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Finite size scalings of the momentum distribution and noise correlations are performed to study Mott insulator,
Bose glass, and superfluid quantum phases in hard-core bosons (HCBs) subjected to quasiperiodic disorder.
The exponents of the correlation functions at the superfluid to Bose-glass (SF-BG) transition are found to be
approximately one half of the ones that characterize the superfluid phase. The derivatives of the peak intensities of
the correlation functions with respect to quasiperiodic disorder are shown to diverge at the SF-BG critical point.
This behavior does not occur in the corresponding free fermion system, which also exhibits an Anderson-like
transition at the same critical point and thus provides a unique experimental tool to locate the phase transition
in interacting bosonic systems. We also report on the absence of primary sublattice peaks in the momentum
distribution of the superfluid phase for special fillings.
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I. INTRODUCTION

Since the celebrated work of Anderson [1] and others
about half a century ago, the subject of disorder and quantum
phase transitions induced by disorder continues to attract
interest [2]. In spite of being intensively studied, the interplay
between interactions and disorder remains an open frontier.
In recent years, a new impetus toward the understanding
of disorder systems has emerged in the context of ultracold
atomic systems because of their extraordinary degree of
tunability. In those systems, it is now possible to control
the degree of disorder either by imprinting speckle patterns
[3,4] or by superimposing a secondary lattice on the main
lattice to generate a quasiperiodic potential [5–8]. Using those
techniques, Anderson localization has already been observed
in one dimension [3,5,8]. At the same time, the possibility of
exploring strongly interacting regimes with ultracold atoms
has been demonstrated by observation of the superfluid to
Mott insulator transition [9–12], and the realization of the
Tonks-Girardeau gas, i.e., a gas of impenetrable (hard-core)
bosons (HCBs), in one dimension [13–15]. The combined
investigation of the effect of disorder and correlations in
low-dimensional systems is therefore a window that is now
open for experimental exploration [16] and has driven many
recent investigations [17–20].

In this paper we revisit the problem of one-dimensional
(1D) HCBs with pseudorandom disorder generated by im-
posing two-color lattices with periods that are mutually
incommensurate. Even in the absence of interactions, one-
dimensional quasiperiodic systems exhibit a localization-
delocalization transition. In contrast to truly random 1D
systems where states are localized irrespective of the strength
of disorder, quasiperiodic systems exhibit a quantum phase
transition from extended to localized at a finite strength of the
quasiperiodic disorder. In the interacting soft-core regime, sev-
eral studies have addressed the phases that result from the inter-
play between pseudorandom disorder and strong correlations.

Those studies have utilized different computational techniques
such as exact diagonalization [21,22], quantum Monte Carlo
simulations [23], and the density-matrix renormalization group
method [24,25]. A recent comprehensive discussion of these
and other results can be found in Ref. [16]. In the present work,
we perform an exact numerical study of ultracold bosons in the
hard-core regime, as well as spinless fermions, and investigate
the effects of the interplay between disorder and interactions
in the momentum distribution and noise correlations of those
systems. These two observables can be experimentally probed
through time-of-flight measurements [26,27].

Noise correlations have been examined before for several
HCB systems, including homogeneous, period-2 superlattices,
and truly random disordered systems [28–30]. However,
previous studies of HCBs in incommensurate superlattices
[17] were limited to small system sizes, which prevented an
accurate determination of the scaling of off-diagonal corre-
lations at the superfluid to insulator transition. The present
study is partially motivated by an alternative approach to
computing four-point correlations [30]. This approach enables
the investigation of larger systems and opens the possibility
of a detailed scaling analysis and better characterization of
the quantum phase transition. One of our key results here
is the determination of the exponents at the transition point.
Furthermore, as one approaches the thermodynamic limit,
roots of divergent behavior in the derivative of the correlation
peak intensities become apparent at the HCB localization-
delocalization phase transition. That singularity is absent in
the free fermionic system. This is another important finding in
this work.

The paper is structured as follows. Following the back-
ground introduction, Sec. I A describes the model and defines
the correlation functions. The localization transition is then
reviewed in Sec. I B. Section II is devoted to the scaling study
of momentum distribution and noise correlations, revealing
the distinctive behavior at the critical point. In Sec. III, the
dependence of both quantities on the strength of disorder is
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explored and a new characterization of the phase transition is
given. Section IV reports on the peculiar absence of correlation
features for some fillings. In Sec. V we summarize our results.

A. Model

One-dimensional hard-core bosons in incommensurate su-
perlattices, within the one-band approximation, are described
by the following Hamiltonian:

ĤHCB = −t
∑

j

(b̂†j b̂j+1 + H.c.) +
∑

j

Vj n̂
b
j , (1)

where b̂
†
j (b̂j ) is the bosonic creation (annihilation) operator

at the site j , satisfying the bosonic commutation relations
[b̂i ,b̂

†
j ] = δij and the on-site constraints b̂

†2
i = b̂2

i = 0; n̂b
j =

b̂
†
j b̂j is the bosonic particle number operator. Here t is the

hopping energy between adjacent sites, which we set to one
(t = 1) in our work, and Vj denotes the external potential on
site j generated by the secondary lattice. Note that the primary
lattice is the only one that is described within the tight binding
approximation. Vj , on the other hand, has the following form:

Vj = 2λ cos(2πσj + δ), (2)

where the parameter λ is proportional to the intensity of the
lasers used to create the secondary lattice, σ is the ratio
between the wave vectors of the two lattices, and δ is a generic
phase factor. Here, we choose δ to be zero without lost of
generality. Finally, we note that periodic boundary conditions
are considered throughout this work.

Quasiperiodic lattices are characterized by an irrational σ ,
which results from the incommensurate periodicity of the
two superimposed lattices. In our studies, we choose σ to
be the reverse golden ratio, σ = (

√
5 − 1)/2

.= 0.61803 . . ..
This choice is motivated by the fact that the golden mean
is considered to be the most irrational number [19,31] and
has simple number theoretical properties. In our numerical
calculations, σ is approximated by the ratio of two consecutive
Fibonacci numbers FM−1/FM , where the Fibonacci numbers
are defined by the recursion relation Fi+1 = Fi + Fi−1, with
F1 = F0 = 1. Within the approximation followed in this
manuscript, model (1) on a quasiperiodic superlattice reduces
to a model on a periodic superlattice whose properties are
well known (σ is rational). The latter nevertheless captures the
localization-delocalization transition exhibited by the quasi-
periodic system [32,33].

We focus our analysis on two observables, the momentum
distribution function nk and the noise correlations �kk′ , defined
as

nk = 1

L

∑
ij

eika(i−j )〈b̂†i b̂j 〉,
(3)

�kk′ ≡ 〈n̂kn̂k′ 〉 − 〈n̂k〉〈n̂k′ 〉 − 〈n̂k〉 (δk−k′,nK − δk,k′),

where k(k′) denote the momentum values, L the number of
lattice sites, a the lattice constant, K = 2π/a the reciprocal
lattice vector, and n an integer. The expression for �kk′ was
derived in Ref. [28]. The linear term, proportional to 〈n̂k〉,
has its roots in the commutation relations of bosonic fields
and the requirement of using normal ordered operators if one

wants to map time-of-flight observables to in situ correlations
evaluated before the expansion and restricted to the lowest
band. See Ref. [34] for details.

An important point to be kept in mind when evaluating it
is that, for hard-core bosons, only normal ordered expectation
values can be computed using the mapping to a spin-1/2 chain
and then to noninteracting fermions [28,30]. In contrast to
earlier studies where correlations were calculated using Wick’s
theorem [28], here we follow an alternative procedure based
on Slater determinants [30,35,36], which, for completeness, is
briefly reviewed in Appendix.

B. Localization transition

As mentioned before, two-color superlattices characterized
by an irrational σ , are intermediate between periodic and
fully random, and exhibit a metal-insulator transition in one
dimension. The critical point λc = t describes the onset of
localization. Below criticality (λ < λc), single-particle states
are extended, namely, they are Bloch-like states. Above the
critical point, single-particle states are exponentially localized
with localization length ξ = ln(λ)−1 [37].

In the extended phase, the energy spectrum consists of
a set of bands (it becomes a Cantor set at the localization
threshold). The gaps are located at k = ±nσ (mod 1)π/a in
the first Brillouin zone, indexed by an integer n. Note that as n

increases the width of the gaps narrows. As a consequence of
our selection of σ = FM−1/FM , the single-particle spectrum
consists of FM bands and FM − 1 gaps. The filling factor
ρ = N/L in a many-body system, where N is the number
of particles and L the number of sites, is then a control
parameter that tunes transitions between different phases. For
fillings ρ = nσ (mod 1) and ρ = 1 − nσ (mod 1), the ground
state of HCBs in the extended regime is a Mott insulator.
This insulating state is incompressible and it is also referred
to as an incommensurate insulator [17,19,23]. The fact that
the system is insulating at those fillings can be understood
because the conduction bands in the fermionic system, to
which the HCBs can be mapped, are filled [17,19]. For all other
fillings, the ground state is superfluid. To be able to observe
the fractional Mott insulating phases, the lattice size must be
identical to (or multiple integers of) the period of the incom-
mensurate potential, which means that we choose L = FM

while having σ = FM−1/FM . In our study, we consider lattices
with L = 34, 55, 89, 144, and 233. For λ > λc, i.e., in the
localized regime, the ground state remains an incompressible
insulator for fillings ρ = nσ (mod 1) and ρ = 1 − nσ (mod
1). For all other fillings, on the other hand, the ground state
is a Bose glass. The Bose-glass phase is a compressible
insulating state where the absence of transport is the result of
localization [16].

II. QUANTUM CORRELATIONS: SCALING ANALYSIS

In this section, we perform a finite size scaling study of
the momentum distribution as well as the noise correlations
in different regimes. Typical momentum profiles and noise
correlation patterns are shown in Fig. 1. They were calculated
on a system with 200 sites at half filling and for three different
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FIG. 1. (Color online) (a) Momentum distribution n(k) and (b) noise correlations �k0, of HCBs, as a function of k for three different values
of λ. In all cases L = 233, N = 166, and σ = 144/233. The insets in (a) and (b) show the set of sublattice peaks in the momentum distribution
and noise correlations, respectively.

values of λ representing the superfluid phase, the critical point,
and the localized phase.

The momentum distribution reflects the quantum coherence
of the system. It exhibits a sharp diffraction pattern in the
extended regime (superfluid phase) and a flat profile in
the Bose-glass and Mott insulating phases [see Fig. 1(a)].
The interference pattern is characterized by a peak at k = 0
and additional sublattice peaks at the corresponding reciprocal
lattice vectors. In the quasiperiodic lattice under consideration,
they are found at ka = ±nσ (mod 1)2π and ka = ±(1 −
nσ )(mod 1)2π . In general, only peaks associated with the
main reciprocal lattice vectors, n = 1, are distinguishable. The
k = 0 peak is the sharpest peak and signals the superfluid
character of the extended phase.

The noise correlation pattern contains information of the
momentum-momentum correlations and is also known as
Hanbury Brown–Twiss interferometry. It exhibits interference
peaks in all phases, even in the insulating ones. In contrast to
the momentum distribution, the noise correlation fringes have
their root in the quantum statistics of the particles. For bosonic
systems, the peaks are positive and are a manifestation of
bunching. For fermionic systems, they are negative and signal
antibunching [26,27].

The height of the noise correlation peaks and their under-
lying background significantly vary in the various quantum
phases studied here. For example, a negative background is
found in the superfluid regime. Also, the sublattice peaks
disappear in the Mott insulting phase which occur at unit
filling. The insets in Figs. 1(a) and 1(b) show the most
noticeable sublattice peaks in our systems.

In Fig. 2 we plot the central peak of the momentum
distribution function nk=0 (a) and the noise correlation peak
�00 (b) as a function of the system size L for various values
of λ. Note that the filling factor is fixed at ρ = 0.5 so that
a superfluid state is associated with the λ < 1 cases. The
distinction in the scaling behavior in the extended regime,
at the transition point, and in the localized regime is apparent.
One can see that both nk=0 and �00 exhibit power-law scaling
in the superfluid phase as well as at criticality, while in
the Bose-glass phase they remain essentially unchanged with
changing L.

In Fig. 2(a), the four sets of values of nk=0 vs L for
λ = 0.5, 0.6, 0.8, and 0.9 exhibit exponents 0.503 ± 0.001,
0.496 ± 0.002, 0.462 ± 0.007, and 0.42 ± 0.01, respectively,
which are compatible with the well-known nk=0 ∼ √

L scaling

FIG. 2. (Color online) Scaling of (a) nk=0 and (b) the central peak
�00 in half-filled systems for various values of λ. The inset in (a)
depicts the scaling of nk=0 for λ = λc and up to larger system sizes.
The black dotted lines are power-law fits to the data, from which the
exponents (see text) indicate the distinction between the extended
regime, the transition point, and the localized regime.
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FIG. 3. (Color online) Scaling of the sublattice peaks �∗
σ of half-

filled systems for various λ. These plots show that the sublattice peaks
do not scale with system size.

for HCBs in the superfluid regime, where the quasi-long-range
order is present in the one-particle correlations. In Fig. 2(b), the
exponents for �00 in the extended regime are 0.903 ± 0.003,
0.878 ± 0.004, 0.799 ± 0.007, and 0.72 ± 0.01, also for λ =
0.5, 0.6, 0.8, and 0.9, respectively. These results are compatible
with the linear behavior �00 ∼ L reported in Ref. [30], where
the superfluid phase of the homogeneous system and the
period-2 lattice was studied. Overall, the results in the extended
regime are consistent with the fact that for λ < 1 the system
is a Luttinger liquid with K = 1 [16]. On the other hand,
for λ > 1, Fig. 2 shows that both nk=0 and �00 do not scale
with system size, which is a demonstration of the presence of
exponentially decaying correlations in the Bose-glass phase,
and hence the lack of Luttinger liquid behavior.

The behavior at the critical point is the most interesting
one, as the system is not expected to be described by the
Luttinger liquid theory. Still, we find a power-law scaling of
both nk=0 and �00 with an exponent that is roughly one-half
of the one in the Luttinger liquid regime. The inset in Fig. 2(a)
shows nk=0 for λ = 1 with larger system sizes than those

depicted in the main panel and results for an additional
filling ρ = 1/3. We find that nk=0 ∼ L0.22±0.01 at ρ = 1/2 and
nk=0 ∼ L0.17±0.01 at ρ = 1/3. In Fig. 2(b), �00 at the transition
point scales with an exponent of ∼0.48 ± 0.03 at ρ = 1/2
and ∼0.45 ± 0.02 at ρ = 1/3. Notice that there are apparent
fluctuations in the data, at the critical point and above, with
increasing system size. These are finite size effects whose
main origin may be the fact that the filling factor, as well
as σ , fluctuate slightly between lattices with different size.
Unfortunately, the number of particles and the number of
lattice sites cannot be accommodated to give the same exact
filling factor with increasing system size. Still, our results
are consistent with a halving of the exponents from their
Luttinger liquid values. This is something that deserves further
theoretical investigation.

We carry out a similar study for the sublattice peaks. The L

dependence of the primary sublattice peak (n = 1) is presented
in Fig. 3 for the same values of λ as in Fig. 2. Notice that the
sublattice peaks are immersed in a negative background, as
shown in the inset Fig. 1(b), so we quantify their height by
subtracting the background; that is, we define �∗

σ ≡ �σ 2π
a

,0 −
1
2 (�σ 2π

a
+δk,0 + �σ 2π

a
−δk,0), with δk = 2π/La. For systems at

ρ = 0.5, the sublattice peaks do not scale with system size for
any value of λ. This finding is surprising for λ < λc because,
as follows from the scaling of the �00 peak, quasi-long-range
order is present in the system in that regime. On the other
hand, the absence of those peaks is expected in the glassy
phase where correlations decay exponentially. Further analysis
reveals that, within a range of filling factors from ρ = 1 − σ

to ρ = σ , �∗
σ does not scale with system size in the superfluid

phase. This is discussed in detail in Sec. IV.
At the incommensurate fillings ρ = nσ (mod 1) and ρ =

1 − nσ (mod 1), a Mott insulating phase rather than a superfluid
one is present for all λ 	= 0. We then study the noise
correlation peaks in systems with incommensurate filling
ρ = σ . In Fig. 4, both �00 and �∗

σ are plotted as a function
of L for various values of λ. The absence of scaling is
apparent in both noise correlation peaks for all regimes.
For those fillings, nk and the noise correlations do not dis-
tinguish the localization-delocalization transition that occurs
at λc.

FIG. 4. (Color online) (a) Central noise correlation peak �00 and (b) the sublattice peak �∗
σ as a function of L in systems at incommensurate

filling ρ = σ .
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FIG. 5. (Color online) (a) Central peak �00 and (b) sublattice peak �∗
σ as a function of λ and their corresponding derivatives in a system

with N = 72,L = 144. The onset of the superfluid to Bose-glass transition is marked with a peak in the first-order derivative of both noise
correlations. Note that in both panels the left scale applies to the intensity of the peak while the right one applies to its derivative.

III. QUANTUM PHASE TRANSITION

In order to gain a better understanding of the disorder-
induced phase transition and its signatures in our strongly
interacting system, we study the behavior of the noise
correlations in the vicinity of the critical point. Our study
involves monitoring the peak intensities and their derivatives
as the strength of the quasiperiodic order is tuned.

Figures 5(a) and 5(b) depict the results for the central peak
and the primary sublattice peak, respectively, as a function of λ

in a half-filled system. With the increase of disorder, the height
of the central peak (�00) decreases and attains an asymptotic
value �00 = ρ(ρ + 1) as λ → ∞ [17,30], while the height
of the sublattice peak increases with disorder and saturates
at a finite but small value as λ → ∞. In the neighborhood
of the the critical point, a kink is seen in both peaks as λ

is varied. In order to better understand the behavior in the
critical region, we compute d�00/dλ. Figure 5(a) shows that
the derivative of the height of the central peak exhibits a
maximum at the transition point. A similar feature is seen
in the derivative of the primary sublattice peak intensity
[Fig. 5(b)].

It is instructive to compare the behavior of the noise
correlation peaks at the localization transition in HCB sys-
tems with the one at the metal-insulator transition in the
corresponding free fermionic system. Analogous to the HCB
case, in an incommensurate lattice system, noninteracting
spinless fermions exhibit a localization transition at λc.
Fingerprints of the phase transition in the correlation functions
of the fermionic system have been systematically studied in
Ref. [19]. Our comparative study is aimed at singling out
distinctive features in both systems. Notice that the HCBs are
interacting and have bosonic statistics, while their fermionic
counterpart is noninteracting and, of course, has fermionic
statistics. Noise correlations are sensitive to both interactions
and the statistics of the particles involved.

Figure 6 shows the behavior of noise correlations in the
fermionic system vs λ. In this case, distinctive features of the
noise correlations are the Bragg dip at ka = 2π [depicted in
Fig. 6(a)] and the primary sublattice dip at ka = 2σπ [depicted
in Fig. 6(b)], as well as their derivatives with respect to λ. As in
the HCB case, the metal-insulator transition in the fermionic
system is also signaled by peaks in the first-order derivatives
of noise correlations at the critical point.

FIG. 6. (Color online) (a) Primary dip |� 2π
a ,0| and its derivative, and (b) the sublattice dip |�σ | and its derivative, are plotted as a function

of λ for noninteracting fermions; N = 72, L = 144. In the fermionic system the critical point is also signaled by sharp peaks in the first-order
derivatives. Note that again in both panels the left scale applies to the intensity of the dip while the right one applies to its derivative.
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FIG. 7. (Color online) (Main panel) Derivatives of �00,�
∗
σ , and

nk=0 as a function of the system size at λc in HCB systems. A
divergence in both d�00(λc)/dλ and nk=0(λc)/dλ is seen as the
system size increases, while d�∗

σ (λc)/dλ saturates to a constant value.
The inset shows |d� 2π

a ,0/dλ| and |d�σ /dλ| as a function of L, and
also at λc, in fermionic systems. No size dependence is seen in this
case. The mean occupation per lattice site is ρ = 0.5 for both cases.

A study of the scaling of the peaks and their derivatives
with increasing system size makes evident that there is an
important difference between their behavior for HCBs and
fermions. The results of such a scaling, for the derivatives at
the critical point, are presented in Fig. 7. For HCB systems,
we plot d�00(λc)/dλ and d�∗

σ (λc)/dλ as a function of L.
One can clearly see that d�00(λc)/dλ diverges with increasing
system size. This is expected as, on the left of the transition
point, �00 increases with system size while, on the right of the
transition, �00 saturates to a λ-dependent (size-independent)
value as the system size is increased. As also shown in the
figure, the behavior of dnk=0(λc)/dλ is qualitatively similar;
d�∗

σ (λc)/dλ, on the other hand, does not change with system
size, as follows from the lack of scaling of this sublattice peak
discussed with Fig. 3. For the fermions, shown in the inset
in Fig. 7, one can see that none of the derivatives scales with
system size.

Hence, in the thermodynamic limit, the derivatives of both
the HCB and fermion noise correlations peak heights exhibit
maxima at the critical point. However, it is only in the HCB
system that these maxima diverge. Hence, they provide very
sharp signatures to locate the phase transition in experiments
with ultracold gases in the bosonic case.

IV. ABSENCE OF PRIMARY SUBLATTICE PEAKS

In this section, we analyze the absence of scaling of the
primary sublattice peaks, in the superfluid phase, for a specific
window of filling factors.

As already discussed in the previous sections, there is an
unexpected lack of scaling with system size of the sublattice
peak �∗

σ when ρ = 0.5 in superfluid phase. In Fig. 8 we plot the
sublattice peaks of the momentum distribution and the noise
correlations as a function of filling factor ρ for λ = 0.5, i.e.,

FIG. 8. (Color online) The primary sublattice peaks as a function
of ρ in (a) momentum distributions and (b) noise correlations, for two
different system sizes, λ = 0.5. Within the range from ρ1 = 1 − σ to
ρ2 = σ (marked by blue dotted lines), the vanishing of peaks and the
absence of scaling are noticed in n∗

σ and �∗
σ , respectively.

within the superfluid phase. We show results for two system
sizes to illustrate the scaling behavior with system size. Similar
to �∗

σ , we define the primary sublattice peak in the momentum
distribution as n∗

σ ≡ nσ 2π
a

− 1
2 (nσ 2π

a
+δk + nσ 2π

a
−δk), with δk =

2π/La. It is apparent in Fig. 8(a) that the sublattice peaks
n∗

σ are absent in the window of filling factors between the
fractional Mott states at incommensurate fillings ρ = 1 − σ

and ρ = σ , respectively. Correspondingly, for �∗
σ [Fig. 8(b)],

a system size invariance is observed within the same filling
window. The absence of scaling in the noise correlations in
that window of fillings then follows the absence of sublattice
peaks in momentum distribution.

As mentioned in Sec. I B, for λ < λc, the one-particle
energy spectrum is split up by gaps at incommensurate values
of k and the two largest gaps at k = ±σπ/a are associated with
the fillings ρ = 1 − σ and ρ = σ , respectively. As a result, the
fillings within the window ρ = 1 − σ and ρ = σ correspond
to superfluid states with a partially filled central band which
is sandwiched by the two σ gaps. (There is actually a set of
gaps in the central band, simply ignored as they are small
compared to the σ gaps.) Interference effects in this window
of fillings then seem to prevent those sublattice peaks from
emerging in n(k) and from scaling with system size in the
noise correlations.

We should mention that a similar behavior can be seen
in commensurate superlattices, but only in the case where
the period is a multiple of 4. Interestingly, for those periods,
it was discussed in Ref. [33] that the two central bands in
the spectrum cross at k = 0. Results for the momentum and
noise correlation peaks for commensurate superlattices with
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FIG. 9. (Color online) n∗
σ as a function of filling factor in commensurate systems with period-4 multiples: (a) σ = 1/4 in a period-4

superlattice and (b) σ = 3/8 in a period-8 superlattice. Two different sizes are plotted in both cases, for λ = 0.5, which makes evident that the
sublattice peaks are absent for fillings between ρ = σ and ρ = 1 − σ .

period-4 and period-8 are presented in Fig. 9. There, we plot
n∗

σ as a function of ρ for σ = 1/4 and σ = 3/8, respectively.
The primary sublattice peaks in momentum distributions are
absent at fillings between 0.25 and 0.75 for σ = 1/4 [Fig. 9(a)]
and between 0.375 and 0.625 for σ = 3/8 [Fig. 9(b)]. Again,
we attribute the missing peaks to a destructive interference of
the single-particle wave functions, which may be related to the
central band overlaps.

V. CONCLUSIONS

Critical scaling exponents characterizing the behavior of
correlation functions are the hallmark of critical phases
and phase transitions. In this paper, we have characterized
the disorder-induced quantum phase transition between a
superfluid and a Bose-glass phase in two-color incommen-
surate superlattices by computing scaling exponents of the
momentum distribution and noise correlation peaks at k = 0.
At the quantum phase transition, those observables, which are
accessible in cold gases experiments, are found to scale with
system size as ∼N0.25 and ∼N0.5, respectively. Intriguingly,
the values of the exponents are one-half of their corresponding
values in the superfluid phase, where the system is known
to be described by the Luttinger liquid theory with Luttinger
parameter K = 1 [16]. We also show that, as expected, the
scaling of those observables with system size vanishes in the
localized phase.

We have studied the behavior of momentum and noise
correlation peaks, as well as their first derivatives, as the
superlattice strength is varied. We have shown that both
in HCB and noninteracting spinless fermion systems the
superfluid–Bose-glass transition is signaled by peaks in the
first derivatives of the noise correlation. However, only in
the HCB case do those derivative peaks diverge with system
size, providing a sharp experimental signature of the phase
transition.
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APPENDIX: EXACT COMPUTATIONAL APPROACH

In order to solve the HCB problem, we map the Hamiltonian
described in Eq. (1) to the exactly solvable noninteracting
fermion Hamiltonian,

ĤF = −t
∑

i

(f̂ †
i f̂i+1 + H.c.) +

∑
i

Vi n̂
f

i , (A1)

by means of a two-step process. The first step is to map
HCBs to spin-1/2 systems through the Holstein-Primakoff
transformation (HPT) [38],

σ̂+
i = b̂

†
i

√
1 − b̂

†
i b̂i , σ̂−

i =
√

1 − b̂
†
i b̂i b̂i , (A2)

where σ̂±
i are the spin raising and lowering operators for

spin-1/2 systems. The HPT leads to a replacement of b̂
†
i (b̂i)

by σ̂+
i (σ̂−

i ) if and only if the HCB creation and annihilation
operators are normal ordered before the mapping. This is a
subtle point that needs to be considered for a correct calculation
of the noise correlations if one wants the HCB Hamiltonian to
be the limit U → ∞ of the Bose-Hubbard model.

Subsequently, the spin-1/2 Hamiltonian is mapped to
the fermionic Hamiltonian by means of the Jordan-Wigner
transformation (JWT) [39]

σ̂+
i = f̂

†
i

i−1∏
β=1

e−iπf̂
†
β f̂β , σ̂−

i =
i−1∏
β=1

eiπf̂
†
β f̂β f̂i , (A3)

in which f̂
†
i (f̂i) are the creation (annihilation) operators

for spinless fermions. In the noninteracting fermionic system
the ground-state wave function can be expressed as a Slater
determinant,

|
F 〉 =
N∏

κ=1

L∑
�=1

P�κ f̂
†
� |0〉, (A4)

with the matrix (P)L,N given by the lowest N single-particle
eigenfunctions of the Hamiltonian in Eq. (A1). From the
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fermionic Slater determinants one can then calculate the two
spin-1/2 Green’s functions, Gij and Gijkl :

Gij = 〈σ̂−
i σ̂+

j 〉 = 〈
F |
i−1∏
β=1

eiπf̂
†
β f̂β f̂i f̂

†
j

j−1∏
γ=1

e−iπf̂
†
γ f̂γ |
F 〉

= det[(Pi)†Pj ], (A5)

Gijkl = 〈σ̂−
i σ̂−

j σ̂+
k σ̂+

l 〉 = 〈
F |
i−1∏
α=1

eiπf̂
†
α f̂α f̂i

j−1∏
β=1

eiπf̂
†
β f̂β f̂j

× f̂
†
k

k−1∏
γ=1

e−iπf̂
†
γ f̂γ f̂

†
l

l−1∏
δ=1

e−iπf̂
†
δ f̂δ |
F 〉,

= det[(Pij )†Pkl], (A6)

which are required to compute nk and �kk′ in Eq. (3) [30]. In
the expressions above,

P α
�κ =

⎧⎪⎨
⎪⎩

−P�κ for � < α, κ = 1, . . . ,N

P�κ for � � α, κ = 1, . . . ,N

δα� for κ = N + 1

(A7)

and

P αβ
�κ =

⎧⎪⎨
⎪⎩

−P β
�κ for � < α, κ = 1, . . . ,N + 1

P β
�κ for � � α, κ = 1, . . . ,N + 1

δα� for κ = N + 2

(A8)

with α(β) = i,j,k,l. The most time-consuming part of our
calculations is determining all the nonzero elements of Gijkl ,
each of which involves the multiplication of an (N + 2) × L

matrix and an L × (N + 2) matrix, which scales as (N + 2)2L,
and then computing the determinant of the resulting (N + 2) ×
(N + 2) matrix, which scales as (N + 2)3.
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