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Few-boson tunneling dynamics of strongly correlated binary mixtures in a double well
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We explore the tunneling dynamics of strongly correlated bosonic mixtures in a one-dimensional double
well. The roles of the inter- and intraspecies interactions and their interplay are investigated using the
numerically exact multiconfiguration time-dependent Hartree (MCTDH) method. The dynamics is studied for
three initial configurations: complete and partial population imbalance and a species-separated state. Increasing
the interspecies interaction leads to a strong increase of the tunneling time period analogous to the quantum
self-trapping for condensates. The intraspecies repulsion can suppress or enhance the tunneling period depending
on the strength of the interspecies correlations as well as the initial configuration. Completely correlated tunneling
between the two species and within the same species as well as mechanisms of species separation and counterflow
are revealed. These effects are explained by studying the few-body energy spectra as well as the properties of the
contributing stationary states.
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I. INTRODUCTION

Ultracold atoms represents a distinct phase of matter for
the exploration of fundamental quantum processes [1–3]. The
ability to precisely control ultracold systems has triggered
investigations in different fields such as quantum simulation
and information processing [4], quantum phase transitions
[5,6], and driven quantum systems [7]. Experimentally it is
possible to control not only the external potentials but also
the effective interactions between the atoms using Feshbach
resonances [8]. Moreover, dimensionality can be tuned, and
in particular quasi-one-dimensional systems can be achieved
by confining two transverse degrees of freedom. In such
waveguide-like systems, confinement-induced resonances [9]
provide an additional tool to tune the interactions, thus making
the study of strongly correlated systems experimentally fea-
sible. An interesting observation for a single-species bosonic
system in one dimension is that infinitely strongly repulsively
interacting bosons possess the same local properties as a
system of noninteracting fermions. This effect, known as
fermionization, has been experimentally observed [10,11] and
can be explained via Bose-Fermi mapping [12].

Inspired by the results of single bosonic species, recently
there has been a lot of experimental [13–17] and theoretical
[18–28] interest in the static properties of multispecies bosonic
mixtures. In these systems, the interplay between the inter-
and intraspecies forces as well as different masses or potential
asymmetry give rise to various phenomena and effects not
accessible in the single-component case. For instance, the pro-
cess of composite fermionization occurs when the interspecies
coupling is set to infinity and the strong repulsion provides
different pathways for phase separation [19,20,24]. Moreover,
instabilities [18] as well as new phases such as paired and
counterflow superfluidity [28] have been observed.

Focusing on the quantum dynamics, the double well pro-
vides the simplest prototype for a finite lattice and Josephson
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junction and is especially a very elucidating case for studying
the fundamental characteristics of quantum tunneling. Theo-
retically, the tunneling dynamics of single species through the
crossover from weak to strong interaction regimes reveal inter-
esting effects such as Josephson oscillations, pair tunneling,
self-trapping, and fermionization [29–33], which have also
been observed experimentally [34,35].

More recently, these studies have been extended also to
systems of binary bosonic mixtures [36–43]. These works
demonstrate various effects such as macroscopic quantum self-
trapping and coherent quantum tunneling [36], observations of
collapse and revival of population dynamics [41,42], symmetry
breaking and restoring scenarios [39], as well as dipole-
oscillation-induced pairing and counterflow superfluidity [43].

However, most of the work has been done on the mean-
field level either by solving Gross-Pitaevskii equations or by
using the lowest band Bose-Hubbard model. Although these
studies do provide interesting insights into the mechanism of
tunneling, an investigation of the complete crossover from
the weak to strong interaction regime allows the examination
of new effects and mechanisms not present, for example,
in the mean-field description. For instance, referring to the
case of two species in a harmonic trap, it has been found
that if one species is localized due to its heavy mass, then
it can act as an effective material barrier through which
the lighter component tunnels [44,45]. The feedback of
this material barrier leads to different pairing mechanisms
for the light species. Moreover, few-body systems provide
a bottom-up approach toward the understanding of many-
body phenomena. Experiments exploring few-atom systems
in finite optical lattices [46] serve as promising setups for
designing transistor-like structures from the perspective of
atomtronics.

In this paper, we study the tunneling dynamics of a binary
mixture of bosonic species in a one-dimensional double
well from a few-body perspective. Using the numerically
exact multiconfiguration time-dependent Hartree (MCTDH)
method (see Appendix) [47,48], we investigate the crossover
from weak to strong interactions, focusing in particular on
microscopic quantum effects and mechanisms which are
prominent in few-body systems. We demonstrate how the
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interplay between the inter- and intraspecies interactions affect
the rate and behavior of the tunneling in a nontrivial way.
A strong increase of the tunneling period is observed as
the interspecies repulsion is increased. However, in certain
cases and especially for the strongly interacting regime,
increasing the intraspecies interactions leads to an increase
of the tunneling rates, in contrast to what is observed for
single-species systems. Preparing different initial states leads
consequently to diverse tunneling behavior. For complete
imbalance of the populations, that is, when the particles are
all prepared initially in the same well or when the species are
localized at different wells (species separation), the tunneling
is strongly correlated, meaning that the species tunnel either
in phase or out of phase. Only for very strong intraspecies
interactions are these correlations reduced. On the other
hand, for partial population imbalance (e.g., one species is
delocalized and the second one is localized), a mechanism
of species separation and counterflow appears. The various
effects are attributed to the features of the energy spectrum and
explained by examining the density profile of the contributing
stationary states.

The paper is organized as follows. In Sec. II, we introduce
our model and setup. Subsequently, we present and discuss
the results for the quantum dynamics of the mixture with three
bosons (two bosons of species A and one of species B). Three
initial-state scenarios are examined: complete population
imbalance in Sec. III, complete species separation in Sec. IV,
and partial imbalance in Sec. V. The computational method
MCTDH is described in Appendix.

II. MODEL AND SETUP

We consider a mixture of two species of bosons labeled
by A and B in a one-dimensional double-well potential. These
may correspond to two different kinds of atoms or could be two
hyperfine states of the same atomic species. The fact that there
are two different species induces distinguishability and thus
fundamentally alters the physics and in particular the quantum
dynamics compared to the case of a single species.

Our Hamiltonian reads (see [24] for details)

H =
∑

σ=A,B

Nσ∑
i=1

[
p2

σ,i

2Mσ

+ Uσ (xσ,i) +
∑
i<j

Vσ (xσ,i − xσ,j )

]

+
NA∑
i=1

NB∑
j=1

VAB(xA,i − xB,j ), (1)

where MA,B is the mass for species A and B, respectively.
We assume here that the different species obey the same

single-particle Hamiltonian, that is, they possess the same
mass and experience the same single-particle potential. The
double-well potential U (x) = 1

2Mωx2 + hδω(x) is modeled
as a harmonic potential with a central barrier shaped as

a Gaussian hδω(x) = he−x2/2s2

√
2πs

of width s = 0.5 and height
h = 8.0. Dimensionless harmonic-oscillator units, that is,
MA = MB = 1, ω = 1, are employed throughout. In the
ultracold scattering limit, one can approximate the interaction
(both intra-Vσ and interspecies VAB) with an effective contact

potential [9]:

Vσ (xσ,i − xσ,j ) = gσ δ(xσ,i − xσ,j ),

VAB(xA,i − xB,j ) = gABδ(xA,i − xB,j ).

Numerically, we sample the δ function as a very narrow
Gaussian (choosing, of course, a spatial grid dense enough
to sample this narrow peak).

The different initial configurations are achieved by adding
a tilt to the double well, which can be different for the two
species depending on the required state. Thus, an individual
well could be made energetically more favorable (tilted) for a
certain species. For instance, to prepare a complete imbalance,
the double wells of both species are tilted the same way, while
to prepare a species-separated scenario, UA is tilted opposite
to UB . To prepare the partial population imbalanced state, one
has to tune the tilt for both species judiciously depending on
the given interaction strength such that the required population
configuration is achieved. The ground state is then computed
by the relaxation method and results in the desired initial
state. For the study of the dynamics, the tilt is instantaneously
ramped down to obtain a symmetric double well at t = 0.

In order to investigate systematically and in detail the
tunneling processes for binary mixtures, we consider the
simplest nontrivial few-body system consisting of two bosons
of species A and one of species B. This system captures
the most important microscopic quantum dynamical processes
occurring for few-body bosonic mixtures. In this case, we have
two independent parameters gAB and gA (since there is only
a single boson B species). When the interspecies interaction
gAB is zero, the two components are completely decoupled,
meaning that the single B boson will undergo Rabi oscillations
between the wells. The A bosons will then follow a correlated
two-particle dynamics regulated by the intraspecies interaction
gA. (This case is not addressed here but has been discussed in
detail in the literature [32,33].) Another case which reduces to
that of a single species is gAB → gA, where the essentials of
the tunneling dynamics are those of three particles of a single
species. Our focus is exclusively on the cases where we expect
significant deviations from the single-species scenario.

III. COMPLETE POPULATION IMBALANCE

We begin our study by exploring the quantum dynamics for
an initial state where all the atoms are loaded into the left well.
As observables, we compute the time evolution of the one-
particle density of each species and the resulting population in
each well. For the right well, we have

nα(t) = Nα

∫
0

∞
ρα(x; t)dx, (2)

where ρα is the one-body density of the species α = A,B

and the total population of the right well is nR = nA + nB .
Due to symmetry and resonant mechanisms, we always have
a complete transfer of the population of both species between
the two wells, which happens in most cases according to a
periodic pattern with period T .

1. Repulsive interspecies interaction and binding mechanisms

The most important effect of increasing the interspecies
interaction gAB is a very strong increase of the tunneling
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TABLE I. Tunneling periods for different gAB values for the case
of complete imbalance.

Period gAB = 0.0 gAB = 0.2 gAB = 5.0 gAB = 25.0

gA = 0.0 2 × 102 1 × 103 9 × 103 1 × 106

gA = 0.2 6 × 102 6 × 103 1 × 104 1 × 106

period up to very large values. This can be seen in Table I,
where we show the tunneling period with increasing gAB . This
behavior is counterintuitive since with increasing repulsion
between the species initially localized in the same well one
would expect the tunneling to be enhanced. The delayed
tunneling is reminiscent of the one found for the case of
a single species [24,33] and is the few-body equivalent of
self-trapping. The primary reason for this decrease of the
tunneling frequency, especially for low interactions (within
the so-called Bose-Hubbard regime), can be attributed to the
energy spectrum presented in Fig. 1 considering the states
that contribute to the dynamics. The eigenstates are typically
characterized by the superpositions of different number states
such as |AA,B〉, where the vector indicates two A boson
occupying the left well and one B boson in the right well.
As gAB increases, different doublets are formed in this lowest
band. The energetically highest doublet shown in Fig. 1,
consisting primarily of the states |AAB,0〉 ± |0,AAB〉, is of
relevance to our case since these eigenstates possess maximum
overlap with our initial state |AAB,0〉.

With increasing gAB , the number states |AAB,0〉 and
|0,AAB〉 depart energetically from other number states due
to their big on-site interaction energy (having all bosons
in the same well) and the eigenstates |AAB,0〉 ± |0,AAB〉
become increasingly degenerate, thereby forming a doublet.
The tunneling then consists of oscillations between |AAB,0〉
and |0,AAB〉, while the decreasing energy splitting of the
doublet leads to an increase of the tunneling period. This is
the few-body analog of the self-trapping mechanism in single-
species condensates. The impressive fact is that this behavior
is even more pronounced for higher interactions (see, e.g.,
gAB = 5.0,25.0 in Table I), in contrast to the single-species
case (see [24,33]) where there is a reduction of the period
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FIG. 1. (Color online) Energy spectrum for gA = 0.0 and small
interaction strengths gAB .

due to higher band contributions and fermionization (with the
particles tunneling as uncorrelated fermionized bosons with
the corresponding Rabi frequency) in the strong interaction
limit. In our case, as long as the interaction takes place pre-
dominantly between the different species (here for simplicity
gA = 0), first there is no fermionization in the regular sense
and second the particles tunnel in a highly correlated manner,
meaning that the initial localized state |AAB,0〉 does not tunnel
to states like |B,AA〉 or |AB,A〉 since they possess much lower
interaction energy and are thus energetically of-resonant. The
fact that we encounter correlated particle tunneling (all bosons
together) is documented by the probability of finding all the
particles in the same well, which remains very close to unity
throughout the dynamics. As a first conclusion, we see that the
repulsive interspecies interaction causes “binding” between
the particles and reduces the tunneling rates.

2. Intraspecies interactions to control tunneling and correlations

In contrast to the one-way effect of the gAB in the
tunneling dynamics, the intraspecies repulsion gA plays a
more complicated role, controlling both the tunneling period
and the degree of correlations. Let us first explore a weak
interspecies interaction strength gAB = 0.2. In Fig. 2, we
illustrate the tunneling dynamics for different values of gA at
gAB = 0.2 for species A and B by showing the population
of the right well, nA,nB . Except for the periods T of the
tunneling envelope, one also observes rapid small-amplitude
oscillations. Concerning T , we obtain a monotonic increase
as gA = 0.0 → 0.3. However, this behavior changes as we go
beyond the weak interaction regime for gA and we observe
a decrease of the tunneling period for gA = 5. Another
important feature is that the two components A and B undergo
roughly the same evolution of the oscillation pattern [compare
Figs. 2(a) and 2(b)], which is suggestive of strong inter- and
intraspecies correlations in the sense that all bosons tunnel
together. This changes slightly only for very strong interaction
gA = 25, where the tunneling period reduces substantially
while the pattern becomes more erratic, consisting of two
primary oscillations. Unlike the previous cases, the dynamics
of the two components are not completely identical. This
indicates, in the line of argumentation provided above, a
reduction of the correlations between the two species and
attempted single-particle tunneling.

Within the weak interaction regime where the effective
lowest band number states description is valid, the tunneling
process of shuffling between the two completely localized
states |AAB,0〉 and |0,AAB〉 can be more specifically de-
scribed by the sequence |AAB,0〉 → |AB,A〉 → |B,AA〉 →
|0,AAB〉. The effective tunneling rate within this lowest band
description is approximately given by

f ∼ J 3/(E1 − E2)(E1 − E3), (3)

where J is the effective coupling term between the two sites,
E1 is the energy of the initial and final number state of the
tunneling, and E2,E3 are the energies of the intermediate
number states, which in this case are |AB,A〉 and |B,AA〉.
Considering the interaction part of the number states, the
completely localized states |AAB,0〉 and |0,AAB〉 have
energies ∼2gAB + gA while the states |AB,A〉 and |B,AA〉
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FIG. 2. (Color online) Population of the right well (a) nA of species A and (b) nB of species B at gAB = 0.2 for different gA values.

have energies ∼gAB and gA respectively. Therefore, for this
tunneling process, the tunneling rate according to Eq. (3) scales
as f ∼ J 3/2gAB(gAB + gA). From this relation, it follows that
the tunneling rate decreases for increasing gA in the weak
interaction regime, as we have seen above.

The opposite effect (i.e., decrease of the tunneling period,
as gA increases further beyond the weak coupling regime) is
attributed to the increasing splitting of the main contributing
doublet |AAB,0〉 ± |0,AAB〉 as gA increases. Additionally,
contributions of higher bands appear, especially for stronger
intraspecies interactions gA = 25.0, which breaks the com-
pletely correlated tunneling behavior, allowing for attempted
single-particle tunneling into energetically higher number
states like |AB,A〉.

Turning now to higher interspecies interaction gAB = 5.0,
we observe in Fig. 3 that the tunneling period decreases
strongly as gA increases. Since gAB is in this case beyond
the weak coupling regime, we focus on an analysis of the
density profiles of the contributing eigenstates shown in Fig. 4
to understand the effect of increasing gA. As gA increases,
the repulsion of the A bosons leads to a broadening of their
density profile. This broadening leads to a greater overlap of
the wave functions of A atoms localized in the left and the
right wells, and this in turn increases the effective tunneling
coupling and the corresponding tunneling rates. At gA = 0, the
localized densities ρA and ρB are spatially separated in each
well as a consequence of the repulsion between the species.
Note that the density of the B boson possesses its maximum

for larger values of |x|, thereby “sandwiching” the A boson
population. This arises from the fact that due to the unequal
number (NA > NB), it is energetically favorable to shift the
density of the B species to larger values of |x|. As gA is
increased, the two localized densities ρA,ρB in the two wells
gain an increasing overlap, which can be observed as a vertical
upward shift of the density profile at x = 0 that becomes
progressively stronger with increasing gA. This mechanism,
also present for other contributing states, leads to an overall
increase of the tunneling coupling and consequently to an
increase of the tunneling frequency for strong interactions.

The overall features with respect to the different time
scales and oscillatory tunneling behavior is similar for very
strong interspecies interactions gAB = 25.0 with the exception
of gA = 20.0 [Fig. 5(a)]. Only this case can be considered
as a tunneling mechanism close to fermionization. In this
regime, the bosons become isomorphic with noninteracting
fermions, and thus the tunneling dynamics approaches that
of independent noninteracting fermions. The latter tunneling
frequency is close to the Rabi frequency, which is significantly
faster than the previously discussed cases. To understand the
reduction of period from a number-state perspective, we note
that the nearly fermionized bosons occupy both the lowest band
and the first excited band. As a consequence, the previously
off-resonant intermediate number states (namely the states
|AAB,0〉, |AB,A〉, and |B,AA〉) become near resonant, since
the particles can tunnel between the excited band of the
two wells without significant change of energy. This results
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FIG. 3. (Color online) Population in the right well (a) nA of species A and (b) nB of species B at gAB = 5.0 for different gA values.
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FIG. 4. (Color online) One-particle density as obtained by taking into account the most important eigenstates contributing to the initial
state for (a) species A and (b) species B for gAB = 5.0.

in a reduction of the effective tunneling period while the
separation of the time scales involved in the dynamics is
strongly reduced. The correlations among the bosons with
respect to the tunneling process are also strongly reduced, as
can be seen in Fig. 5(b), where the pair and triple correlations
show a strong deviation from the value 1, that is, from the
strongly correlated case.

IV. SPECIES-SEPARATED INITIAL STATE

Let us now consider the initial state for which the two
species are localized in different wells, the A bosons in the
left well and the B boson in the right well. Similar to the
previous scenario, increasing gAB leads again to an increase of
the tunneling period, an effect which is intuitive here since
the components that are initially prepared in different wells
are forced to stay apart from each other by the repulsive
interspecies force. Moreover, an important point to note is that
the contributing states are always those of the lowest band, and
the number states mainly involved are |AA,B〉 and |B,AA〉
since the former one is the initial state. Therefore, as long as
gA remains comparatively small, the dynamics consists of a
slow oscillation between the states |AA,B〉 and |B,AA〉 and is
correlated in the sense that the A and B bosons always occupy
different wells in the course of the dynamics.

This is shown in Figs. 6(a) and 6(b) for gAB = 0.2, where
the populations of A and B bosons in the right well are
plotted. An important difference compared to the completely
imbalanced preparation is that the increase of gA leads here
to a decrease of the tunneling period T initially, reaching
a minimum at gA ≈ 0.2. Subsequent increase of gA leads
to an increase of the period again. Resorting to the energy
spectrum for an explanation [Fig. 6(c)], one should focus on
the lowest doublets, which have dominant contributions from
|AA,B〉 and |B,AA〉. We see a splitting of the lowest doublet
as they approach the avoided crossing, leading to an increase
of the tunneling rates. For larger gA, it is the energetically
excited doublets which represent the main contribution. The
two levels of the excited doublet come closer in energy as gA

increases further, leading to a smaller tunneling frequency.
In terms of tunneling processes, the dominant sequence
here is |AA,B〉 → |A,AB〉 → |AB,A〉 → |B,AA〉 and a
somewhat suppressed sequence is |AA,B〉 → |A,AB〉 →
|0,AAB〉 → |B,AA〉. Using Eq. (3), the tunneling rates scale
as f ∼ J 3/2gAB(gAB − gA) for the first sequence and f ∼
J 3/(gAB − gA)2 for the second sequence. We see that as
gA increases from zero, the tunneling frequency increases,
reaching a maximum for gAB = gA (it does not actually diverge
as the formula suggests since in this case other higher order
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FIG. 5. (Color online) (a) Population in the right well of the total nR and the individual species nA, nB for gAB = 25.0 gA = 20.0. (b) Pair
and triple probability. PAA, PAB , and PAAB correspond to the probabilities of finding AA, AB, and AAB bosons in the same well, respectively.
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FIG. 6. (Color online) Population of the right well (a) nA of species A and (b) nB of species B at gAB = 0.2 for different values of gA for a
species-separated initial state. (c) Energy spectrum for gAB = 0.2.

terms with respect to J become relevant), while beyond this
point the period increases again. The crucial difference with
the previous case of a completely imbalanced initial condition
is the sign in the denominator, which was positive previously
and is negative here. This implies that while in previous case
there was a monotonic increase in the tunneling period with
increasing gA, here we encounter an initial decrease as gA

approaches gAB . For very high values gA = 25.0, additional
states contribute to the dynamics, leading to the high-frequency
noise observed.

The avoided crossing present for the lowest lying states of
the energy spectrum occurs also for higher values of gAB near
gA ≈ gAB . This results in a similar dynamical behavior with
respect to the dependence on gA. The case of high interactions
gAB = 25.0, which is illustrated in Fig. 7, is different. Here
the tunneling period decreases substantially as gA takes larger
values. The very smooth behavior for gA = 0 [Fig. 7(a)],
where in principle only the lowest doublet |AA,B〉 ± |B,AA〉
contributes, changes to rapid small oscillations and erratic
patterns as the intraspecies interaction increases, indicating
that other higher lying states are involved in the dynam-
ics. The strong intraspecies repulsion here serves again
as the principal destructor of the correlated shuffling between
the initial state and its mirror number state. We can attribute
the increase of the tunneling rate to the increase of the
density overlaps due to intra- and interspecies strong repulsion,

along the line of the arguments provided in the discussion of
Fig. 4.

As a last remark on the dynamics of the species-separated
initial state, we comment on the degree of correlation of the
tunneling. Since the tunneling consists in principle of shuffling
between |AA,B〉 and |B,AA〉, the two species spent most of
the time in different wells. Therefore, the probability of finding
B and A species in the same well remains always close to
zero, while the A particles tunnel as a pair. As described in the
previous section, this behavior ceases to exist in general for
strong gA where single-particle tunneling for the A species via
excited states is induced. Note that for the cases of initial
states discussed thus far, the destruction of the correlated
tunneling behavior (three bosons staying together and the two
species remaining separated) results from a strong increase of
the intraspecies interaction, which drives the system beyond
the simple number-state dynamics (|AAB,0〉 ⇔ |0,AAB〉 or
|AA,B〉 ⇔ |B,AA〉). We show next that such strong deviations
from the initial-state configuration can also be achieved for the
situation of a partially population-imbalanced initial state but
for a different reason.

V. PARTIAL POPULATION-IMBALANCED INITIAL STATE

A novel tunneling mechanism is encountered if the initial
state is prepared such that the two wells share an equal
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FIG. 7. (Color online) Population of the right well nR , nA, and nB for gAB = 25.0, (a) gA = 0.0, (b) gA = 5.0, and (c) gA = 20.0 for the
species-separated initial state.

mean value of the population of A atoms while the B

atom is on the left well. This initial state we call partially
population-imbalanced state. The behavior observed above,
namely the increase of the tunneling period with increasing
gAB and its decrease with increasing gA, can still be observed
here. However, a major difference compared to the preceding
cases arises in terms of the evolution of the different states,
which is reflected in the corresponding time evolution of the
populations.

In Fig. 8, we show the populations nA, nB , and nR for
gAB = 0.2. Naively, one would expect that the the B boson
will undergo Rabi oscillations on the background of the A

bosons, which should remain with equal population in each
well. However, this does not happen for gAB > gA. The
envelope behavior of the A particle population [i.e., nA in
Fig. 8(a) for gA = 0] first increases then decreases, indicating
that the single A atom in the right well tunnels partially to
the left well, thus decreasing the population of the A particles
in the right well. The B boson, on the other hand, tunnels
completely to the right well. This process is retained thereafter
and is overall periodic. The envelope behavior is modulated by
high-frequency oscillations of significant amplitude involving
a rapid tunneling between the two wells. As gA is increased
from 0 to 0.2, the pattern becomes more irregular, consisting
mainly of a constant envelope, and shows rapid oscillations.
The amplitude of the oscillation of nA remains large. When
the intraspecies interaction strength gA = 0.3 becomes larger
than the interspecies coupling gAB = 0.2 [Fig. 8(c)], the
tunneling of A bosons is strongly suppressed. For even higher

interactions gA = 5.0 [Fig. 8(d)], the A bosons are completely
localized while the B boson undergoes Rabi oscillations
between the two wells, as one would expect intuitively since
the highly repulsive species A are initially in different wells.

The evolution of the dynamics shows further characteristics
for stronger interspecies interactions. Figure 9 presents the
results for gAB = 5.0. For gA = 0.0 [Fig. 9(a)], there are two
distinct oscillations for both nA and nB : a fast fluctuation with
significant amplitude for nB coupled to a large amplitude
motion of nA. Intuitively, one can understand this behavior
(seen also in the previous case) for large gAB as follows:
The tunneling of the B boson to the right well pushes the
A bosons to the left well due to the strong repulsion and
vise versa, leading to a counterflow type of dynamics. The
fast oscillation of considerable amplitude for nA involves
tunneling of a “complete” A boson and partial tunneling of a
B boson between the wells. The origin of these oscillations
can be understood via the number-state decomposition of
the initial state, as will be explained below. In contrast, for
gA = 4.0 [Fig. 9(b)], the tunneling of A bosons is considerably
suppressed and the B boson undergoes a rapid oscillation
between the wells. For even higher gA as before, we get an
almost complete suppression of the A boson tunneling while
the B boson executes the same very fast oscillations.

For very strong interspecies interaction gAB = 25.0, a
similar pattern is seen for low gA (not shown), albeit with
a much longer period. For quite strong gA = 5.0, there is a
tendency for suppression of the tunneling of the A boson
[Fig. 9(c)], which still oscillates but with a small amplitude.
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FIG. 8. (Color online) Population in the right well nR , nA, and nB for gAB = 0.2 and for (a) gA = 0.0, (b) gA = 0.2, (c) gA = 0.3, and
(d) gA = 5.0.
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FIG. 9. (Color online) Population in the right well nR , nA, and nB for (a) gAB = 5.0 and gA = 0.0, (b) gAB = 5.0 and gA = 4.0,
(c) gAB = 25.0 and gA = 5.0, and (d) gAB = 25.0 and gA = 20.0.
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Unlike gAB = 5.0, increasing the interaction to gA = 20.0
[Fig. 9(d)] does not reduce the tunneling of the A bosons but
increases it approaching a “fermionization” type of behavior
of the dynamics.

To identify the underlying dynamical mechanisms leading
to the above observations, we first note that the initial state in
this case is not necessarily a pure number state |AB,A〉 but is
a linear combination of the number states |AAB,0〉, |AB,A〉,
and |B,AA〉, maintaining the required population balance of
the initial state (equal population of A bosons in each well and
the B boson in the left well).

For this initial setup, the tunneling dynamics consists of
transferring the atoms between the initial state and a target
state composed of the number states |0,AAB〉, |A,AB〉, and
|AA,B〉. For gAB 	 gA, the number state |AA,B〉 represents
the dominant contribution to the target state and thus the
dynamics consists of transferring the atoms between the initial
state and the configuration |AA,B〉. As a result, we have tun-
neling of the B boson to the right well and of a single A boson
to the left well, which we can observe in the envelope behavior
of nA and nB of Fig. 8(a) and more prominently in Fig. 9(a).
The faster oscillations are the result of the contributions from
the states |0,AAB〉 and |A,AB〉. For gAB ≈ gA, we have con-
tributions of approximately the same magnitude from almost
all the number states, leading to Josephson-like oscillations.
However, for gAB 
 gA, the dominant contribution of the
target state is |A,AB〉 and thus the system shows a transfer
between the initial state and the state |A,AB〉. Therefore, the
A bosons are effectively localized while the B bosons undergo
Rabi oscillations between the wells.

VI. CONCLUSION AND OUTLOOK

We have investigated the tunneling dynamics of a strongly
correlated few-body bosonic binary mixture in a one-
dimensional double well covering the complete range of intra-
and interspecies interaction. Our focus is the interplay of the
inter- and intraspecies correlations and their impact on the
dynamics. We observe that the tunneling period increases
drastically as the interspecies interaction gAB increases,
which is due to quasidegenerate symmetric states contributing
primarily to the dynamics. This effect is quite general and
observed here for different initial configurations.

The intraspecies coupling gA possesses a different impact
on the behavior of the dynamics, depending on the strength
gAB as well as on the initial state. The general trend is that for
large gA the overlap of localized wave functions of contributing
states becomes larger and thus the effective tunneling coupling
is increased, leading to higher tunneling frequencies. For low
interactions, different behavior is encountered for different
setups. For a completely imbalanced initial state, for instance,
we observe that for small values of gAB , the tunneling period
increases as we increase gA in the weak interaction regime.
However, for larger values of gA, the tunneling period reduces
with increasing gA. This behavior is not seen for the species-
separated initial condition. In the latter case, we observe a
minimal period at gA = gAB , which is a manifestation of an
avoided crossing in the spectrum.

Concerning the different initial states of the ensemble, the
complete population-imbalanced state exhibits generically a

completely correlated tunneling process for the A and B

species, which breaks only for large values of gA, leading
to an attempted single-particle tunneling and independent
fermion-like behavior. For the species-separated scenario, the
two species tend to stay in opposite wells when the interspecies
repulsion is large, a behavior which alters only if gA also
becomes large. For the partially population-imbalanced case
where the mean population of A atoms in each well nA = 1,
one would intuitively expect that the A particles remain in
different wells due to their initial preparation, but this happens
only if the interaction between them is considerably large. In
the other cases, the A particles undergo oscillations and the
initially mixed state where an A and a B boson coexist in the
same well can turn into a separated state for which the A and
B species reside in different wells.

Understanding the fundamental effects and mechanisms of
the tunneling dynamics in strongly correlated bosonic mixtures
on a few-body level can be seen as a starting point to realize
systems such as bosonic transistors or to create schemes
for selective transport of individual bosonic component in
reservoir-sink systems as well as for studies of entanglement
and statistical properties of mixed ensembles. Further consid-
erations could include higher numbers of particles or species
and effects of parameters which differentiate the two species.

ACKNOWLEDGMENTS

B.C. gratefully acknowledges the financial and academic
support from the International Max-Planck Research School
for Quantum Dynamics in Physics, Chemistry, and Biology.
L.C. gratefully thanks the Alexander von Humboldt Founda-
tion (Germany). P.S. acknowledges financial support by the
Deutsche Forschungsgemeinschaft (DFG).

APPENDIX: COMPUTATIONAL METHOD MCTDH

Our goal is to study the bosonic quantum dynamics for
weak to strong interactions in a numerically exact fashion.
This is computationally challenging and can be achieved only
for a few-atom system. Our approach is the MCTDH method
[47,48], a wave packet dynamical tool known for its outstand-
ing efficiency in high-dimensional applications.

The principle idea is to solve the time-dependent
Schrödinger equation

i�̇(t) = H�(t)

as an initial-value problem by expanding the solution in terms
of Hartree products 	J ≡ ϕj 1 ⊗ · · · ⊗ ϕj N

:

�(t) =
∑

J

AJ (t)	J (t). (A1)

The unknown single-particle functions ϕj (j = 1, . . . ,n,
where n refers to the total number of single-particle functions
used in the calculation) are in turn represented in a fixed
primitive basis implemented on a grid. The correct bosonic
permutation symmetry is obtained by symmetrization of the
expansion coefficient AJ . Note that in the above expansion
not only are the coefficients AJ time dependent but so are
the single-particle functions ϕj . Using the Dirac-Frenkel
variational principle, one can derive the equations of motion
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for both AJ and 	J . Integrating these differential equations of
motion gives us the time evolution of the system via Eq. (A1).
This has the advantage that the basis 	J (t) is variationally
optimal at each time t . Thus it can be kept relatively small,
rendering the procedure more efficient.

Although MCTDH is designed primarily for time-
dependent problems, it is also possible to compute stationary
states. For this purpose the relaxation method is used [49].
The key idea is to propagate a wave function �0 by the
nonunitary operator e−Hτ . As τ → ∞, this exponentially
damps out any contribution but that stemming from the true
ground state like e−(Em−E0)τ . In practic,e one relies upon a more
sophisticated scheme called the improved relaxation [50,51],
which is much more robust, especially for excited states. Here

〈�|H |�〉 is minimized with respect to both the coefficients
AJ and the orbitals ϕj . The effective eigenvalue problems
thus obtained are then solved iteratively by first solving AJ

with fixed orbital ϕj and then optimizing ϕj by propagating
them in imaginary time over a short period. This cycle is then
repeated.

We note here that the computation of very long tunneling
times using the MCTDH propagation scheme is numerically
impractical. For these cases, we computed the dynamics
through the expansion of few-body eigenstates. Moreover,
for extremely close quasidegenerate states, convergence is
difficult. In these cases, a simultaneous relaxation of a whole
set of these eigenstates, keeping them orthogonal, is performed
by a method known as block relaxation.
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