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Mesoscopic transport of fermions through an engineered optical lattice connecting two reservoirs
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We study transport of fermions in a system composed of a short optical lattice connecting two finite atomic
reservoirs at different filling levels. The average equilibration current through the optical lattice, for strong lattice-
reservoir coupling and finite temperatures, is calculated within the Landauer formalism using a nonequilibrium
Green’s functions approach. We moreover determine quantum and thermal fluctuations in the transport and find
significant shot-to-shot deviations from the average equilibration current. We show how to control the atomic
current by engineering specific optical lattice potentials without requiring site-by-site manipulations and suggest
the realization of a single level model. Based on this model we discuss the blocking effect on the atomic current
resulting from weak interactions between the fermions.
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I. INTRODUCTION

Ultracold atoms in optical lattices have been proven to be
perfectly suited for implementing physical models of interest
to the field of atomic and condensed matter physics [1,2].
Specifically, an important part of the related experimental
efforts have improved and are still extending our under-
standing of nonequilibrium quantum transport. These efforts
have resulted in the observation of fundamentally interesting
quantum mechanical processes such as Bloch oscillations [3],
Landau-Zener tunneling [4], and interaction-controlled trans-
port [5]. Studying nonequilibrium transport in optical lattices
has several advantages over conventional condensed matter
systems: Ultracold atoms exhibit slow coherent quantum
dynamics (with kilohertz tunneling rates) and are detectable in
small numbers on microscopic scales. In addition, the ability to
tune the interactions between atoms via Feshbach resonances
makes it possible to investigate transport of interacting and
noninteracting particles.

While many transport-related experiments employed tilted
lattice potentials, alternative setups for studying nonequilib-
rium phenomena have been suggested, in which a current
of particles flows between two atomic reservoirs. Micheli
et al. [6–8] pointed out that, analogous to a transistor, an
impurity atom may be utilized to control the flow of a
one-dimensional Bose or Fermi gas. They considered the full
time-dependent coherent dynamics of the ultracold gas in a
closed system and determined the particle current by using
analytical approximations [7] and time-dependent density
matrix renormalization group (DMRG) calculations [8].

Pepino et al. [9,10] generalized this idea by replacing the
single impurity with an optical lattice coupled to separate
bosonic reservoirs in order to emulate the behavior of semi-
conductor electronic circuits (see also [11]). In Refs. [9,10]
reservoirs were introduced and specified as large sources or
sinks of particles at zero temperature with a Fermi-sea-like
energetic distribution, constant chemical potential, and fast-
decaying system-reservoir correlations. A quantum master
equation, relying on weak system-reservoir coupling, was
used to describe time evolution of the system, thereby in part
eliminating the coherent evolution of the reservoir.

Here we consider the evolution of a one-dimensional Fermi
gas loaded into an optical lattice which is partitioned into

FIG. 1. (Color online) Fermions confined to an optical lattice
hop from the left reservoir L through a short coherent part C (sites
1 to m) into the right reservoir R. The hopping parameters Ji,j , the
on-site energies εj , and the couplings JL and JR may take arbitrarily
engineered values, whereas the hopping parameter in the reservoirs
J0 is held constant.

two large incoherent reservoirs L and R connected by a short
coherent region C, as illustrated in Fig. 1. In this setup the
difference in the chemical potentials μL and μR of reservoirs L

and R drives a current of fermionic atoms through the coherent
region C.

In contrast to previous theoretical works, we take a
mesoscopic perspective on nonequilibrium transport between
the atomic reservoirs: We analyze the evolution of the Fermi
gas within the Landauer formalism [12,13], where transport
is described as a transmission process through the coherent
region C with fermions emitted and absorbed by the reservoirs
L and R, respectively. In this vein, we understand reservoirs
to be finite containments filled with noninteracting fermions
in the ground state, characterized by a Fermi distribution
with finite temperature and well-defined (but not necessarily
constant) chemical potential. The transmission is determined
by a nonequilibrium Green’s functions (NEGF) approach in
the tight-binding picture [14,15]. This approach allows us to
consider a wide range of experimentally relevant parameters.
Moreover, we express our results in terms of the number of
atoms accumulated in the reservoirs, which (in particular for
small currents) may be more accessible in experiments than
the current.

Accordingly, we complement and significantly extend the
results in Refs. [9,10] in several directions for the case of
fermionic atoms: First, we take into account that experimental
ultracold systems are finite and therefore we describe not
only instantaneous steady-state currents at constant chemical
potentials but the full equilibration process between the
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reservoirs. Second, our analysis is valid for arbitrarily en-
gineered configurations of the coherent region C and for
strong coupling to the reservoirs, thereby going beyond the
weak-coupling expansion in Refs. [9,10]. Strong coupling
indeed corresponds to the most elementary setup with the
parts L, R, and C consisting of a single homogeneous
optical lattice. Third, by using the tools of full counting
statistics [13] and considering intrinsic damping mechanisms
we explicitly evaluate the evolution of the fluctuations in
the current. These fluctuations indicate large shot-to-shot
deviations from the average value in repeated measurements of
the number of particles in the reservoirs. Our approach includes
finite-temperature effects relevant to both the average current
and the fluctuations. For instance, thermal fluctuations are
shown to build up during the equilibration process until they
reach a constant value proportional to the temperature of the
Fermi gas.

In the first part of this paper we analyze the evolution of
the Fermi gas within the NEGF-Landauer formalism. In this
framework we discuss the properties of the system in terms
of the average current, the filling levels of the reservoirs,
and fluctuations of these quantities. In the second part we
first apply the formalism to the case of constant transmission
between the reservoirs and subsequently discuss more complex
situations. In particular, we show how to control the current
by modulating the connecting optical lattice with the help
of additional optical potentials. Finally, we suggest a way to
realize a single-level model and demonstrate that in this model
even weak interactions between the fermions are sufficient to
reduce the atomic current.

II. NEGF-LANDAUER MODEL

We start with the theoretical framework required to deter-
mine the average equilibration current through the lattice and
the filling levels of the reservoirs. The Hamiltonian of the
system within the lowest Bloch band and in the tight-binding
approximation is ĤC + ĤL + ĤR + ĤI with

ĤC = −
∑
〈i,j〉

Ji,j ĉ
†
i ĉj +

∑
j

εj ĉ
†
j ĉj , i,j ∈ 1, . . . ,m,

ĤL = ĤR = −J0

∑
〈i,j〉

ĉ
†
i ĉj + ĤS, i,j /∈ 1, . . . ,m, (1)

ĤI = −JL(ĉ†1ĉ0 + ĉ
†
0ĉ1) − JR(ĉ†mĉm+1 + ĉ

†
m+1ĉm),

where the central part C is formed by the sites 1 to m and 〈i,j 〉
denotes the sum over nearest neighbors. The operators ĉ

†
j (ĉj )

create (annihilate) a spin-polarized fermion in a Wannier state
localized at site j . The hopping parameters in the central part
and in the reservoirs are Ji,j and J0, respectively, and εj are
on-site energies. The couplings JL and JR connect the central
part to the reservoirs which are each composed of M sites.

The Hamiltonian ĤS , not specified explicitly, represents
interactions of the reservoirs with an engineered environment,
e.g., with an atomic gas or optical radiation that is not
necessarily far detuned. The interactions introduced by ĤS

add dissipative and incoherent processes to the reservoirs so
that they act as semiclassical systems equivalent to metallic
electrodes. These processes are assumed to destroy coherence

and to relax the fermions to the ground state on a time
scale shorter than h̄/J0, making it possible to attribute a
Fermi distribution with well-defined temperature and chemical
potential to the reservoirs. An explicit scheme suggested in
Ref. [16] achieves this aim through a combination of coherent
laser excitations and dissipation into an ambient superfluid.
First, fermions with high momentum are transferred into the
first excited band of the optical lattice via a Raman process.
Subsequently, the excited states decay into the lowest Bloch
band due to emission of phonons into the superfluid. An
iteration of this procedure results in a stable Fermi distribution
of the atoms in the reservoirs.

To apply the Landauer formalism modified to account for
the finite size of the reservoirs, we introduce the number
operators N̂α , with α = L or R, measuring the number
of fermions in the reservoirs and the expectation values
〈N̂α〉. We specify the state of the system by the average
particle number 〈N̂α〉 and the current ∂t 〈N̂α〉 through the
central part. To obtain the current in the Landauer formalism
we treat the connecting optical lattice as a scattering potential
with the energy-dependent transmission T (ε). Hence the
average current ∂t 〈N̂R〉 = −∂t 〈N̂L〉 is the sum of all possible
scattering transfers between the two reservoirs

∂t 〈N̂R(t)〉 =
∫

dε

2πh̄
T (ε)[fL(ε,t) − fR(ε,t)]. (2)

The Fermi functions of the reservoirs are fα(ε,t) =
[e(ε−μα )/kBT + 1]−1, with the Boltzmann constant kB , the
temperature T , and the time-dependent chemical potential
μα(t). Note that Eq. (2) is approximately valid provided that
fα(ε,t), or equivalently μα(t), varies slowly on the microscopic
time scale h̄/J0. This can readily be achieved by either
increasing the size of the reservoirs M or decreasing the
transmission through the central part C.

The chemical potential μα is related to the particle number
〈N̂α〉 since the reservoirs are finite and the total number of
fermions in the system is fixed. The implicit relation between
μα and the particle number 〈N̂α〉 is

〈N̂α〉 = M

∫
dε ρ(ε)fα(ε), (3)

with the density of states of the reservoir given by ρ(ε) =
1/π

√
(2J0)2 − (ε − 2J0)2 for 0 � ε � 4J0 and zero other-

wise. Upon solving Eq. (3) for μα(t), either analytically
or numerically, one finds the chemical potential μα(t) as
a function of 〈N̂α(t)〉. Thus, as a consequence of the finite-size
reservoirs the Landauer formula in Eq. (2) becomes a closed
(integro-differential) equation for 〈N̂α(t)〉.

The transmission T (ε) is efficiently determined by use of
the NEGF approach [14,15]. In terms of Green’s functions we
have

T (ε) = |G1,m(ε)|2 �L(ε)�R(ε), (4)

where Gi,j (ε) is the full retarded Green’s function for the
central part and �α(ε) = 2πJ 2

αρα(ε) describes the coupling
to the reservoirs. Here, ρL(ε) and ρR(ε) are, respectively,
the local density of states at sites 0 and m + 1 (see Fig. 1).
Consequently T (ε) encodes the coherent evolution of the
central part, governed by ĤC , as well as the coupling to the
reservoirs.
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To calculate the full Green’s function Gi,j (ε) from ĤC we
start with the bare Green’s function gi,j (ε) whose components
obey the equation

(ε − εi)gi,j +
∑

k

Ji,kgk,j = δi,j

or equivalently g(ε) = 1/(ε − HC), with both the Green’s
function and HC in matrix notation. The bare Green’s function
gi,j (ε) with poles at the energy levels of HC would be
sufficient to determine the transmission if the coherent region
C were coupled weakly to the reservoirs. However, the full
propagation of a fermion between the sites i and j includes
excursions into the reservoirs due to the coupling, which leads
to the broadening �α ∼ J 2

α /J0 of the energy levels. More
precisely, the excursions result in corrections to gi,j (ε) in
terms of self-energies 	L = J 2

Lg̃0,0 and 	R = J 2
Rg̃m+1,m+1,

where g̃i,j (ε) denote the Green’s functions of the reservoirs.
Including the coupling to the reservoirs to all orders we arrive
at the Dyson equation for the full Green’s function

Gi,j = gi,j + gi,1	LG1,j + gi,m	RGm,j . (5)

The relevant matrix element for the transmission G1,m is
then obtained from Eq. (5) by solving a set of simultaneous
equations for G1,1, Gm,m, G1,m, and Gm,1. As a result one finds
G1,m = g1,m/D with [14]

D = (1 − 	Lg1,1)(1 − 	Rgm,m) − 	L	Rg2
1,m

assuming that g1,m = gm,1.
For our specific setup we treat the reservoirs as semi-infinite

optical lattices, for which the Green’s function g̃i,j at the end
site 0 reads [15]

g̃0,0(ε) = [(ε − 2J0) − i
√

(2J0)2 − (ε − 2J0)2]/2J 2
0

and g̃m+1,m+1 = g̃0,0; the local density of states is given by
ρα(ε) = −(1/π )Img̃0,0(ε). These relations allow us to find
explicit expressions for the couplings �α and the self-energies
	α in Eq. (5).

III. FLUCTUATIONS AND DAMPING

So far our analysis was restricted to the average fermion
number 〈N̂α(t)〉 and the current ∂t 〈N̂α(t)〉, which are found
from Eqs. (2) and (3) for a given transmission T (ε) in Eq. (4).
We now turn our attention to quantum and thermal fluctuations
present in the system. To simplify the problem of determining
the fluctuations we treat creation and damping processes
separately and, if possible, add their effects together.

Fluctuations created during the evolution of the system can
be found by using the Levitov formula [13], which yields the
full counting statistics of thermal and quantum fluctuations
provided 〈N̂α(t)〉 and hence μα(t) are known. However, we
limit our analysis to the most relevant statistical parameter,
namely the variance of the number of fermions 〈δN2

α〉 ≡
〈(N̂α − 〈N̂α〉)2〉. With initially no fluctuations present we find
for the variance 〈δN2

α (t)〉 after a time t according to the Levitov
formula
〈
δN2

α (t)
〉 =

∫ t

0
ds

∫
dε

2πh̄
{T (ε)T̄ (ε)[fL(ε,s) − fR(ε,s)]2

+ T (ε)[fL(ε,s)f̄L(ε,s) + fR(ε,s)f̄R(ε,s)]}, (6)

where we introduced f̄α(ε,t) = 1 − fα(ε,t) and T̄ (ε) = 1 −
T (ε). At zero temperature, Eq. (6) describes the creation of
quantum fluctuations caused by the probabilistic nature of the
particle transfer through the optical lattice. On the other hand,
at equilibrium between the reservoirs and for T (ε) ≡ 1 the
fluctuations are purely thermal.

Unlike in conventional mesoscopic systems with infinite-
sized electrodes, the fluctuations described by Eq. (6) are
constantly damped out at a rate γ . This intrinsic damping
occurs because fluctuations in the current immediately lead
to fluctuations of the chemical potentials, which drive the
system back to the evolution according to the mean-field
description 〈N̂α(t)〉. To find an explicit expression for the
intrinsic damping γ we determine the change in the chemical
potential δμα caused by an excess of particles δNα � 〈N̂α〉
with respect to 〈N̂α〉. From Eq. (3) we obtain 〈N̂α〉 + δNα =
M

∫
dερ(ε)fα(ε,μα + δμα), which to lowest order in δμα and

δNα results in the linear dependence δμα = δNα/MρT (μα)
with

ρT (μα) = 1

4kBT

∫
dε ρ(ε) sech2

(
ε − μα

2kBT

)
. (7)

Note that ρT (μα) reduces to ρ(μα) in the case T = 0 and to
kBT /4 in the limit of infinite temperature. Similarly, we expand
the Landauer formula to lowest order in δμα and ∂t (δNα)
and use the relation δμα = δNα/MρT (μα) to find the time
dependence for small fluctuations ∂t (δNα) = −γ δNα with the
damping factor

γ = 1

2πh̄M

[TT (μL)

ρT (μL)
+ TT (μR)

ρT (μR)

]
, (8)

where TT (μα) is defined in the same way as ρT (μα) in Eq. (7).
The factor γ depends on the filling level of the reservoirs and is
therefore time dependent in general. Importantly, γ is always
positive and thus fluctuations are indeed damped out.

As a result, the fluctuations in the system depend not
only on the properties of the coherent region but also on
the reservoirs via their density of states ρ(ε) evaluated at
the filling level. Thus by choosing the appropriate reservoirs
it should be possible to perform experiments in either the
fluctuation-dominated or the mean-field regime. This works
particularly well for an optical lattice reservoir since its density
of states varies considerably over the entire bandwidth 4J0 so
that the intrinsic damping γ can be tuned over a wide range.

IV. CONSTANT TRANSMISSION

To gain physical insight into the transport between reser-
voirs we apply our general results to the important special case
of constant transmission: T (ε) ≡ T0 for 0 � ε � 4J0 and zero
otherwise, where the constant transmission T0 takes values
0 � T0 � 1. In this case the Landauer formula for the current
reduces to ∂t 〈N̂R〉 = T0�μ/2πh̄ and hence one only has to
determine the dependence of �μ = μL − μR on the average
particle number 〈N̂α〉 and the temperature T .

For concreteness we consider the equilibration process in
the low-temperature regime kBT � J0, neglecting corrections
of the order (kBT /J0)2. In this case the chemical potential
difference is �μ = 4J0 cos(π〈N̂R〉/M) assuming the initial
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conditions 〈N̂L〉 = M and 〈N̂R〉 = 0. Solving the Landauer
equation we obtain the evolution of the filling level

〈N̂R(t)〉 = CU arctan[sinh(t/teq)]

and the current through the central region ∂t 〈N̂R(t)〉 =
(U/R) sech(t/teq). The equilibration time scale teq = RC sat-
isfies teq � h̄/J0 in the relevant parameter regime as required
for Eq. (2) to be valid. Here, analogous to a classical RC circuit,
we introduced the resistance R = 2πh̄/T0, the capacitance
C = M/4πJ0, and initial capacitor voltage U = 4J0.

We next determine the evolution of the fluctuations during
the equilibration process. For simplicity we assume from now
on that T0 is close to unity, i.e., T0 ≈ 1, so that predominantly
thermal fluctuations with 〈δN2

α (t)〉 = 2tkBT /R are created
during the equilibration process, as can be found from the
Levitov formula in Eq. (6). Since correlations of thermal
fluctuations decay fast on the time scale teq , the evolution
of the deviations δNR from 〈N̂R(t)〉 can be expressed in the
form of a Langevin equation

∂t (δNR) = −γ (t)δNR + ξ (t).

The time-dependent damping factor resulting from Eq. (8)
reads γ (t) = sin[π〈N̂R(t)〉/M]/RC and thus damping in-
creases as the system approaches equilibrium. The fluctuations
are represented by the stochastic force ξ (t) and satisfy the
condition 〈ξ (t)ξ (t ′)〉 = (2kBT /R) δ(t − t ′). Using standard
techniques for stochastic problems [17] we find the evolution
of the fluctuations〈

δN2
R(t)

〉 = CkBT [sech2(t/teq) t/teq + tanh(t/teq)].

We see that the fluctuations increase linearly in the regime
t/teq � 1, where damping is weak according to Eq. (8). On
the other hand, in the limit t/teq � 1 the fluctuations converge
to the constant value CkBT , which results from the competition
between thermal fluctuations and the intrinsic damping γ =
1/RC at equilibrium.

Figure 2 shows the time evolution of the average filling
level 〈N̂R(t)〉/M and the fluctuations in the right reservoir.
The filling level increases linearly in the regime t/teq � 1 and
saturates at the equilibrium value 〈N̂R〉 = 〈N̂L〉 = M/2. Ther-
mal fluctuations around the average are limited by damping;
however, they indicate significant shot-to-shot deviations from
the average filling level. Of particular interest is the Fano factor
defined by F = 〈δN2

R(t)〉/〈N̂R(t)〉, which is independent of
the size of the reservoirs M and gives a direct measure of
the temperature of the system. The Fano factor converges
to the value F = kBT /2πJ0 as the system equilibrates, i.e.,
in the limit t/teq � 1. This result even holds for arbitrary
constant transmissions T0 as quantum fluctuations are damped
out in this limit.

An elementary experimental configuration with constant
transmission, namely T0 ≈ 1, consists of a single homo-
geneous optical lattice partitioned into a sufficiently long
coherent part C and the reservoirs L and R. The corresponding
hopping parameters and couplings are Ji,j = J0 and Jα = J0,
respectively. In fact, the strong couplings Jα lead to significant
broadening of the cosine-distributed energy levels of the
coherent part [18]. As a consequence, the broadened energy

FIG. 2. (Color online) Filling level and fluctuations in the right
reservoir (initially empty) for a constant transmission T0. The
average filling level 〈NR(t)〉/M (solid line) increases with time
t/teq and saturates at the equilibrium value 1/2. The standard
deviation

√
〈δN 2

R(t)〉/M from the average, due to thermal fluctua-
tions, is indicated by the orange (gray) band. The Fano factor F =
〈δN 2

R(t)〉/〈NR(t)〉 (dashed line) decreases with time and approaches
a constant value in the regime t/teq � 1. The parameters are
kBT /J0M = 1/10 for the filling level and kBT /J0 = 1 for the Fano
factor.

levels merge together in the regime Jα � 2πJ0/m, which
results in an approximately constant transmission.

V. TRANSMISSION ENGINEERING

The usefulness of the NEGF-Landauer formalism is most
evident if we want to calculate the current through an
engineered optical lattice with tailored parameters Ji,j and
εj . Since the optical lattice potentials for the reservoirs and
the central region would most likely be produced by the same
counterpropagating laser beams we set Ji,j = Jα = J0 and
focus on modified on-site energies εj . A possible experimental
configuration with tailored on-site energies εj involves one (or
several) laser beams crossing the central region perpendicular
to the optical lattice. The optical potential caused by a single
beam centered at position ν shifts the energies as

εj = V exp[−(j − ν)2/σ 2] ,

with the potential strength V and width σ measured in units
of lattice spacings. Depending on the detuning, V may take
positive or negative values [19]. We emphasize that unlike the
scheme proposed in Ref. [9] such a configuration does not
require site-by-site control of the optical lattice, neither of the
on-site energies εj nor the hopping parameters Ji,j or Jα .

A specific setup consists of a single laser beam, centered
at ν ≈ m/2 and with beam waist σ ∼ m/4, acting as a
V -dependent switch for the fermion current. The potential
shifts the energies εj out of the reservoir band and thus
reduces the transmission significantly, as shown in Fig. 3(a).
This configuration provides the possibility to study the
dependence of the fluctuations on the transmission T (ε)
and the temperature T of the fermions: If we choose the
initial conditions 〈N̂L〉 = M , 〈N̂R〉 = 0 and stay far from
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FIG. 3. (Color online) The engineered transmission T (ε) as a
function of the energy ε/J0 for different modulations of an optical
lattice with length m = 10. (a) A single centered beam with waist
σ = 2 and increasing depths V/J0 = 1,2,4 (dotted, dashed, and full
line) shifts the energies out of the reservoir band and reduces the
transmission to a peak at the upper band limit. (b) Two beams isolate
a few central lattice sites and create a single resonant level at ε/J0 ≈ 1
for sufficiently strong intensities. The beams are positioned at ν1 = 3,
ν2 = 8 with waist σ = 1, depths V2 = 1,3,5 (dotted, dashed, and full
line) and V1/V2 = 1/2.

equilibrium then according to Eq. (8) damping is negligible.
As a consequence, thermal and quantum fluctuations lead to
significant deviations of the filling level from 〈N̂R(t)〉, which
are detectable by counting the actual number of fermions in
the right reservoir. Figure 4 shows the average particle number
〈N̂R(t)〉 and the expected fluctuations for modulations of the
optical lattice with two different potential strengths V . At
zero temperature, only quantum fluctuations caused by the
limited transmission contribute, whereas at finite temperature
fluctuations are further increased. By comparing Figs. 4(a)
and 4(b) we see that quantum fluctuations become more
important for reduced transmissions, i.e., for stronger potential
strengths V .

A paradigmatic system in the context of mesoscopic physics
is the single-level model [15], or in the case of interacting
fermions the Anderson impurity model [20]. These models
may be used, e.g., to study the Kondo effect or to describe
transport through a single quantum dot. Realization of a single-

FIG. 4. (Color online) Filling level and fluctuations in the right
reservoir (initially empty) for a lattice modulated by a single beam.
(a) The average filling level 〈NR(t)〉/M (solid line) as a function time
t/teq (with teq = h̄M/2J0) for the modulation strength V/J0 = 2.
Different bands indicate the standard deviation

√
〈δN 2

R(t)〉/M due to
quantum fluctuations (blue or light gray) and total fluctuations, i.e.,
quantum plus thermal (orange or dark gray). (b) The same quantities
for a stronger modulation strength V/J0 = 4. The lower transmission
results in a smaller current between the reservoirs and enhanced
quantum fluctuations in comparison to (a). In both plots damping
has not been taken into account and the parameters are kBT /J0 = 1,
m = 10, and M = 50.

level model can be achieved by means of two laser beams with
different detuning leading to energy shifts

εj = V1 exp[−(j − ν1)2/σ 2] − V2 exp[−(j − ν2)2/σ 2].

If the beams are separated with ν1 − ν2 ∼ m/2 and narrow
σ ∼ m/4 then for sufficiently strong potentials V1,V2 > 0 the
transmission exhibits a single peak, as shown in Fig. 3(b).
The position of the peak depends on the ratio V1/V2 and the
strength of the potentials determines the width of the peak, i.e.,
the effective coupling to the reservoirs.

The emergence of the single level can be understood in the
energy band picture: The first beam shifts the unmodulated
band of width 4J0 upward, while the second beam shifts the
band downward. As a consequence, a small region between
the beams is isolated from the reservoirs and acts as a single
energy level. The effective couplings �α of the level to the
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reservoirs, or equivalently the width of the single level, is
readily controllable by the strengths of the beams V1 and V2.
This makes it possible to access the weak-coupling regime
considered in Ref. [9] as well as the strong-coupling regime
without the requirement of specific control of the hopping
parameters Jα .

VI. EFFECT OF INTERACTIONS

Let us now discuss the effect of weak interactions between
the fermions on the basis of the single-level model. If
we consider a spin-balanced mixture of fermions in two
different internal states, denoted by up and down, then the
total Hamiltonian in Eq. (1) is augmented by the interac-
tion term ĤU = U

∑
j n̂

↑
j n̂

↓
j . Here, U is the either positive

or negative interaction strength between the fermions and
n̂

↑
j (n̂↓

j ) is the occupation number operator for the up (down)
states. For our analysis we use the mean-field approximation
n̂

↑
j n̂

↓
j ≈ n̂

↑
j 〈n̂↓

j 〉 + 〈n̂↑
j 〉n̂↓

j − 〈n̂↑
j 〉〈n̂↓

j 〉 which we expect to be
valid for sufficiently small reservoirs and low filling levels [21].
The chemical potentials of the reservoirs μα are changed
accordingly due to the interactions; e.g., the chemical potential
for spin-up states is given by μ↑

α = μα + U 〈n̂↓〉. In the
following we will however neglect these trivial changes.

The effect of interactions on the single level is to shift its
original (U = 0) position ε0 by the interaction energy; e.g.,
for spin-up fermions the level position is ε0 + U 〈n̂↓〉. The
corresponding Green’s function reads

G↑(ε) = 1/[ε − ε0 − U 〈n̂↓〉 + i�L(ε) + i�R(ε)] (9)

with the effective couplings �α . The occupation of the single
level is given by

〈n̂↑〉 =
∫

dε

2π
|G↑(ε)|2[�L(ε)fL(ε) + �R(ε)fR(ε)], (10)

with the time dependence of the Fermi functions omitted. In the
case of a spin-balanced mixture with 〈n̂↑〉 = 〈n̂↓〉 the Green’s
function G↑(ε) and the occupation 〈n̂↑〉 can be determined
self-consistently to obtain the transmission T (ε) ∝ |G↑(ε)|2,
which is the same for both internal states. In principle, the
average particle number 〈N̂α(t)〉 and the current ∂t 〈N̂α(t)〉 are
then evaluated as for noninteracting fermions.

The effect of interactions on the transmission can be
qualitatively understood in the wide-band limit with constant
couplings �α = �. Inserting G↑(ε) into Eq. (10) then yields
the self-consistent equation for the occupation [20]

〈n̂〉 = 1

2
+ 2

π

∑
α

arctan

(
μα − ε0 − U 〈n̂〉

2�

)
, (11)

where the average occupation number applies to both spin
states; i.e., 〈n̂〉 = 〈n̂↑〉 = 〈n̂↓〉. Figure 5 shows the average
occupation 〈n̂〉 of the single level and the energy shift U 〈n̂〉 as
a function of the interaction strength U according to Eq. (11).
For repulsive interactions U > 0 we observe a depletion of
the single level and a shift to higher energies. This shift is
bounded by μL in the limit of vanishing coupling �, but takes
values larger than μL in the case of finite �. For attractive
interactions U < 0 the occupation 〈n̂〉 increases and makes
an abrupt transition to 〈n̂〉 ≈ 1 accompanied by a shift of the

FIG. 5. (Color online) The effect of interactions on a single level
with original (U = 0) position ε0 = 0 and the relative chemical
potentials μL/J0 = 1 and μR/J0 = −1. The occupation 〈n〉 (blue
or dark gray) and the energy shift U〈n〉/J0 (orange or light gray)
as a function of the interaction U/J0 are plotted for the couplings
�/J0 = 0.1 (solid) and �/J0 = 1 (dashed). For U > 0 the level
is depleted and shifted toward μL. For U < 0 the level is almost
completely occupied and shifted below μR for sufficiently strong
interactions. The current is blocked if the single level at ε0 + U〈n〉
leaves the energy window [μL,μR].

level below μR . In both cases the single level at ε0 + U 〈n̂〉
eventually leaves the energy window between μL and μR ,
and hence the current through the level is strongly suppressed.
Thus interactions offer an alternative approach to control the
current through the lattice.

VII. CONCLUSIONS

Using the mesoscopic NEGF-Landauer approach we have
analyzed nonequilibrium transport of fermions through an
engineered optical lattice for arbitrarily strong coupling to two
reservoirs at finite temperatures. We have characterized the full
equilibration process by calculating the accumulated number
of atoms in the finite reservoirs, which is a directly accessible
quantity in experiments. Considering experimentally relevant
system parameters we found that the reservoirs equilibrate on
time scales comparable to the duration of typical ultracold
atom experiments. Our systematic analysis of created and
damped fluctuations in the finite system revealed that the
mean-field description gives an incomplete picture of fermion
transport since significant shot-to-shot variations from the av-
erage current, partly due to thermal effects, are to be expected.
This is directly relevant to the emulation of semiconductor
electronic circuits, where preferably single-shot measurements
are required to determine the current [10].

The study of fluctuations around the average current
revealed additional information about the processes taking
place in the system: We found that thermal fluctuations build
up on the time scale of the equilibration process until they reach
a constant value proportional to the temperature of the Fermi
gas. As an aside, we note that thermal fluctuation between
equilibrated reservoirs may therefore be used for thermometry
of the system. On a more fundamental level, we saw that
a decrease in the current due to a lower transmission of the
coherent region is necessarily accompanied by higher quantum
fluctuations. This correlation allows the experimenter, e.g., to
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distinguish between changes in either the chemical potentials
or the transmission as the cause of a reduced current.

We have shown that modulations of a homogeneous lattice
potential can be used not only to reduce the equilibration
current, but also to realize a single-level model with full
control over the position and the coupling of the level. This
setup requires neither additional impurity atoms nor site-by-
site manipulations of the optical lattice. Moreover, advanced
experimental techniques for producing tailor-made optical
potentials, by employing either acousto-optical deflectors [22]
or holographic mask techniques [23], are expected to further
facilitate the creation of engineered optical lattices. Finally,
our mean-field analysis of interaction effects revealed that even
weak interactions between the fermions suppress the current
through a single level, which can be exploited to control the
current.

We conclude with the observation that our approach to
nonequilibrium transport between finite reservoirs may be

applied to similar ultracold atomic setups [24] or, more
generally, to mesoscopic systems such as electrons on
liquid helium [25]. Possible extensions of this work in-
clude transport of bosonic atoms, similar to the analysis
in Refs. [7,26], quantum pumping between reservoirs using
time-dependent modulations of the optical lattice [27], and
the effect of interactions between fermions on quantum
fluctuations [28].
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