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Critical temperature of a Rashba spin-orbit-coupled Bose gas in a harmonic trap
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We investigate theoretically Bose-Einstein condensation of an ideal, trapped Bose gas in the presence of Rashba
spin-orbit coupling. Analytic results for the critical temperature and condensate fraction are derived based on a
semiclassical approximation to the single-particle-energy spectrum and density of states and are compared with
exact results obtained by explicitly summing discrete energy levels for a small number of particles. We find a
significant decrease of the critical temperature and of the condensate fraction due to finite spin-orbit coupling.
For a large coupling strength and a finite number of particles N , the critical temperature scales as N2/5 and
N 2/3 in three and two dimensions, respectively, contrasted to the predictions of N1/3 and N 1/2 in the absence of
spin-orbit coupling. Finite-size corrections in three dimensions are also discussed.
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I. INTRODUCTION

The recent experiment on spin-orbit-coupled spinor Bose
gases of 87Rb atoms [1] has stimulated great interest in the
theoretical study of spin-orbit (SO) physics in both Bose-
Einstein condensation (BEC) and fermionic superfluidity. It
is well-known that the SO coupling leads to many interesting
phenomena in condensed-matter physics. Typical examples
are the recently discovered topological insulators (or quantum-
spin Hall states) [2,3]. In degenerate atomic gases, due to
unprecedented controllability in the interatomic interaction,
geometry, and purity [4,5], SO coupling may bring about even
more intriguing states of matter [6–24].

For a SO-coupled BEC, nontrivial structures, such as
the density-stripe state [9,11], half-quantum vortex state
[10], and lattice state [13,14], are predicted. For an atomic
Fermi gas near Feshbach resonances, new two-fermion-
bound states with anisotropic mass are formed even at a
negative s-wave-scattering length [18,21,22], leading to the
prospect of anisotropic superfluidity with mixed s- and p-
wave components [22]. By imposing an external Zeeman
field, novel topological superfluids supporting zero-energy
Majorana modes may also emerge [20,23,24]. To observe these
new states of matter, it is necessary to cool the temperature
below a threshold, which may depend critically on the SO
coupling. The purpose of this work is to determine the critical
temperature of trapped atomic Bose gases with Rashba-type
SO coupling. We focus on an ideal, noninteracting Bose
gas since the critical temperature is less affected by weak
interatomic interactions [25].

Theoretically, the critical temperature of a homogeneous
Bose gas is greatly suppressed by the Rashba SO coupling
as the low-energy density of states (DOS) is dramatically
modified [6,18]. In three dimensions (3D) without Rashba
SO coupling, the low-energy DOS ρ(E) vanishes as

√
E.

As a result, the number of total particles occupied at finite
energy levels, given by N (T ) = ∫ ∞

0 dEρ(E)/(eE/kBT − 1),
saturates at the finite temperature T [4]. This leads to the
well-known macroscopic occupation of the ground state, i.e.,
the formation of a BEC. In the presence of Rashba SO
coupling, however, the low-energy DOS becomes a constant
(see Appendix) [6,18], reminiscent of a two-dimensional (2D)
system. The thermal occupation N (T ) can be logarithmically

divergent. The critical temperature is therefore precisely zero,
ruling out the possibility of BEC at any finite temperatures [4].

In this paper, we show that in the presence of a harmonic
trap the Rashba SO coupling does not destroy the BEC at
finite temperatures as the thermal occupation N (T ) remains
finite. Actually, the critical temperature is not affected by the
Rashba SO coupling in the thermodynamic limit in which
the number of particles N becomes infinitely large. This is
because the occupation of low-energy states, modified by the
SO coupling, becomes negligible as N → ∞. However, in
the experimentally relevant situation in which numbers of
particles range from a few thousand to a few million, we find
a significant decrease of the critical temperature and of the
condensate fraction. In particular, at a sufficiently large Rashba
SO-coupling strength, the critical temperature scales like N2/5

and N2/3 in three and two dimensions, respectively, in sharp
contrast to the scaling of N1/3 and N1/2 without SO coupling
[4,26–28]. We derive these results either by summing discrete
energy levels for a small number of particles or by using a
continuous DOS under the semiclassical assumption that the
level spacing is negligible compared to the temperature. The
former approach also enables an investigation of the finite-size
correction to the critical temperature.

The paper is structured as follows. In the next section
(Sec. II), we introduce the theoretical model for a Rashba
spin-orbit-coupled ideal Bose gas in a harmonic trap and solve
the single-particle-energy spectrum. In Sec. III, we present
the 2D and 3D densities of states both with and without the
continuous-spectrum approximation. The critical temperature
and condensate fraction are then calculated in Sec. IV for
both the 2D and 3D cases. Next, the finite-size effect in 3D
is discussed in Sec. V. Finally, Sec. VI is devoted to our
conclusions. The calculation of the DOS of a homogeneous
3D Rashba SO-coupled system is given in the Appendix.

II. MODEL HAMILTONIAN AND
SINGLE-PARTICLE-ENERGY SPECTRUM

We consider a two-component (spin-1/2) Bose gas in
both 2D and 3D harmonic traps, V2D(r⊥) = Mω2

⊥(x2 +
y2)/2 ≡ Mω2

⊥r2
⊥/2 and V3D(r⊥,z) = M(ω2

⊥r2
⊥ + ω2

zz
2)/2, re-

spectively, with Rashba SO coupling VSO = −iλR(σ̂x∂y −
σ̂y∂x) in the xy plane, where λR is the Rashba SO-coupling
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strength and σ̂x , σ̂y , and σ̂z are the 2 × 2 Pauli matrices for
pseudospin. The model Hamiltonian for a single particle is
described by

HS =
[

−h̄2∇2/2M + VT −iλR(∂y + i∂x)

−iλR(∂y − i∂x) −h̄2∇2/2M + VT

]
, (1)

where the trapping potential VT (r⊥) = V2D(r⊥) in 2D and
VT (r) = V3D(r⊥,z) in 3D harmonic traps. The characteristic
length scales of harmonic traps in the xy plane and z

direction are given by a⊥ = √
h̄/(Mω⊥) and az = √

h̄/(Mωz),
respectively. For the SO coupling, we take a dimensionless
coupling strength λSO ≡ λRMa⊥/h̄2.

In the 2D case, it is convenient to use polar coordi-
nates r⊥ = (r⊥,ϕ) in which −i(∂y ± i∂x) = e∓iϕ[±∂/∂r⊥ −
(i/r⊥)∂/∂ϕ]. As the harmonic potential is isotropic, the
single-particle wave function has a well-defined azimuthal
angular momentum lz = m and takes the form

φm(r⊥) =
[

φ↑(r⊥)

φ↓(r⊥)eiϕ

]
eimϕ

√
2π

, (2)

which preserves the total angular momentum jz = lz + sz =
m + 1/2. The Schrödinger equation for φ↑(r⊥) and φ↓(r⊥)
therefore becomes[

Hm λR [∂/∂r⊥ + (m + 1) /r⊥]

λR (−∂/∂r⊥ + m/r⊥) Hm+1

]

×
[

φ↑
φ↓

]
= Enm

[
φ↑
φ↓

]
, (3)

whereHm ≡ −[h̄2/(2M)][d/dr⊥2 + (1/r⊥)d/dr⊥ − m2/r⊥2]
+ Mω2

⊥r⊥2/2 is the 2D harmonic oscillator. We have
denoted the energy level as Enm with n = (0,1,2, . . .)
being the good quantum number in the transverse (radial)
direction. Each energy level is twofold degenerate as
a result of the time-reversal symmetry satisfied by the
single-particle model Hamiltonian (Kramers degeneracy).
Any state φ(r⊥) = [φ↑(r⊥),φ↓(r⊥)]T is degenerate
with its time-reversal partner T φ(r⊥) ≡ (iσyC)φ(r⊥) =
[φ∗

↓(r⊥), − φ∗
↑(r⊥)]T , where C is the complex-conjugate

operator. Therefore, we may restrict the quantum number m

to non-negative integers as a state with negative m can always
be treated as the time-reversal partner of a state with m � 0.
To solve numerically the single-particle spectrum, we expand
the wave function using the basis of a 2D harmonic oscillator

φ↑(r⊥) =
∞∑

k=0

A↑kRkm(r⊥), (4)

φ↓(r⊥) =
∞∑

k=0

A↓kRkm+1(r⊥), (5)

where

Rkm = 1

a⊥

[
2k!

(k + |m|)!
]1/2(

r⊥
a⊥

)|m|
e
− r2⊥

2a2⊥ L|m|
k

(
r2
⊥

a2
⊥

)
(6)

is the radial wave function of Hm with energy (2k + |m| +
1)h̄ω⊥ and L|m|

k is the associated Legendre polynomial. This
leads to the following secular equation[Hm MT

M Hm+1

] [
A↑
A↓

]
= Enm

[
A↑
A↓

]
, (7)

where the vectors A↑ and A↓ denote collectively the expanding
coefficients {A↑k} and {A↓k}, respectively, and the elements of
the matrices (m � 0) are given by

(Hm)kk′ = (2k + m + 1)δkk′h̄ω⊥, (8)

Mkk′ = λSO(
√

k′ + m + 1δkk′ +
√

k′δkk′−1)h̄ω⊥. (9)

Diagonalization of the secular matrix of Eq. (7) leads to the
single-particle spectrum and single-particle wave functions.
In numerical calculations, it is necessary to truncate the radial
quantum number k of the 2D harmonic oscillator by restricting
k < kmax. For λSO � 20, we find that kmax = 256 is already
sufficiently large to have an accurate energy spectrum. With
this cutoff, the dimension of the secular matrix in Eq. (7) is
2kmax = 512.

In Fig. 1(a), we present the single-particle-energy spectrum
at λSO = 5. The ground-state single-particle energy is plotted
in Fig. 1(b) as a function of the dimensionless SO-coupling
constant. In reference to the semiclassical zero-point energy
Esc

0 ≡ −(λ2
SO/2)h̄ω⊥, the ground-state energy decreases from

h̄ω⊥ to h̄ω⊥/2 when the Rashba SO-coupling strength λSO

becomes sufficiently large. In that limit (i.e., λSO > 5), the low-
lying-energy spectrum becomes fairly flat with a dispersion
that is well approximated by [13,14]

Enm 
[

− λ2
SO

2
+

(
n + 1

2

)
+ m(m + 1)

2λ2
SO

]
h̄ω⊥. (10)

In 3D, because the motions in the xy plane and the z

direction are decoupled, the single-particle-energy spectrum
is given by

Enmnz
= Enm + (

nz + 1
2

)
h̄ωz, (11)

FIG. 1. (Color online) (a) Single-particle-energy spectrum Ẽnm =
Enm + (λ2

SO/2)h̄ω⊥ at λSO = 5, measured in reference to the semi-
classical zero-point energy −(λ2

SO/2)h̄ω⊥. (b) Ground-state single-
particle energy Ẽ00 = E00 + (λ2

SO/2)h̄ω⊥ as a function of the dimen-
sionless Rashba SO-coupling constant. The energy is plotted in units
of h̄ω⊥.
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where nz = 0,1,2, . . . is a good quantum number for the axial
motion.

At finite temperature T , the total number of particles is
given in the grand canonical ensembles by the sum

N =
∞∑

n,m=0

2

exp[(Enm − μ)/kBT ] − 1
(12)

in 2D and by the sum

N =
∞∑

n,m,nz=0

2

exp
[(

Enmnz
− μ

)/
kBT

] − 1
(13)

in 3D, where μ is the chemical potential and the factor of 2
arises from the Kramers degeneracy. The sum can be rewritten
as an integral over the energy in the unified form

N =
∫ +∞

−∞
dE

ρ(E)

exp[(E − μ)/kBT ] − 1
(14)

with the DOS ρ(E) given by

ρ2D(E) = 2
∞∑

n,m=0

δ(E − Enm) (15)

and

ρ3D(E) = 2
∞∑

n,m,nz=0

δ
(
E − Enmnz

)
(16)

in 2D and 3D, respectively.
For a given small number of particles N , we can calculate

the low-lying-energy levels and then sum explicitly the number
equations Eqs. (12) and (13). Once the chemical potential
is determined at a given temperature T , we calculate the
occupation of the ground state

N0 = 2

exp[(E0 − μ)/kBT ] − 1
, (17)

where the single-particle ground-state energy E0 = E00 in 2D
and E0 = E00 + h̄ωz/2 in 3D. The BEC transition temperature
Tc can be determined from d2N0/dT 2, exhibiting a maximum
at Tc [29].

III. SEMICLASSICAL DENSITY OF STATES

For large numbers of particles, it is useful to consider a
semiclassical approximation by using a continuous-energy
spectrum [4]. The level spacing, typical of h̄ω⊥ or h̄ωz, is
assumed to be negligibly small compared with the thermal en-
ergy kBT . Thus, the relevant excitation energies, contributing
to the sums in Eqs. (12) and (13), are much larger than the level
spacing. The accuracy of the semiclassical approximation can
be tested a posteriori by comparing the semiclassical result
with the numerical discrete summation.

A. 2D density of states

In 2D, the semiclassical DOS can be written as

ρsc
2D(E) =

∑
s=±

∫
d r⊥dk⊥

(2π )2
δ[Eks(r⊥) − E], (18)

where Eks(r⊥) = h̄2k2
⊥/(2M) + sλRk⊥ + Mω2

⊥r2
⊥/2 is the

semiclassical energy in the phase space (r⊥,k⊥). Because of
the Rashba SO coupling, the semiclassical energy splits into
two helicity branches as indicated by s = ± (see Appendix).
By integrating out the spatial degree of freedom, we obtain that

h̄ω⊥ρsc
2D(E) =

∑
s=±

∫ ∞

0
k̃⊥dk̃⊥�

[
Ẽ

h̄ω⊥
− (k̃⊥ + sλSO)2

2

]
,

(19)

where k̃⊥ ≡ k⊥a⊥ is the dimensionless wave vector, Ẽ ≡ E +
(λ2

SO/2)h̄ω⊥ is the energy measured in reference to the semi-
classical zero-point energy Esc

0 ≡ −(λ2
SO/2)h̄ω⊥, and �(·) is

the Heaviside step function. The integration over the wave
vector can be calculated explicitly as well. We finally arrive at

h̄ω⊥ρsc
2D(E)

=

⎧⎪⎨
⎪⎩

0
(
E < Esc

0

)
,

2λSO
[
2E/ (h̄ω⊥) + λ2

SO

]1/2 (
Esc

0 � E < 0
)
,

2E/ (h̄ω⊥) + 2λ2
SO (E � 0).

(20)

In the absence of Rashba SO coupling (λSO = 0), we recover
the usual expression for the 2D DOS in harmonic traps
ρsc

2D(E) = 2E/(h̄ω⊥)2�(E) for a two-component system [4].

B. 3D density of states

Likewise, we calculate the semiclassical DOS in 3D, which
is given by

ρsc
3D(E) =

∑
s=±

∫
d rdk
(2π )3

δ[Eks(r) − E], (21)

where the semiclassical energy now takes the form Eks(r) =
h̄2k2

⊥/(2M) + sλRk⊥ + h̄2k2
z /(2M) + M(ω2

⊥r2
⊥ + ω2

zz
2)/2.

The integration over r and kz can be done by introducing a
new variable t2 = h̄2k2

z /(2M) + M(ω2
⊥r2

⊥ + ω2
zz

2)/2 and by
converting the variables of integration d rdk to d tdk⊥. This
leads to

h̄ωzρ
sc
3D(E) =

∑
s=±

∫ ∞

0
k̃⊥dk̃⊥

[
Ẽ

h̄ω⊥
− (k̃⊥ + sλSO)2

2

]

×�

[
Ẽ

h̄ω⊥
− (k̃⊥ + sλSO)2

2

]
. (22)

By explicitly integrating out k̃⊥, we obtain

h̄ωzρ
sc
3D(E)

=

⎧⎪⎪⎨
⎪⎪⎩

0
(
E < Esc

0

)
,

(2λSO/3)
[
2E/ (h̄ω⊥) + λ2

SO

]3/2 (
Esc

0 � E < 0
)
,[

E/ (h̄ω⊥) + λ2
SO

]2 − λ4
SO/3 (E � 0).

(23)

In the absence of Rashba SO coupling, we recover the
expression ρsc

3D(E) = E2/(h̄3ω2
⊥ωz)�(E) for 3D harmonic

traps [4].
It is easy to check that the 2D and 3D densities of states are

related by

h̄ωz

dρsc
3D(E)

dE
= ρsc

2D(E). (24)
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(a)

(b)

FIG. 2. (Color online) The semiclassical density of states in
(a) 2D and (b) 3D in units of 1/(h̄ω⊥) and 1/(h̄ωz), respectively,
are shown as a function of Ẽ = E + (λ2

SO/2)h̄ω⊥ at different Rashba
SO couplings (solid lines). The energy Ẽ is in units of h̄ω⊥. For
comparison, the symbols plot the results obtained by the numerical
summation [see Eqs. (15) and (16)]. The simulation of the delta
function is described in the text.

This is due to the decoupled motion in the xy plane and
z direction, leading to the observation that the 3D energy
spectrum may alternatively be viewed as a collection of 2D
spectra with regular spacing h̄ωz.

C. Test of the semiclassical DOS

In Fig. 2, we compare the semiclassical 2D and 3D
densities of states with those obtained by summing over
the discrete single-particle-energy spectrum using Eqs. (15)
and (16). In the numerical summation, we simulate the δ

function δ(x) by a Lorentzian line shape with broadening
�, fδ(x; �) = (�/π )/(x2 + �2). Roughly, the resulting DOS
depends linearly on � as � ∼ h̄ω⊥. Therefore, we use

δ(x) = 2fδ(x; � = h̄ω⊥) − fδ(x; � = 2h̄ω⊥) (25)

as an extrapolation to the zero-broadening limit (� = 0). We
find that the semiclassical expressions for the DOS [Eqs. (19)
and (22)] work extremely well over a very broad range for
energy. The most significant discrepancy occurs at the lowest
energy level E ∼ −(λ2

SO/2)h̄ω⊥ as anticipated.

IV. CRITICAL TEMPERATURE
AND CONDENSATE FRACTION

We are now ready to calculate the critical temperature and
condensate fraction for a large number of particles. With the

semiclassical DOS ρsc(E), the number of particles could be
rewritten as [4]

N = N0 +
∫ +∞

Esc
0

dE
ρsc(E)

exp[(E − μ)/kBT ] − 1
, (26)

where the ground-state population N0 is singled out and the
finite sums over the excited states in Eqs. (12) and (13)
are replaced by an integral. Accordingly, we have set the
lower bound of the integral to be the semiclassical zero-
point energy Esc

0 = −(λ2
SO/2)h̄ω⊥. When BEC occurs, the

chemical potential approaches Esc
0 from below [4]. The critical

temperature Tc is determined by the condition

N =
∫ +∞

0
dẼ

ρsc
(
Ẽ + Esc

0

)
exp(Ẽ/kBTc) − 1

, (27)

where Ẽ ≡ E − Esc
0 , and the condensate fraction at T < Tc

can be calculated by

N0

N
= 1 − 1

N

∫ +∞

0
dẼ

ρsc
(
Ẽ + Esc

0

)
exp(Ẽ/kBT ) − 1

. (28)

As we shall see, these equations can be conveniently solved
by introducing ε = Ẽ/(kBT ) and

α(T ) = λSO

√
h̄ω⊥
kBT

. (29)

A. 2D

In 2D, the equations for the critical temperature and
condensate fraction become

N =
(

kBTc

h̄ω⊥

)2

I2D[α(Tc)] (30)

and

N0

N
= 1 −

(
T

Tc

)2 I2D[α(T )]

I2D[α(Tc)]
, (31)

respectively. Here the integral I2D[α] takes the form

I2D[α] =
∫ +∞

0
dε

ρ̃sc
2D(ε; α)

eε − 1
, (32)

where the dimensionless DOS ρ̃sc
2D(ε; α) is given by

ρ̃sc
2D(ε; α) =

⎧⎪⎨
⎪⎩

0 (ε < 0) ,

2α
√

2ε (0 � ε < α2/2),

2ε + α2 (ε � α2/2).

(33)

Therefore,

I2D[α] =
√

2παζ

(
3

2

)
+

∫ +∞

α2/2
dε

(
√

2ε − α)2

eε − 1
. (34)

Here ζ (·) is the Riemann ζ function. I2D[α] depends implicitly
on the temperature through the dimensionless parameter α(T ).
It is clear from Eq. (29) that for a given SO coupling λSO,
the dimensionless parameter α at the critical temperature Tc

always scales to zero in the thermodynamic limit N → ∞.
This is understandable as a finite SO interaction modifies
only the low-lying-energy states, whose occupation becomes
negligible as N → ∞.
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In the absence of SO coupling I2D[α = 0] = 2ζ (2) =
π2/3, we recover the standard results in 2D [4]:

kBT (0)
c (λSO = 0) = 1

π
(3N )1/2h̄ω⊥ (35)

and N0/N = 1 − (T/T (0)
c )2. Here, we use the superscript 0

to indicate the semiclassical result. For a large SO coupling
I2D[α � 1] = √

2παζ (3/2), we find that

kBT (0)
c (λSO � 1) = 1

(2π )1/3

[
N

λSOζ (3/2)

]2/3

h̄ω⊥ (36)

and N0/N = 1 − (T/T (0)
c )3/2. Thus, for a given number of

particles, with increasing SO coupling the dependence of the
2D critical temperature on the number of particles changes
from N1/2 to N2/3. Using α � 1, the strong-coupling limit is
reached when

λSO � (2π )−1/8

[
N

ζ (3/2)

]1/4

. (37)

In Fig. 3, we show I2D[α] as a function of the dimen-
sionless parameter α. Empirically, we find that I2D[α] √

2παζ (3/2) + 2ζ (2)e−1.84α−0.13α2
within a 0.5% relative

error. Figure 4 reports the critical temperature as a function of
SO coupling for several different numbers of particles (solid
lines). It decreases significantly at a moderate SO coupling
(λSO ∼ 10) and number of particles (i.e., N ∼ 104). The
strong-coupling results [Eq. (36)] have also been plotted using
dot-dashed lines. Finally, in Fig. 5, we present the condensate
fraction at λSO = 5 and N = 103, 105, and ∞.

B. 3D

In 3D, similarly we obtain that

Nλ =
(

kBTc

h̄ω⊥

)3

I3D[α(Tc)] (38)

FIG. 3. (Color online) The integrals I2D and I3D as a function of
the dimensionless parameter α = λSO[h̄ω⊥/(kBT )]1/2 (symbols). The
solid lines show the empirical fit which agrees numerically within the
0.5% relative error (see the text for the empirical formalism).

FIG. 4. (Color online) 2D critical temperature as a function of
the SO coupling at different numbers of particles as indicated. The
dot-dashed lines show the limiting behavior at large SO coupling
[Eq. (36)].

and

N0

N
= 1 −

(
T

Tc

)3 I3D[α(T )]

I3D[α(Tc)]
, (39)

where λ = ωz/ω⊥ is the aspect ratio of the harmonic trap, the
integral I3D[α] is given by

I3D[α] =
∫ +∞

0
dε

ρ̃sc
3D(ε; α)

eε − 1
, (40)

and the dimensionless DOS ρ̃sc
3D(ε; α) is

ρ̃sc
3D(ε; α) =

⎧⎪⎨
⎪⎩

0 (ε < 0) ,

(4
√

2α/3)ε3/2 (0 � ε < α2/2),

ε2 + εα2 − α4/12 (ε � α2/2).

(41)

FIG. 5. (Color online) 2D condensate fraction at λSO = 5 and
for different numbers of particles. For the case of N = 105, the
dashed and dot-dashed lines show, respectively, the strong-coupling
and zero-coupling results, N0/N = 1 − (T/T (0)

c )2 and N0/N = 1 −
(T/T (0)

c )3/2.

013619-5



HUI HU AND XIA-JI LIU PHYSICAL REVIEW A 85, 013619 (2012)

Explicitly, we find that

I3D[α] =
√

2παζ

(
5

2

)
+

∫ +∞

α2/2
dε

h(ε)

eε − 1
, (42)

where h(ε) = ε2 + εα2 − α4/12 − (4
√

2α/3)ε3/2. We plot
I3D[α] in Fig. 3 together with an empirical fit I3D[α] =√

2παζ (5/2) + 2ζ (3)e−1.40α−0.30α2
.

At λSO = 0 where I3D[α = 0] = 2ζ (3), we obtain

kBT (0)
c (λSO = 0) =

[
Nλ

2ζ (3)

]1/3

h̄ω⊥ (43)

and N0/N = 1 − (T/T (0)
c )3, recovering the well-known 3D

result for a trapped spin-1/2 Bose gas [4]. In the limit of large
SO coupling in which I3D[α � 1] = √

2παζ (5/2), we find
instead

kBT (0)
c (λSO � 1) = 1

(2π )1/5

[
Nλ

λSOζ (5/2)

]2/5

h̄ω⊥ (44)

and N0/N = 1 − (T/T (0)
c )5/2. Thus, for a given N with

increasing SO coupling, the power-law dependence of the 3D
critical temperature on the number of particles changes from
N1/3 to N2/5. We estimate that the strong-coupling result is
applicable if

λSO � (2π )−1/12

[
Nλ

ζ (5/2)

]1/6

. (45)

In Fig. 6, we report the effect of the SO coupling on the 3D
critical temperature. To make a connection with the National
Institute of Standards and Technology experiment [1], we
have used a realistic aspect ratio of the trapping potential
and number of particles, λ = √

8 and N = 1.8 × 105. We also
consider the case with a small number of particles N = 103. At
the typical SO-coupling strength λSO ∼ 10 [1], the reduction
of the critical temperature is about 20%, which is in reach of
current experiments. The inset shows the condensate fraction
at λSO = 5.

FIG. 6. (Color online) 3D critical temperature as a function of
the SO-coupling strength at N = 103 and N = 1.8 × 105. The aspect
ratio of the harmonic trap is λ = ωz/ω⊥ = √

8. The dot-dashed lines
show the critical temperature in the strong-coupling limit [Eq. (44)].
The inset reports the condensate fraction at λSO = 5.

V. FINITE-SIZE CORRECTION TO Tc IN 3D

We now turn to consider the finite-size correction to the
semiclassical results, arising from the discreteness of the
single-particle-energy spectrum [26,27]. The semiclassical
results are obtained using the semiclassical approximation
for the excited states and setting the chemical potential to
the semiclassical zero-point energy Esc

0 . To the leading order,
the finite-size correction can be included by still employing the
semiclassical description for the excited states while keeping
the quantum value μ = E0 for the chemical potential at the
transition [25]. Here, E0 > Esc

0 is the single-particle energy
of the ground state. It is E00 in 2D and E00 + h̄ωz/2 in 3D
[see, for example, Fig. 1(b) for E00 as a function of the
SO-coupling strength]. The discreteness of the excited-energy
spectrum gives rise to higher-order finite-size corrections. In
the following, we focus on the finite-size correction to the 3D
critical temperature.

Using the quantum value μ = E0 for the chemical potential,
the 3D critical temperature is determined by

N =
∫ +∞

E0

dE
ρsc

3D(E)

exp[(E − E0)/kBTc] − 1

=
∫ +∞

0
dE

ρsc
3D

(
Ẽ + Esc

0 + �E
)

exp(Ẽ/kBTc) − 1
, (46)

where in the second line we have introduced Ẽ=E − E0

and �E = E0 − Esc
0 > 0. Compared with Eq. (27), the

3D DOS is slightly up-shifted by the amount �E.
As �E ∼ h̄ω⊥ is the smallest energy scale, using
Eq. (24), we may write ρsc

3D(Ẽ + Esc
0 + �E)  ρsc

3D(Ẽ +
Esc

0 ) + (�E/h̄ωz)ρsc
2D(Ẽ + Esc

0 ). Therefore, using the integrals
I2D and I3D, the equation for the critical temperature is given
by

Nλ =
(

kBTc

h̄ω⊥

)3{
I3D[α(Tc)] + �E

kBTc

I2D[α(Tc)]

}
. (47)

FIG. 7. (Color online) 3D transition temperature as a function of
the SO coupling. The solid lines show the semiclassical predictions,
and the dashed line gives the results with inclusion of the leading
finite-size correction. The empty circles are calculated using the
numerical summation for N0 with the discrete energy spectrum, i.e.,
Eq. (17). The critical temperature is then determined from the peak
position of d2N0/dT 2 [29].
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FIG. 8. (Color online) Density of states of a 3D homogeneous
SO-coupled system at several SO-coupling strengths. The density of
states is plotted in units of MkF /h̄2.

In the absence of the SO coupling where I2D = 2ζ (2), I3D =
2ζ (3), and �E = h̄ω⊥ + h̄ωz/2, it is easy to verify that the
transition temperature Tc is given by the law

Tc

T 0
c

 1 − ζ (2)

[2ζ (3)]2/3
N−1/3 (2h̄ω⊥ + h̄ωz)/3

(ω2
⊥ωz)1/3

, (48)

which is known in the literature [25–27].
In Fig. 7, we report the 3D transition temperature with the

leading finite-size correction as shown by dashed lines. We
find a sizable correction with a small number of particles (i.e.,
N = 103). For an experimentally realistic number of particles,
i.e., N = 1.8 × 105, however, the correction becomes mild. As
a benchmark for our analytic treatment of Tc, we also show by

symbols the critical temperature for a small number of particles
calculated by the discrete sum for the ground-state population
N0 [Eq. (17)]. For relatively small SO coupling (i.e., λSO < 5),
our analytic treatment works very well. However, for large SO
coupling, the single-particle level splitting between the ground
state and the first excited state becomes increasingly small.
We then may have to take into account the discreteness of the
low-lying excited-energy levels.

VI. CONCLUSIONS

In summary, we have investigated the critical temperature
and condensate fraction of a harmonically trapped ideal Bose
gas in the presence of Rashba spin-orbit coupling by using
either the exact numerical summation for a small number of
particles or the analytic semiclassical approach for a large
number of particles. The leading finite-size correction to the
semiclassical approximation has also been considered. We
have found a pronounced effect of the Rashba SO coupling. For
the experimentally realistic number of particles (N ∼ 105) [1],
the critical temperature is reduced by more than 20% in
magnitude at moderate SO coupling. This reduction is readily
observable in current experiments. Moreover, in the limit of
strong SO coupling, the critical temperature scales as N2/5

and N2/3 in three and two dimensions, respectively, which
should be contrasted with the scaling law of N1/3 and N1/2

in the absence of SO coupling. Our investigation of critical
temperature can be easily extended to include a weak repulsive
interaction by using mean-field Hartree-Fock theory [25].
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APPENDIX: DENSITY OF STATES OF A 3D HOMOGENEOUS SO-COUPLED SYSTEM

In free space, the single-particle Hamiltonian with Rashba SO coupling

HS =
[

−h̄2∇2/2M −iλR(∂y + i∂x)

−iλR(∂y − i∂x) −h̄2∇2/2M

]
(A1)

has the dispersion

Eks = h̄2k2
z

2M
+ h̄2k2

⊥
2M

+ sλRk⊥. (A2)

Here s = ± denotes the two helicity branches. The DOS, given by ρ(E) = (1/V )
∑

k[δ(Ek+ − E) + δ(Ek− − E)], can be
calculated analytically. We find that

ρ (E) = M2λR

h̄4

⎧⎪⎨
⎪⎩

0 (E < −ER/2) ,

π/2 (−ER/2 � E < 0),√
2E/ER + (π/2 − arctan

√
2E/ER) (E � 0),

(A3)
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where ER ≡ Mλ2
R/h̄2 is the characteristic energy related to the SO coupling. This result was reported by Hui Zhai in Ref. [6]

[see for example, their Fig. 2(b)]. By introducing a Fermi wave vector kF = (3π2N/V )1/3, Fermi energy EF = h̄2k2
F /(2M), and

dimensionless SO-coupling strength λeff = M2λR/(h̄2kF ), the DOS can be written as

ρ(E) = MkF

h̄2

⎧⎪⎪⎨
⎪⎪⎩

0
(
E < −λ2

eff

)
,

λeffπ/2
( − λ2

eff � E < 0
)
,

√
E/EF + λeff

[
π/2 − arctan

√
E/

(
λ2

effEF

)]
(E � 0).

(A4)

We show in Fig. 8 the DOS at different SO-coupling strengths.
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