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Atom-molecule conversion with particle losses
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Based on the mean-field approximation and the phase-space analysis, we study the dynamics of atom-molecule
conversion systems subject to particle losses. Starting from the many-body dynamics described by a master
equation, an effective nonlinear Schrodinger equation is introduced. The classical phase space is then specified
and classified by fixed points. The boundaries, which separate different dynamical regimes, have been established
and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored. By
numerically solving the master equation, we show that the mean-field approximation is a good approach to study

the dynamics of this atom-molecule conversion system.
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I. INTRODUCTION

Association of ultracold atoms into molecules is currently
an active topic in the field of ultracold quantum physics; it
attracts much attention due to its applications ranging from
the production of molecular Bose-Einstein condensates to
the search for permanent electric dipole moments (see, for
example, [1-13]). By applying a time-varying magnetic field
in the vicinity of Feshbach resonance, a pair of atoms can
be bound into a diatomic molecule [14,15]; this conversion
can be described by the Gross-Pitaevskii (GP) equations
within the mean-field theory (MFT) [16-21], which reduces
the full many-body problem into a set of coupled nonlinear
Schrodinger equations and maps the complicated many-body
dynamics into the dynamics of a two-mode system. Earlier
study shows that the nonlinearity, which arises from the atom-
atom and molecule-molecule couplings, plays an important
role in the dynamics of the system [17]; for example, four
distinct regimes, each having different feature in dynamics,
can be classified, and accordingly, the bifurcation of the fixed
points in the classical phase space [17,21] can be identified.

Every quantum system is inevitably coupled to its surround-
ing environment. For Bose-Einstein condensates [22-27],
the thermal atoms or molecules may play the role of the
surrounding environment. Description of decoherence by
fully including the quantum effects requires sophisticated
theoretical studies; it is complicated and difficult to solve.
Fortunately, the standard approach in quantum optics can
reduce the complexity, and in fact, it has been widely used
in the study of Bose-Einstein condensates in recent years
[28-33]. For an atom-molecule conversion system, we then
ask, how does the decoherence affect the dynamics of the
atom-molecule conversion system? What are the fixed points
in this atom-conversion system? How do these fixed points
behave? We will answer these questions in this paper.

In this paper, we will focus on the effect of decoherence
in the atom-molecule conversion system. The decoherence
may arise from inelastic collision between condensate and
noncondensate atoms or molecules in the system. These
inelastic collisions may lead to dissipation (or particle loss)
and dephasing for the system. Here we consider only the
dissipative effect due to particle loss and neglect the dephasing
that conserves the particle number. Under the mean-field
approximation, an effective non-Hermitian Gross-Pitaevskii
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equation is derived. Bifurcation of the fixed points divides
the parameter space into different dynamical regimes, and
boundaries that separate these regimes are changed by the
decoherence. By calculating the Jacobian matrix, we find that
a sudden transition in the fixed point from elliptic point to
attractor or repeller happens with a nonzero decoherence rate.
The atom-molecule conversion efficiency and the self-trapping
for the system are also studied.

This paper is organized as follows. In Sec. II, we introduce
the model and transform the master equation into a nonlinear
Schrédinger equation. In Sec. III, we define different regimes
by the fixed points and study the dynamics in these regimes.
In Sec. IV, we investigate the effect of particle loss on
the conversion efficiency. In Sec. V, we shed light on the
self-trapping, taking the decoherence into account, and an
explanation for the predicted features is also given. Finally,
we conclude our results in Sec. VI.

II. MODEL

Based on the two-mode approximation, the Hamiltonian
that includes the atom-atom collision U,,, atom-molecule
conversion with rate V, and molecule-molecule couplings Uy,
takes the following form [17,18]:

H = p.a'a + ppb'b + Uy.a'ataa + Uy,b bbb
+Ugya'ab’h + va'a'h + b'aa). 1)
The master equation [34] that takes the particle loss into
account can be written as [22]
. or ¥y F(I ,\T A AT A A At
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where I', and ', represent decoherence rates for atoms and
molecules, respectively. In the mean-field approximation, the
quantum fluctuation is neglected, and the operators @ and b
can be replaced with ¢ numbers a = |a|e’® and b = |b|e'%,
respectively. With these considerations, the master equation (2)
can be cast into the following nonlinear Schrodinger equation:
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with z = |a|? — 2|b|? denoting the number difference of atoms
in the atom and molecule modes. U = %Uab — %UM — %Ubb
represents the coupling strength, and V is the conversion
rate. R = }1(2uu — Up +2U,4 — %Ubb) denotes the energy
difference between the two modes, which can be effectively
adjusted by a time-varying external field [18,19]. Units are
chosen such that # = 1 throughout this paper.

The Hilbert space for such an atom—diatomic-molecule
conversion system is spanned by a set of Bloch vectors. Under
the mean-field approximation, the Bloch vectors can be defined
by [20]

h = {2v/2Re[(a*)?b],2+/2Im[(a*)?b], |a)? — 21b%).  (5)

With the normalization condition |a|? 4+ 2|b|> = 1 (for the case
without decoherence), the Bloch sphere is a teardrop-shaped
surface (as shown in Fig. 3).

To analyze the dissipative dynamics of the system in its
classical phase space, we define relative phase 6, particle
number 7, and normalized population difference S as

6 =26, — 6, ©6)
n=2b + lal%, (7)
s=2= (8)

n

Inserting these definitions into Eq. (3), a set of evolution
equations is obtained:

$=-2Q(1 + 8)V1—Ssinfd —T'_(1 — §?), 9)

. 1-3S
0 =4CS —4R — Q———cos0, 10
T (10)
n=—Ty+T_Sn, (11)

where I'y = (T, +T}) and T_ = J(I', — ;) have been
defined as representing the total and relative decoherence
rates for the two modes, respectively. C = Un and Q@ = V/n
represent a rescaled coupling strength and conversion rate,
respectively. The particle number n(r) is initially normalized
to n(0) = 1, and the Block vectors 7 were normalized by n(t)
in the rest of paper. Without decoherence, i.e., I'y =", =0,
the dynamics of the system can be described by a classical
Hamiltonian,

H =2Q(1 + )1 — Scosf —2CS> +4RS, (12)

where 6 and S are conjugate variables. By this classical
Hamiltonian, the authors of Refs. [17,21] have found that the
bifurcation of the fixed points falls into four regimes in the
parameter space (see Fig. 1). A natural question arises: how
does the decoherence affect these regimes and the dynamics?
We will explore this question in the next section.
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FIG. 1. (Color online) Parameter space spanned by nonlinearity
C and energy difference R. 2 = 1. Here and in the following, C, €,
and R are rescaled in units of V, and 7 is in units of 1/V; hence all
parameters are dimensionless. (a) Different regimes are separated by
boundary lines, where black solid lines represent the case for '_ = 0,
while blue dashed lines denote the case for '_ = —1. (b) Green solid
lines denote the boundary lines for I'_ = —1.5. I';. has no effect on
the distribution of fixed points according to Eqs. (14) and (15), but it
affects the lifetime of metastable process [see Eq. (18)]. The classical
phase space for regimes (c) I, (d) II, (e) III, and (f) IV is shown for
the case without decoherence.

III. FOUR DYNAMICAL REGIMES WITH DECOHERENCE

We divide this section into two parts. First, we study
the dynamics with fixed C and Q; i.e., n(¢) is treated as a
constant [28,32]. Because the particle number n(z), in fact,
is time dependent and decreases with time, this discussion is
valid for a short time scale, within which the change of n(z)
does not destroy the phase-space structure and cannot induce
transitions between different regimes; this is similar to the
scenario discussed in Refs. [28,32], and the dynamics can be
seen as a metastable process. Second, we take the change of
n(t) into account and explore the transition between different
regimes.

A. Slow and small change of n(t)

In this section, we consider a scenario where n(t) changes
slowly and the change of n(¢) is small. In this case, n(¢), C,
and 2 can be treated as constants. When n(¢) in Eq. (11)
changes slowly with respect to S(¢) and 0(¢) in Egs. (9) and
(10), S and 6 can reach a “fixed point” for each n(t). The
following analogy well characterizes the situation under study:
a moving twister characterized by a spiraling funnel-shaped
wind current connected to a large cumulus or cumulonimbus
cloud. Although the center of the twister moves, the air can
keep rotating around the center. The fixed point in the next
section is similar to the center of the twister; it moves but it
still can be found as a metastable process. Mathematically,
this is the case when the change rate § =T';. + '_S of n in
Eq. (11) is very small. Further consideration shows that § < 1
equalsto ', > I'; and S(0) =~ 1,or ', > 'y and S(0) =~ —1.
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FIG. 2. (Color online) (a), (b), and (c) Parameters n(t), S(¢), and
0(t) as a function of time. The red thick solid line and the blue (top)
and green (bottom) solid lines represent the time evolution of n, S,
and sin 6, respectively. These results are from numerically solving
Egs. (9)-(11). These results are compared with that from solving
only Egs. (9) and (10) with n(¢) keeping its initial value, n(t) = 1.
Blue dashed and green dash-dotted lines are for S and siné in this
case. The parameters chosen are R = 0, 2(0) = 1, S(0) = 0.99, and
0(0) =0 for (a), (b), and (¢). C(0) =4, I'_ =-049, I'y =0.51
for (a). C(0)=2,I'_=-0.99, 'y =1.01 for (b). C(0)=2,T_ =
—1.99, ' = 2.01 for (c). (d) The time evolution of § corresponding
to (a), (b), and (c) is shown by the red dash-dotted line, black dashed
line, and blue solid line, respectively.

The former corresponds to an attractor near S = 1, while the
latter corresponds to an attractor near S = —1. Because the
lifetime for a molecular condensate is much shorter than that of
an atomic condensate in experiments [35,36], we numerically
check the first case and plot the results in Fig. 2. Namely,
we plot the time evolution for population difference S and
relative phase 6 by numerically solving Egs. (9)—(11) and
compare the solution to the results by only solving Egs. (9)
and (10) with n(#) = 1. We find that, for small 'y >~ I'_, the
two results for S(¢) and 6(¢) coincide. As I'y >~ I'_ increases,
the consistent time becomes shorter, but it can still last a long
time. Meanwhile, time evolution of § remains smaller (less
than 1) under the condition we considered.

With these notations, the fixed points of the system are
defined by

$S=6=0. (13)

By this definition, we can calculate the fixed points and find

that one of the fixed pointsis S = —1, § = arccos(— @),
while the other fixed points are determined by

(OT% +64C?)S> — (I'2 — 4Q% + 64R?)
—(15T%2 — 36Q% + 64C?* 4+ 128CR)S>
— (249> — 7% —64R> —128CR)S =0 (14)

and

r_
inf =———+1-2S8. 15
sin 70 (15)
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By a Jacobian matrix defined as

_ (a8/as
~\ad/as

we can study the stability of the fixed points and classify the
phase space as in the literature [33,37,38]. All parameters used
here are realizable with recent technologies. To be specific,
the lifetimes for atomic and molecular condensates can be on
the order of 10 s [35] and 1 s [36], which is consistent with
dissipation rates in our paper. The ratio between the nonlinear
strength C and the conversion rate €2 is adjustable with the help
of Feshbach resonance [15], for example, the MIT experiment
parameters with 22Na condensate [39], giving the mean density
of the condensate n ~ 103 cm™3 and C/Q = 0.36.

In Ref. [17], without decoherence effects, the parameter
space was divided into four regimes by the feature of fixed
points. Here, using Eq. (16), we redivide the regimes by taking
the decoherence into account (see Figs. 1, 3, and 4). Boundaries
that separate different regimes are determined by numerically
solving Egs. (14) and (15). Note that the fixed points on the
boundary behave like the fixed points in the regime labeled by
a smaller number (for example, the boundary that separates
regimes I and II belongs to regime I).

Figure 1(c) shows the Poincaré section of the classical
Hamiltonian for regime I. The only fixed point is located near
the border of the phase space (S = 1), and the dynamics of the

aS/ae> | 16)
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FIG. 3. (Color online) Mean-field dynamics on the Bloch sphere
for cases (left) without and (right) with decoherence. The north pole
and south pole of the sphere correspond to the pure atomic condensate
and the pure molecular condensate, respectively. Red spots and the
center of the vortex denote the location of the fixed points. Blue solid
lines represent the trajectories for the time evolution of the system.
Parameters chosen are R =1, 2 = 1, C = 0 for (a) and (b), R =0,
Q=1,C=2for(c)and (d),and R =0, 2 =1, C = 0 for (e) and
(). (a), (c), and (e) are for the case without decoherence (i.e., 'y =
I'_ = 0), while (b), (d), and (f) depict the case with decoherence
Ty=1landT'_ = —1).

013618-3



B. CUL L. C. WANG, AND X. X. YI

n of Al ]
’ - N
I' \_5‘—‘1 A)
(a) f \
-1 ! | ! 2 !
-1.5 -1 -0.5 0 R,R, 1 15
R
1 — : —
n 0 —
- = ~ \\ ,’ - - -
L@ AR ‘ Yy
-2 -1 o GG 1 2
C

FIG. 4. (Color online) (a) Locations of fixed points vs energy
difference R. Parameters chosen are C =0, Q =1, and I'_ =
0,0.9,1.6 for red solid line, green dashed line, and blue dash-dotted
line, respectively. (b) Locations of fixed points vs interaction strength
C. Parameters chosenare R=0,Q2=1,and I'_ =0, - 0.5, — 1.5
for red solid line, green dashed line, and blue dash-dotted line,
respectively. This figure is a result of Eq. (14).

system is localized. When taking the decoherence into account,
the fixed point near S = 1 turns into an attractor, and Figs. 3(a)
and 3(b) show trajectories on the teardrop-shaped Bloch
sphere. The dynamics of the system becomes delocalized due
to the appearance of such an attractor.

By changing the energy difference R and the nonlinearity
C [see Fig. 1(a)], the system can go across the boundary into
regime II, and the fixed point in regime I bifurcates into two
elliptic points and a hyperbolic one, as Fig. 1(d) shows. Regime
Il shares similar features with the self-trapping in the two-
mode Bose-Hubburd model [40,41]. With a negative relative
decoherence rate, both of the two elliptic fixed points transit
to attractors in this regime [see Figs. 3(c) and 3(d)], while the
locations of the stable attractors are just slightly changed due
to the decoherence [see Fig. 4(b)].

Figure 1(e) illustrates the Poincaré section of the classical
Hamiltonian for regime III without decoherence. In this
regime, large-amplitude oscillations around the elliptic fixed
can be observed; see Fig. 3(e). With C =0 and R = 0, the
location of the fixed points in this regime can be derived

analytically:
1 . T
1.7 + arcsin (<=
(5.6) = ( ; e ) 17
3,271 — arcsin (fT)

where we assume the relative decoherence rate positive and
the relative phase was restricted in 6 € [0,27]. From Eq. (17),
we find that the relative phase between the two fixed points
decreases, and the fixed points becomes asymmetric due to the
decoherence effect [see Fig. 3(f)]. As the relative decoherence
rate increases, the area of regime III is compressed [see
blue dashed line in Fig. 1(a)]. The two boundaries coincide,
and regime III vanishes [see dash-dotted line in Fig. 4(a)];
when the relative decoherence rate is larger than a threshold
(I'_ > +/29), a hyperbolic fixed point arises from the bottom
of the phase space [see dash-dotted line in Fig. 4(a)]. The
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boundary that separates regimes III and IV is shifted due
to decoherence. This boundary shift can be explained as a
threshold decrease in the energy difference R [denoted by Ry
and R in Fig. 4(a)], which is a evidence for the bifurcation of
fixed points in classical phase space.

The dynamics in regime IV behaves similarly to that in
regime I. The elliptic fixed point turns into an attractor due
to the negative relative decoherence rate, and the dynamics
in this regime then becomes delocalized [see Figs. 3(a)
and 3(b)].

Next, we focus on the changes of the fixed points; such
a change in classical phase space is fundamental for a non-
Hermitian Bose-Hubbard system [28,32,33]. However, we
find that, in the atom-molecule conversion system, the change
differs from the Bose-Hubbard model in two respects. First,
the type of the fixed point (e.g., a repeller or an attractor)
is determined by the the sign of relative decoherence rate
I'_ and the location of the fixed point S. If '_ and S are
different in sign, i.e., one of them is positive while the other is
negative, the original elliptic fixed point transits into a stable
attractor. Otherwise, the original fixed point turns into an
unstable repeller. Second, the transition is sudden. In other
words, the transition happens provided the decoherence rate
is not zero. This is different from the decoherence effect
on Bose-Einstein condensates in a double-well potential;
namely, there exists a critical value for the decoherence rate
[28]. In the atom-molecule conversion system, the transition
happens once the decoherence exists, regardless of how
small the decoherence is. This feature reflects not only the
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FIG. 5. (Color online) Comparison of the results under the mean-
field approximation (thin solid line) with the results by solving the
master equation (2) (thick dashed line). (left) n denotes the normalized
particle number. (right) h stands for the Bloch vector. The three
components of l_i, hy, hy, and h_, are plotted in red, purple, and blue,
respectively. The lower line is for A, i, and h, differ at the initial
Xalue. (a) and (b) describe regimes I and IV with initial conditions
h(t =0)=(0.707,0,0), R=1,Q20)=1,C0)=0,T, =0.5,and
I'_ = —0.5.(c) and (d) depict regime II Withﬁ(t =0) =(-0.57,0, —
0.8), R=0,20)=1,C0)=2,Ty=0.5,andI"_ = —0.5. (¢) and
(f) depict regime III with i(r = 0) = (0.707,0,0), R =0, Q(0) =1,
C0)=0,T; =0.5, and I'_ = —0.5. Initially, the total number of
particles is 100, and all the particle are in the atomic condensate.
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metastable behavior of the open many-particle system, but also
the sensitivity of the atom-molecule conversion system to the
particle loss.

To show the validity of the mean-field theory, we nu-
merically solve the master equation (2) by the Monte Carlo
wave-function method. The results are presented in Fig. 5.
From Fig. 5 we find that the mean-field approximation is a
good approach to study the dynamics of the atom-molecule
conversion system.

B. Transition between different regimes induced
by the change of n(¢)

The decreasing of n(t) leads to decreasing C(t) and €2(¢).
For a small change of C(¢) and €2(¢) [the change is due to the
change of n(#)], the number of fixed points and the feature of
the fixed points do not change; however, for a large change
of C(¢) and (t), this is no longer true. In this section, we
study the effect of the time-dependent interaction strength
C(t) and conversion strength €2(z) on the dynamics of the
system. Different regimes are distinguished by the number of
fixed points in the phase space. When C(¢) and €2(¢) change
with time, the number and locations of fixed points [roots
of Egs. (14) and (15)] change as well, which causes the
transition between different regimes. To learn where and when
the transition happens, we have numerically solved Egs. (14)
and (15), and we plot the fixed points S as a function of n(z)
in Fig. 6. When the system is initially prepared in regime II
(three fixed points in phase space) [see Figs. 6(a) and 6(b)],
it transits to regime I (one fixed point) when n decreases to a
critical value (see the red squares in Fig. 6). The number of
fixed points can be counted as the number of lines in Fig. 6.
From Figs. 6(a) and 6(b) or Figs. 6(c) and 6(d), we can find that
the critical value of n increases with the decoherence rate. We
cannot compare the critical value of n in Figs. 6(a) and 6(c)

0.5 0.5
» oﬂ' -]
-0.5 -05
] (a) 1 (b)
T 0.5 0 4 0.5 0
n n
1 1
0.5 0.5
| =
o 0 w0
-0.5 -05
] (c) ] (d)
1 0.5 0 1 0.5 0
n n

FIG. 6. (Color online) Fixed points of population difference S as
a function of particle number n. The parameters chosen are C(0) = 2,
R = 0,and 2(0) = 1for(a)and (b)and C(0) = 0, R = 0,and 2(0) =
1 for (c) and (d). Dissipationrates are I'_ = —0.45, — 1.75, — 0.2, —
0.75 for (a), (b) (c), and (d), respectively. Red squares denote the
points where the regimes change.
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[or in Figs. 6(b) and 6(d)] because the other parameters are
different in these two plots. This observation can be made by
comparing the squares in Figs. 6(a) and 6(b). This observation
shows that the regime transition happens earlier for strong
particle loss. The same conclusion can be drawn by observing
the red squares in Figs. 6(c) and 6(d). When the system starts in
regime II1, it transits to regime II before it transits to I, which
means two transitions exist in the dynamics [see squares in
Figs. 6(c) and 6(d)]. In Figs. 6(c) and 6(d), the line located
at S ~ 0.3 denotes two fixed points that share the same S but
different 6. Besides numerically solving the equations, we can
give part of the analytic explanation for the transition as well.
For simplicity, we restrict our discussion to the symmetric
case (R = 0). By observing the roots of Eq. (14), we find
that, with weak dissipation [I"_ < 2(#)], the number of the
fixed points remains unchanged (there are three fixed points),
and the system will stay in regime II. However, for a large
dissipation rate [['_ > 2€(¢)], the number of real roots for
Eq. (14) decreases to one or two, depending on the value of
the interaction strength C(¢). If C(¢) > F(2,I'_) [where F
is a function of €2(¢) and I'_, which is complicated and not
given here], there is only one fixed point; otherwise, two fixed
points exist in the phase space. This indicates the transition
from regime II to regime I or regime III.

Due to the moving of fixed points and the transition between
different regimes, there are no true fixed points for the system.
So the dynamics of the system is a metastable process, and
the transition between different fixed points is unavoidable. If
the dynamics begins with a small dissipation rate, the system
initially converges to the attractive fixed point near its initial
state (see Fig. 7). However, as n(¢) decreases, the conversion

0
h
FIG. 7. (Color online) Metastable process for the atom-molecule

conversion system with decoherence. (a) Metastable process in
regime II. The parameters chosen are R = 0, C(0) = 2, Q(0) = 1.

' =—-1.75, I'y =2.25 for the thick red line and I'_ = —0.45,
't = 0.55 for the thin blue line. (b) Metastable process in regime
III. The parameters chosenare R = 0,C =0, Q2(0) =1.T_ = —-0.2,
't = 0.3 for the thin blue line, and I'_ = —0.75 and I'; = 1.25 for

the thick red line. Spot A denotes the initial state of the system in the
phase space, spot B represents the attractor that the system initially
converges to, namely, the steady state with constant particle number
[which is a root of Eq. (14) with constant n], and spot C denotes the
(resulting) steady state of the system. The left and right plots of both
(a) and (b) are the same but show the feature from different angles.
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strength 2 and coupling strength C get smaller and smaller,
and at an instance of time (¢) is smaller than a threshold
[©2(¢) < 0.5T"_], the original fixed point disappears, and the
system has to converge to a new fixed point (see thin blue lines
in Fig. 7). This effect can be understood as a manifestation
of metastable behavior of the many-particle system. If the
dissipation rate is large, the metastable process becomes much
shorter (see thick red lines in Fig. 7). In addition, comparing
Figs. 6 and 7, we can learn the exact regime transition route
in Fig. 7, and the value of the critical point n can denote
the strength of such a metastable process (Figs. 6 and 7
share the same parameters). The final state of the system will
be the fixed point at S =1,0 =0 or § =—1,0 =0 (top or
bottom of the Bloch sphere), which depends on the sign of I'_.
This can be understood by examining Eqs. (9) and (10), which
become § = —I'_(1 — §2) and 6 = 0 when n(¢) decreases to
nearly zero. When I'_ is negative, the only fixed point left is
S =1 (see Fig. 6). By calculating the eigenvalues of Eq. (16),
we find that negative I'_ corresponds to the attractor S = 1,
whereas positive I'_ leads to the attractor § = —1.

To measure the length of such a metastable process, we
define a lifetime 7 by Q(7) = 0.5T_ for the metastable
process. This is based on the analytical results that the
number of fixed points will not change until the condition
Q(T) =0.5T_ is satisfied. We now derive an approximate
lifetime for the metastable process with a small dissipation
rate [I'_ < 2Q(0)]. From Eq. (11), we can get the particle
number n(7T) at time T. Inserting n(7T) into 2(T) = 0.5T_,
the lifetime for the metastable process is given by

T 2In2Q(0) —2In|T"_|

Ty 4T_50)
where S(0) is the location of the fixed point. The approximation
here relies on the average of S(¢) in the metastable process,
which is taken approximately to be S(0) here. We find that T

could be an approximate lifetime for most cases; this can be
found by comparing 7 with numerical results.

, (18)

IV. CONVERSION EFFICIENCY FOR MOLECULAR
CONDENSATE

In experiments, the association of ultracold atoms into
diatomic molecules can be achieved by applying a time-
dependent magnetic field in the vicinity of a Feshbach
resonance, which corresponds to the change between different
regimes (I — III — IV) in the parameter space (see Fig. 1). To
examine the effect of decoherence on the conversion process,
we define the conversion efficiency, relative efficiency, and
sweeping rate of the external field as follows:

)P
= (19)
= WL = WO 20)
W(0)
B =R, 1)

where T denotes the final time for the conversion and
W(T_,I'y) and W(0) denote the conversion efficiency with

PHYSICAL REVIEW A 85, 013618 (2012)
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0

FIG. 8. (Color online) (a) Conversion efficiency W and (b)
relative efficiency M as a function of the sweeping rate B. Here
B is rescaled in units of V2. The parameters chosen are C(0) = 0 and
2(0) = 1 for both (a) and (b). The dissipation rates chosen are I'_ =
I'+ = 0 for the blue line with triangles in (a), '~ = —I'; = —0.1 for
the green line with circles in (a), and the red line with circles in (b);
I'_ =Ty = 0.1 for the red line with squares in (a) and the black line
with squares in (b).

and without decoherence, respectively. M describes the rela-
tive increases or decreases of the efficiency with and without
decoherence. By adjusting the external magnetic field [18], R
can be linearly manipulated to cross the Feshbach resonance
point (R = Bt — Ry,Ry = BT,t € [0,2T]) until the system
relaxes into a steady state. The conversion efficiency with
decoherence has been calculated with the same parameters,
and a pure atomic mode [|a(0)|?> = 1] at r = 0 was chosen for
this plot, see Fig. 8.

The results of W show that conversion efficiency increases
with a positive relative decoherence rate, while a negative
relative decoherence rate decreases the conversion efficiency
(see Fig. 8). This can be interpreted by the appearance of an
attractor or repeller in the phase space. That is, for a negative
relative decoherence rate, the elliptic fixed points near the
atomic mode would turn into an attractor, and the atoms are
repelled from the molecular mode [see Figs. 3(b) and 3(f)]. The
conversion process is depressed by such an attractor, and the
conversion efficiency decreases. Similarly, a positive relative
decoherence rate will increase the conversion efficiency.

V. TUNNELING AND SELF-TRAPPING

In this section, we investigate the effect of particle loss on
the dynamics of the system; the atoms may oscillate between
atomic and molecular modes (corresponding to regime III), and
they can also be trapped in one of the modes (corresponding
to regime II in the parameter space).

In regime III, the atoms oscillate between the atomic mode
and the molecular mode [see Fig. 3(e)]. When the relative
decoherence rate is positive, the fixed point transits from being
elliptic to being a repeller, and the amplitude of the oscillation
is then increased [see dash-dotted line in Fig. 9(a)]. However,
for a negative relative decoherence rate, the oscillation is
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FIG. 9. (Color online) Time evolution for the population of the
atomic mode P(a) = |a(?)|? under different decoherence rates: I';, =
I'_ = O for the red solid line, I';. = 0.5 and I'_ = —0.5 for the black
dashed line, and I';. = 0.5 and I'_ = 0.5 for the blue dash-dotted line
in both (a) and (b). The parameters chosen are 2(0) = 1, R = 0 for
both (a) and (b) and C(0) = 0 for (a) and C(0) = 1.5 for (b). The
initial population for atoms is |a(0)|> = 0.9, and the population for
the atomic mode is normalized by the particle number 7.

compressed since the elliptic fixed point suddenly transits into
an attractor [see dashed line in Fig. 9(a)].

As C increases, the dynamics of the system turns into the
self-trapping regime, which belongs to regime II in Fig. 1(a).
We find that the threshold of the coupling constant is decreased
by the decoherence; i.e., the decoherence supports the self-
trapping [denoted by Cy and C| in Fig. 4(b)]. With a negative
relative decoherence rate, the fixed point near the atomic mode
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transits into an attractor. The self-trapping in the atomic mode
remains [see black dashed line in Fig. 9(b)]. When the relative
decoherence rate is positive, which indicates a repeller in the
phase space, the self-trapping in the atomic mode is ruined
because the atoms are repelled and converted into molecules,
as the dash-dotted line shows in Fig. 9(b).

VI. CONCLUSION

In summary, we have investigated the effect of particle loss
on the dynamics of the atom-molecule conversion system.
Within the mean-field approximation, the classical phase
space is specified, and the fixed points are calculated. Due
to the bifurcation of the fixed points in the phase space,
the parameter space can be divided into different regimes.
We find that the boundary that separates different regimes
is changed by the decoherence. A sudden transition of the
fixed points from elliptic to attractor or repeller happens. Such
a transition not only reflects the metastable behavior of the
system but also characterizes the phase-space structure of the
atom-molecule conversion system. The effect of decoherence
on the conversion efficiency and the self-trapping is also
explored with the mean-field approximation.
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