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Modulational instability of F = 2 spinor condensates
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We first analytically examine the occurrence of modulational instability in all phases of F = 2 spinor
homogeneous condensate from the possible stationary solutions. Then we numerically show the similar results by
extending our analysis to trapped condensates (inhomogeneous). From both analyses we conclude that modulation
instability depends on the relative phase between the components and initial population for the polar phase. We
also observe spin-mixing dynamics during evolution of the spinor condensate.
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I. INTRODUCTION

The experimental realization of macroscopic accumula-
tion of bosons in quantum mechanical ground state at low
temperature, so-called Bose-Einstein condensate (BEC), in
dilute atomic gases [1–3] evoked some novel phenomena
in the fields of atom optics and condensed-matter physics.
The nonlinearity arising from the interatomic interactions
and the trapping potential play crucial roles in the behavior
of a condensate whose time evolution is described by a
Gross-Pitaevskii (GP) equation; meanwhile, the use of an
optical trap for the confinement of BEC instead of magnetic
trap leads to dynamical change in the direction of the spin
due to the interparticle interaction. These BECs with internal
spin degrees of freedom (spinor condensates) show complex
quantum structures [4].

Spinor condensates exhibit rich quantum dynamics [5–10]
due to the vector properties of the condensate order parameter
and the nonlinear spin-spin interactions. After its basic the-
oretical framework [11,12] and experimental demonstration
[13], its rich physics has already been reported. One of
interesting properties is the modulational instability (MI) of
spinor condensates [10,14–17], which gives some analogy
between coherent matter waves and light waves in nonlinear
optics. Since MI of the F = 1 spinor case has predicted
some property of coherent matter wave it was clear that
studying instability of F = 2 will give extra properties due
to the extra interaction parameter appearing in the F = 2
case (arising from increase in the spin value). MI phenomena
arising from the nonlinear interatomic interactions give a
relevant mechanism to learn some dynamical processes in BEC
systems [14,18,19].

Because of the extra parameter in F = 2 compared to the
F = 1 case, there exist four phases, namely, ferromagnetic,
uniaxial nematic (UN), biaxial nematic (BN), and cyclic
[33]. UN and BN phases are often referred to as polar
or antiferromagnetic phase. Condensate may be in one of
these phases depending on the scattering lengths and the
corresponding ground-state structure [20]. The dynamical
properties of these phases are very different in nature. Since
only the ferromagnetic phase is showing MI for the F = 1 case
it was a quest to clarify whether all phases of F = 2 spinor
condensate show modulation instability of one or two. From
the reported results of the dynamical instability of the F = 2
spinor condensate [16,21], it is clear that detailed analysis will
give some more interesting new properties. Also, a detailed

study of the dynamics of components in all phases during MI
is required.

In this paper, we show the modulation instability in the
F = 2 case arising from the coupling between spin degrees of
freedom by following the same analytical method used for the
F = 1 case by Robins et al. [14]. It shows that ferromagnetic
and cyclic phases show the modulation instability but the initial
population and phase of the components decide the modulation
instability of the polar case. This result is almost same as in
Refs. [10,22]; that is, for two-dimensional BEC (TEBC) the
sign of the interaction alone cannot determine the stability of
system and the evolution of the spinor condensate is sensitive to
its initial phase and population distributions, respectively. The
peculiarity of polar state, its dependence on relative phases,
shows that MI in this state is similar to the chemical potential
in cyclic state as in Ref. [16]. It also gives some details about
spin-mixing dynamics in the F = 2 case during the evolution
from initially polarized stable stationary state.

The paper is organized as follows. In Sec. II, a model
for the F = 2 spinor BEC is introduced. The MI analysis
is performed in Sec. II A. In Sec. III, we present the
results obtained from numerical simulation of the coupled
dimensionless multicomponent GP equations. We conclude
with all our observations and results in Sec. IV.

II. MODEL

For the F = 2 spinor condensate there are five spin degrees
of freedom represented by magnetic quantum number, m =
−2,−1,0,1,2 due to the vectorial nature. As a result the order
parameter (wave function of the condensate) characterizing
the F = 2 spinor condensate having five components are
� = (φ2,φ1,φ0,φ−1,φ−2). The multicomponent GP equations
describing the evolution of the wave function of the condensate
can be obtained from the derivative of the energy functional,
ih̄ ∂�

∂t
= δE[�]

δ�∗ . Here the energy functional, E[�] is of the
form [23]

E[�] =
∫

dr
{
�∗

[
− h̄2

2m
∇2 + VT (r)

]
�

+ c0

2
n2 + c2

2
f2 + c4

2
|�|2

}
. (1)

This is the Hamiltonian for the spinor BEC in the optical
trap in the magnetic field free case. The coupling constants
ci’s (i = 0,2,4) are real and govern the nonlinear interaction
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between different spin components of the condensate. Here
c0 = 4g2+3g4

7 , c2 = g4−g2

7 , and c4 = 7g0−10g2+3g4

7 . Here the
suffixes 0, 2, and 4 denote the total spin (for F = 2, total spin
0, 2, or 4 are possible for bosons) and gi = 4πh̄2

m
ai (i = 0,2,4),

where ai’s are scattering lengths of two colliding bosons. VT (r)
is the trapping potential. The number density,

n =
2∑

α=−2

φ∗
αφα, (2a)

and the spin densities f = (f x,f y,f z). Here fi are spin
matrices for F = 2,

f i =
2∑

α,β=−2

φ∗
αfi

αβφβ. (2b)

The spin singlet-pair amplitude is given by

� = 1√
5

(
2φ2φ−2 − 2φ1φ−1 + φ2

0

)
; (2c)

here � = ∑
j,j

′ 〈00|2j ; 2j
′ 〉φjφj

′ annihilates a pair of bosons

at a position and 〈00|2j ; 2j
′ 〉 is Clebsch-Gordan coefficient.

From Eq. (1) the coupled field equations are obtained in the
form

ih̄
∂φ±2

∂t
= Lφ±2 + c2(±2f zφ±2 + f ∓φ±1) + c4√

5
�φ∗

∓2,

(3a)

ih̄
∂φ0

∂t
= Lφ0 + c2

√
6

2
(f +φ1 + f −φ−1) + c4√

5
�φ∗

0 , (3b)

ih̄
∂φ±1

∂t
= Lφ±1 + c2

(
f ±φ±2 ± f zφ±1 +

√
6

2
f ∓φ0

)

− c4√
5
�φ∗

∓1, (3c)

where L = −h̄2/2m∇2 + VT (r) + c0(|φ2|2 + |φ1|2 + |φ0|2 +
|φ−1|2 + |φ−2|2).

In the dimensionless form our coupled field equations
become

i
∂φ2

∂t
= Lφ2 + τ2(2f zφ2 + f −φ1) + τ4√

5
�φ∗

−2, (4a)

i
∂φ1

∂t
= Lφ1 + τ2

(
f +φ2 + f zφ1 +

√
6

2
f −φ0

)

− τ4√
5
�φ∗

−1, (4b)

i
∂φ0

∂t
= Lφ0 + τ2

√
6

2
(f +φ1 + f −φ−1) + τ4√

5
�φ∗

0 , (4c)

i
∂φ−1

∂t
= Lφ−1 + τ2

(
f −φ−2 − f zφ−1 +

√
6

2
f +φ0

)

− τ4√
5
�φ∗

1 , (4d)

i
∂φ−2

∂t
= Lφ−2 + τ2(−2f zφ−2 + f +φ−1) + τ4√

5
�φ∗

2 , (4e)

where L = −∇2 + VT (r) + τ0(|φ2|2 + |φ1|2 + |φ0|2 +
|φ−1|2 + |φ−2|2). Here wave functions, time, and spatial
coordinates are measured in the units of 1

(h̄/2mwz)3/4 , w−1
z ,

and (h̄/2mwz)1/2, respectively. Also here τ0 = 8π(4a2+3a4)
7b0

,

τ2 = 8π(a4−a2)
7b0

, τ4 = 8π(7a0−10a2+3a4)
7b0

, and b0 =
√

h̄
2mwz

.

A. Modulation instability analysis

The non-spin-mixing or the spin-polarized state of the
system represented by stable stationary solutions have a
constant population of each component and the wave functions
for all spin components maintain the same spatial profile
during the time evolution resulting from single-mode approxi-
mation (SMA). However, the above coupled equations give the
spin-mixing dynamics [5,10,21] during the time evolution of
the condensate (also shown in figures). For finding the stable
stationary solution of the system we used the following ansatz:

φj (r,t) = √
nj (r)e−iμj t+iθj , (5)

where j = 2,1,0,−1,−2 and θj ’s are relative phases of each
component with respect to φ0, where (θ0 = 0) and μj are the
respective chemical potentials. Also, n2 + n1 + n0 + n−1 +
n−2 = n is the total density of spinor condensate.

By the substitution of the ansatz (5) into the dimensionless
coupled field equations it is clear that the system will give
stationary solutions only if μj = μ and for particular values of
θj , hereafter called phase-locked. The same effective potential
created by both the optical trap and the nonlinear interaction
have spinor eigenfunctions

√
nj (r) as eigenmodes with same

eigenvalue, μ. Since eigenfunctions are proportional to each
other, we represent nj as nj (r) = rjn(r). Here rj represents
the population of each spinor component in time-independent
state, with r2 + r1 + r0 + r−1 + r−2 = 1. So five spinor com-
ponents obey the same time-independent equation for the
particular values of rj and θj . That is,

[−∇2 − μ + VT (r)]
√

n(r) + κn(r)
√

n(r). (6)

Since only particular values of θj ’s are giving the stationary
solutions, we look for such solutions. There exist two different
phase-locked steady-state solutions for dimensionless coupled
field equations depending on relative phases, populations in
each spin component, and different values of the κ . The cases
are as follows.
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FIG. 1. (Color online) Time evolution of the central density, n

at z = 0 for the spinor components φ−2(z), φ−1(z), φ1(z), φ2(z)
corresponding to the case 1. Parameters are τ0 = 0.0889, τ2 =
−0.000 156, τ4 = 0.000 623, and chemical potential μ ≈ 225. The
upper straight line showing the total density. In the figure 2, 1, −1,
−2 stand for φ2(z), φ1(z), φ−1(z), φ−2(z) components, respectively.
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FIG. 2. (Color online) Time evolution of the 1D φ−1(z) compo-
nent for the case 1, showing the spatial development of the MI. The
components φ1(z), φ2(z), φ−2(z) behave similarly. Parameters are as
in Fig. 1.

Case 1: eiθ2 = eiθ1 = eiθ−1 = eiθ−2 = 1, κ = τ0 + τ2, and
populations are r2 = r1 = r−1 = r−2 = 1

4 and r0 = 0.
Case 2: eiθ2 = eiθ−2 = 1, eiθ1 = eiθ−1 = i, κ = τ0 + τ4

5 , and
populations are r2 = r1 = r0 = r−1 = r−2 = 1

5 .
These two solutions represent the general stationary solu-

tions of Eq. (4), which give spin-polarized states. In the spin-
polarized states each component has a constant population.
When we compared these stationary solutions to the ground-
state phases of F = 2 spinor condensate [16] for the magnetic
field free case, it is observed that our solutions are not a ground
state for any phase. So our stationary solutions represent
actually the equilibrium stationary states. With the stationary
solutions, we are doing the instability analysis of spin polarized
states. The above solutions resulting from the transformation
of five-component equations to a single stationary equation.
Hence, there are two cases. Here the time-independent mean
field spin is f = |f x | with f y = f z = 0. One can apply the
condition of phases (ferromagnetic, polar, or cyclic) to the
stationary solutions. In each phase, the coupling constants
are different [34] for magnetic field free case and hence
the constant κ varying with change in coupling constants.
The ground-state energies of three phases are εF = 4τ2,
εAF = τ4/5, and εC = 0. As a result of different κ , we are
getting six stationary solutions. However, it is possible to
show that results arising from the manipulation of these six
solutions are same as that of the results obtained by applying

FIG. 3. (Color online) Spatial intensity profiles of the original
spinor components, φj (j = 2,1,−1,−2), showing spin domain frag-
mentation (forming localized condensate domains). Parameters are
as in Fig. 1.
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FIG. 4. (Color online) Time evolution of the central density
n(0) for the spinor components φ−2(z), φ−1(z), φ1(z), φ2(z), φ0(z)
corresponding to the case 2. Parameters are as in Fig. 1. The upper
straight line showing the total density.

the conditions of three phases (conditions are given below) to
the eigenvalues resulting from the general stationary solutions
or matrix A (described below). It means that the conditions
of phases given before or after the manipulation of the matrix
A are equal. So for our further analysis we follow the latter
method.

For the MI analysis, the exponential growth of the stationary
homogenous condensate [24–31], we are adding a small
perturbation to the homogenous solutions φj of the form

φj (r,t) = [
√

nj (r) + δφj ]eiθj −iμt . (7)

It is clear that if any of the condensate phases show MI then we
can observe the exponential growth of the stationary homoge-
nous condensate in that particular phase and constant density
solutions corresponding to the stationary phase relations in the
cases 1 and 2 have the form nh

j = μ

κ
. Then ansatz (7) becomes

φj = (√
nh

j + δφj

)
e−iμt+iθj . (8)

We substitute (8) into the dimensionless coupled field
equations to get the equations for δφj ; meanwhile, we
linearize around the homogenous solutions and omit the terms
containing VT . After taking the perturbation of the form
δφj = (uj + ivj )cos(kr)ewt [where k = (kx,ky,kz)] and using
cases 1 and 2 we go for MI analysis using the equations for
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FIG. 5. (Color online) Time evolution of the φ2(z) component for
case 2, showing the spatial development of the MI. The components
φ1(z), φ−1(z), φ−2(z), and φ0(z) behave similarly. Parameters are as
in Fig. 1.
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FIG. 6. (Color online) Spatial intensity profiles of the original
spinor components, φj (j = 2,1,0,−1,−2), showing spin domain
fragmentation. Parameters are as in Fig. 1 (for case 2).

δφj . From our form of perturbation, it is clear that for the real
values of the w spinor condensate will show the MI.

On the substitution of δφj = (uj + ivj )cos(kr)ewt in the
equations for δφj these equations will become Â�T = 0,
where � = (uj ,vj ), with j = 2,1,0,−1,−2. Then we solve
det(Â) = 0 with respect to w (perturbation frequency). Be-
cause of the complexity of solving this big matrix we take that
two of the components are equal and all others equal to zero
for the simplification. Then the eigenvalues are as follows.

For case 1,

w2
1 = 1

25(τ0 + τ2)2

{ − 25(2μk2 + k4)τ 2
0 − 25(μ − k2)2τ 2

2

+ 20μ(μ − k2)τ2τ4 − 3μ2τ 2
4 + 10τ0

× [5(μ2 − k4)τ2 − μ(μ + 2k2)τ4]
}
, (9a)

w2
2 = 1

25(τ0 + τ2)2

[ − 25k4τ 2
0 + 50k2(μ − k2)τ0τ2

− 25(μ − k2)2τ 2
2 + μ2τ 2

4

]
, (9b)

w2
3 = −1

25(τ0 + τ2)2
[5k4τ0 + 5(7μ + k2)τ2 − μτ4)

× (5k2τ0 − 5(μ − k2)τ2 + μτ4], (9c)

w2
4 = −1

25(τ0 + τ2)2
[5k4τ0 + 5(μ + k2)τ2 − μτ4]

× [5k2τ0 − 5(μ − k2)τ2 + μτ4]. (9d)
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FIG. 7. (Color online) Time evolution of the central density
n(0) for the spinor components φ−2(z), φ−1(z), φ1(z), φ2(z), φ0(z)
corresponding to case 1. Parameters are τ0 = 0.1085, τ2 = 0.001 792,
τ4 = −0.000 187, and chemical potential μ ≈ 275.

FIG. 8. (Color online) Time evolution of the φ2(z) and φ0(z)
component for case 1, showing the spatial development of the MI.
The components φ1(z), φ−1(z), and φ−2(z) behave similarly to φ2(z).
Parameters are as in Fig. 7.

For case 2,

w2
1 = −5(2μk2 + k4), (10a)

w2
2 = −1

(5τ0 + τ4)
{5[5k4τ0 + k2(−2μ + k2)τ4]}, (10b)

w2
3 = −1

(5τ0 + τ4)
{5k2[5k2τ0 + 40μτ2 + (−2μ + k2)τ4]},

(10c)

w2
4 = −1

(5τ0 + τ4)
{5k2[5k2τ0 + 10μτ2 + (−2μ + k2)τ4]}.

(10d)

From recent studies [34] it is clear that for the ferromagnetic
phase τ2 < 0 and τ4 > 0, for the antiferromagnetic (polar)
phase τ2 > 0 and τ4 < 0, and for the cyclic phase τ2 > 0 and
τ4 > 0. When applying these conditions we will get some real
eigenvalues wi(i = 1,2,3,4) in all cases except case 2 of polar
state for some real positive values of k because of small values
of k and larger values of the chemical potential.

For example, we take w3 from case 1. So it
is clear that [5k4τ0 + 5(7μ + k2)τ2 − μτ4][5k2τ0 − 5(μ −
k2)τ2 + μτ4] should be negative to show modulation insta-
bility.

For the ferromagnetic case τ2 < 0 and τ4 > 0. So we will
get a negative value for [5k4τ0 + 5(7μ + k2)τ2 − μτ4] and a
positive one for [5k2τ0 − 5(μ − k2)τ2 + μτ4]. As a result, w3

becomes positive.

FIG. 9. (Color online) Spatial intensity profiles of the original
spinor components, φj (j = 2,1,0,−1,−2), showing spin domain
fragmentation. Parameters are as in Fig. 7 (for case 1).
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FIG. 10. (Color online) Time evolution of the central density n(0)
for the spinor components φ−2(z), φ−1(z), φ1(z), φ2(z), and φ0(z)
corresponding to case 1. Parameters are τ0 = −0.6764, τ2 = 0.0164,
τ4 = 0.0382, and chemical potential μ ≈ 1650.

For the polar phase we will get positive values for [5k4τ0 +
5(7μ + k2)τ2 − μτ4] and negative ones for [5k2τ0 − 5(μ −
k2)τ2 + μτ4] because τ2 > 0 and τ4 < 0. So effectively w3 is
positive.

For the cyclic case it is clear that [5(7μ + k2)τ2 − μτ4]
is positive and [−5(μ − k2)τ2 + μτ4] is negative (τ2 > 0 and
τ4 > 0). So we get positive values for w3.

Also, it is clear that in case 2 all eigenvalues are imaginary
when τ2 > 0 and τ4 < 0 (polar phase). So from case 1 and
case 2 it is clear that at least one of the eigenvalues is real for
the polar, ferro, and cyclic cases except for case 2 of the polar
phase. So except for case 2 of the polar phase all other cases
show modulation instability.

Since we have made an approximation like some popu-
lations are zero, we have to prove it numerically. Also, it is
possible to prove the same result without these approximations
analytically.

III. NUMERICAL ANALYSIS

From recent studies it was clear that, if the characteristic
spatial extent of the condensate, l (in dimensionless units),
is larger than the largest length scale of the spatial patterns
due to the MI, L = k−1

min, the instability of the homogeneous
condensate is bound to trigger the formation of the complex
patterns in the trapped condensate [14]. Whenever this con-
dition is satisfied by the spinor condensate we can go for MI

FIG. 11. (Color online) Time evolution of the φ1(z) and φ0(z)
components for case 1, respectively, showing the spatial development
of the MI. The components, φ−1(z), φ2(z), and φ−2(z) behave almost
similarly to φ1(z). Parameters are as in Fig. 10.

FIG. 12. (Color online) Spatial intensity profiles of the original
spinor components, φj (j = 2,1,0,−1,−2), showing spin domain
fragmentation. Parameters are as in Fig. 10.

analysis of the trapped condensate. The value of kmin can be
calculated from one of the eigenvalues by minimizing it.

For MI analysis we first assume that our trapping potential
is a cigar-shaped harmonic potential of the form VT (x,y,z) =
m
2 (w2

xx
2 + w2

yy
2 + w2

z z
2) [32]. From the dimensionless cou-

pled equation it is clear that this potential will have the form
VT (x,y,z) = 1

4 [(wx

wz
)2x2 + (wy

wz
)2y2 + z2], where wx , wy , and

wz are the trap frequencies in the x direction, y direction, and
z direction, respectively. If we are approximating confinement
in the x and y directions (transverse) to be larger than in
the z direction and the transverse wave function to be the
ground-state wave function of harmonic oscillator then the
wave function associated with the spin state j can be written
as φj (r,t) = φh(x,y)φj (z,t), where z is the direction of weak
confinement and φh(x,y) is the ground-state wave function of
the two-dimensional harmonic oscillator. So in our coupled
equation, L becomes L = − ∂2

∂z2 + 1
4z2 + τ0(|φ2|2 + |φ1|2 +

|φ0|2 + |φ−1|2 + |φ−2|2).
Using case 1 and case 2 of the stationary phase-locked

solutions we solved the 1D equivalent of coupled partial dif-
ferential equations numerically by taking the initial condition
φj (z) = √

rjn(z)eiθj as for the F = 1 case, where n(z) is the
1D spatial profile determined from Eq. (6). We calculate the
numerical values of the τ0, τ2, τ4 from the experimentally
obtained scattering lengths [20].

The results of numerical calculation for ferromagnetic
case 1 are shown in Figs. 1, 2, and 3 and for ferromagnetic
case 2 are shown in Figs. 4, 5, and 6.

FIG. 13. (Color online) Time evolution of the central density n(0)
for the spinor components φ−2(z), φ−1(z), φ1(z), φ2(z), and φ0(z)
corresponding to case 2. Parameters are τ0 = −0.6764, τ2 = 0.0164,
τ4 = 0.0382, and chemical potential μ ≈ 1650.
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FIG. 14. (Color online) Time evolution of the φ0(z) component
for case 2, showing the spatial development of the MI. Other
components behave similarly. Parameters are as in Fig. 13.

For the ferromagnetic case 1, results show that instability
first destroys the non-spin-mixing stationary state leading to
population transfer between components (Fig. 1). Although we
have started with four components that are equal and the zeroth
component is zero, after some time we observed that the φ1,
φ−1, and φ−2 components contribute the major portion of the
condensate. There is no evolution of the φ0 component. This
shows the spin mixing in the ferromagnetic phase. Figure 2
shows the periodic modulation of the condensates due to the
modulation instability of the trapped condensates and Fig. 3
shows the spatial fragmentation (spin domain fragmentation).
Also it is clear that the total density is also fluctuating by
conserving the particle numbers.

When compared with case 1, in case 2 we observed the
evolution of the φ0 component. After some time even all
components presented initially, the φ0 component contributing
the major portion of the spinor condensate (Fig. 4) as a
result of spin mixing. Figures 5 and 6 show the periodic
spatial modulation and fragmentation of the components,
respectively.

In case 1 of the polar state dynamical instability causes
the evolution of the initially absent component at a later time.
That is, even the φ0 component was taken as zero initially;
we observe the evolution of this component as time passes.
Also, evolution of φ2 and φ−2 (same for φ1 and φ−1) are same
(Fig. 7) or no spatial separation between the m = ±2 state. It
is the necessary condition for BEC to be antiferromagnetic.
Also, this figure shows the stability of mF = ±2 components.
This result is almost similar to the result in [21]. Figure 8
shows that periodic modulations of all components are not
similar and Fig. 9 shows spatial fragmentation is not denser
when compared with ferromagnetic cases.

Spin mixing and periodic modulation happen earlier for
cyclic cases. As in the polar phase here also we can see the
evolution of the φ0 component due to the instability (initially

FIG. 15. (Color online) Spatial intensity profiles of the original
spinor components, φj (j = 2,1,0,−1,−2), showing spin domain
fragmentation. Parameters are as in Fig. 13.

it is absent). In case 1, the density of the φ1 and φ−1

components are almost constant during the evolution of
the spinor condensate (Fig. 10). Figures 11 and 12 show
periodic modulation, not similar for all components, and
spatial fragmentation, respectively.

For case 2, with increasing time density of φ1 and φ−1

components show fluctuations. However, the fluctuation in
density during the evolution of these components is almost
constant in case 1. Here the periodic modulations of all the
components are almost similar (see Figs. 13, 14, and 15).

From the figures of the evolution of the central density
for the spinor components it is clear that dynamics of F = 2
spinor condensate also obey the total spin conservation.

IV. CONCLUSION

We have shown the possibility of modulation instability
in all phases of F = 2 spinor condensate analytically and
numerically from the multicomponent GP equations that
describe evolution of the order parameters. This result is
different from MI of the F = 1 spinor case, where the polar
phase is free from the modulation instability phenomena. In
the polar phase both analyses have shown that linear instability
depends upon the cases resulting from steady-state solutions.
This gives the information that modulation instability depends
on the relative phase between the components and initial
population for the polar phase. Observations of the spin-
mixing dynamics by numerical analysis show the resemblance
with earlier studies and results like dissimilarity in periodic
modulations of components and spin domain fragmentation
give the scope of future works.
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