − λj + ic′(λi − λj )

λi − λj − ic′(λi − λj )
, i = 1, . . . ,M. (D32)

Note that here we cannot make a uniform shift for the set {λi}, i.e., λi → λi − ic/2 for every i, because the effective interaction
strength c′(u) depends on the quasimomenta {kj } and the rapidities {λi}.
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