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Quantum criticality of a one-dimensional Bose-Fermi mixture
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The one-dimensional interacting Bose-Fermi mixtures, exhibiting quantum phase transitions at zero
temperature, are particularly valuable for the study of quantum critical phenomena. In the present paper, we
analytically study the quantum phase diagram, equation of state, and quantum criticality of the Bose-Fermi
mixture using the thermodynamic Bethe ansatz equations. We show that thermodynamical properties display
universal scaling behavior at quantum criticality. Furthermore, quantum criticality of the Bose-Fermi mixture
in a harmonic trap is also studied within the local-density approximation. We thus demonstrate that the phase
diagram and critical properties of the bulk system provide insight into understanding the universal features of
many-body critical phenomena.
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I. INTRODUCTION

Mixtures of ultracold bosonic and fermionic atoms have at-
tracted intensive studies both experimentally and theoretically
[1–3]. By loading cold atoms in one-dimensional (1D) waveg-
uides and tuning the effective interactions by Feshbach reso-
nance, it is possible to simulate striking quantum many-body
phenomena in 1D strongly correlated systems in the whole
regime of interaction strength [4–6]. The exquisite tunability
with ultracold atoms confined to low dimensions has provided
unprecedented opportunities for investigating and testing the
theory of exactly solvable many-body systems [7–11]. These
include remarkable experimental progress in the realization
of Tonks-Girardeau gas [7,8], super-Tonks-Girardeau gas [9],
Yang-Yang thermodynamics for ultracold Bose gas of 87Rb
[10], and the exotic density profiles of the attractive Fermi gas
in a harmonic trap [11]. The current experimental progress is
capable of simulating 1D Bose-Fermi mixtures.

Recently, various theoretical methods have been used to
study quantum phases and correlations of the 1D Bose-Fermi
mixtures, such as the mean-field approach [12] and Tomonaga-
Luttinger liquid (TLL) theory [13,14]. The 1D Bose-Fermi
mixture with equal masses of bosons and fermions, and with
the same strength of δ-function interaction between boson-
boson and boson-fermion, is exactly solvable [15]. This model
has attracted renewed interest [16–19] due to the experimental
progress with cold atomic systems.

Particular theoretical interest has been paid to the ground-
state properties at zero temperature [16–18]. However, there
are very few studies on the thermodynamics and quantum
critical phenomena of the model. In review of the realistic
cold atomic systems trapped in external potentials at finite
temperatures, it is significantly important to understand how
to unambiguously determine the zero-temperature phase di-
agram from the knowledge of finite-temperature quantities
of trapped gases. In the 1D mixture of quantum gases, true
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quantum phase transitions occur as the driving parameters
vary across the phase boundaries at zero temperature, such
as chemical potential, magnetic field and densities, etc. In
particular, 1D quantum critical phenomena associated with
quantum phase transitions at zero temperature give the physical
origin of quantum criticality [20,21] and provide an insight
into the understanding of the universal scaling behavior
of thermodynamical properties in quantum critical regimes
[22–25]. By using the universal scaling functions, it has been
demonstrated that the zero-temperature phase diagrams of
various systems can be mapped out from the finite-temperature
density profiles [22,24,26]. Most recently, the high-resolution
imaging techniques have allowed measurement of the density
profiles and density fluctuations of the trapped atomic gases
very precisely [27–31], and thus provide essential tools to
study quantum phase transitions and quantum criticality.

In general, quantum fluctuations are strongly coupled
with thermal fluctuations in the quantum critical regime.
Therefore, quantum criticality is among the most challenging
of problems in condensed-matter physics. In order to extract
correct universal scaling functions, which control proper
thermal and quantum fluctuations at quantum criticality, a
high precision of the finite-temperature thermodynamics is
desirable. Usually, access to the thermodynamic properties
of integrable models at finite temperatures is notoriously
difficult and presents a formidable challenge in theoretical and
mathematical physics. In the present paper, we analytically
determine the zero-temperature phase diagram of the
integrable Bose-Fermi mixture. We further derive the
equation of state and explore the universal scaling behavior
of thermodynamical properties at quantum criticality using
the thermodynamical Bethe ansatz (TBA) equations. Using
the exact analytical result obtained, we also demonstrate
that the zero-temperature phase diagram and quantum critical-
ity can be mapped out from finite-temperature density profiles
of the trapped gas within the local-density approximation.

The paper is organized as follows. In Sec. II, we present
the TBA equations for the model and analytically determine the
phase diagram of the Bose-Fermi mixture at zero temperature.
In Sec. III, we derive the equation of state and explore the
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universal scaling behavior of the density and compressibility
near the critical points. In Sec. IV, the quantum criticality of
the gas in a harmonic trap is studied within the local-density
approximation. A conclusion is presented in Sec. V.

II. MODEL AND PHASE DIAGRAM AT ZERO
TEMPERATURE

We consider a 1D interacting Bose-Fermi mixture described
by the Hamiltonian

Ĥ =
∫ L

0
dx

(
h̄2

2mb

∂x�
†
b∂x�b + h̄2

2mf

∂x�
†
f ∂x�f

+ gbb

2
�

†
b�

†
b�b�b + gbf �

†
b�

†
f �f �b

−μf �
†
f �f − μb�

†
b�b

)
, (1)

where �b and �f are boson and fermion field operators, mb

and mf are the masses, μb and μf are chemical potentials
of bosons and fermions, and gbb and gbf are boson-boson
and boson-fermion interaction strengths, respectively. Here
we consider the fully polarized fermions, therefore, the Pauli
principle excludes their s-wave interaction (gff = 0). This
model is exactly solvable [15,16] for equal masses and equal
boson-boson and boson-fermion interaction strengths, i.e.,
mb = mf = m and gbb = gbf = g. For our convenience, we
assume h̄ = 2m = 1. The first quantization form of the exactly
solvable Hamiltonian (1) can be written as

Ĥ =−
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj ) − μN − H

2
(Nf − Nb),

(2)

with c = mg/h̄2. Here the particle number N = Nb + Nf ,
with Nb bosons and Nf fermions. The chemical potential μ and
the effective magnetic field H are defined as μ = (μf + μb)/2
and H = μf − μb. The many-body wave function is supposed
to be symmetric with respect to indices i = {1,2, . . . ,Nb}
(bosons) and antisymmetric with respect to {Nb + 1,Nb +
2, . . . ,Nf } (fermions). Thus, the N -body wave function can be
written as N ! × N ! superpositions of individual plane waves
associated with N quasimomenta ki , with i = 1, . . . ,N by
means of the Bethe ansatz [15,16].

The spectrum of the system is given by E = ∑N
i=1 k2

i , where
the quasimomenta ki is subject to the so-called Bethe ansatz
equations (BAEs) [15,16]. In thermodynamic limits, N →
∞,L → ∞, and N/L is finite, and at finite temperatures, the
equilibrium states become degenerate. Yang and Yang [32]
showed that true physical states in integrable systems can be
determined from the minimization conditions of Gibbs free
energy subject to the Bethe ansatz equations. Accordingly,
in the thermodynamics limit with Nb/L and Nf /L fixed,
minimization of the Gibbs free energy gives rise to the
following nonlinear integral equations [19], i.e., the TBA
equations for the integrable Bose-Fermi mixture (kB = 1):

ε(k) = k2 − μf − T

∫ ∞

−∞
a1(� − k)

× ln{1 + exp[−ϕ(�)/T ]}d�,

ϕ(�) = μf − μb − T

∫ ∞

−∞
a1(k − �)

× ln{1 + exp [−ε(k)/T ]}dk, (3)

where a� (x) = 1
2π

�c
(�c)2/4+x2 . For fixed temperature T and

chemical potential μf , μb, the pressure is given by

p = T

2π

∫ ∞

−∞
ln

{
1 + exp

[
−ε(k)

T

]}
dk. (4)

The particle density and compressibility for fermions and
bosons, and the entropy per length, can be obtained from

ni ≡ Ni/L = ∂p/∂μi, i = f,b, (5)

κi ≡ ∂ni/∂μ, i = f,b, (6)

S/L ≡ ∂p/∂T . (7)

The phase diagram of the Bose-Fermi mixture can be
analytically determined from the TBA equations (3) in the
zero-temperature limit. As shown in Fig. 1, the phase diagram
consists of three quantum phases: pure bosons, pure fermions,
and the mixture of bosons and fermions except the vacuum,
which are separated by four boundary lines with condition
nf = 0 or nb = 0. In order to obtain the full phase diagram
of the Bose-Fermi mixture, we introduce two sets of the
TBA equations with different reference states [33]. The TBA
equations based on the fermionic reference state determine the
two boundary lines for H > 0, whereas the TBA equations
based on the bosonic reference state determine the two
boundary lines for H � 0.

In the limit T → 0, the TBA equations (3) based on the
fermionic reference state reduce to

ε(k) = k2 − μf +
∫ �F

−�F

a1(� − k)ϕ−(�)d�,

(8)

ϕ(�) = μf − μb +
∫ kF

−kF

a1(k − �)ε−(k)dk,

FIG. 1. (Color online) Phase diagram in the μ-H plane. Three
distinguished phases result from varying the chemical potential and
magnetic field, i.e., pure boson phase for H < 0 and μ > H/2, pure
fermion phase below the phase boundary (12) in the region μ >

−H/2, and the mixture of bosons and fermions above the phase
boundary (12) in the region H > 0.
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where the dressed energies ε−(k) and ϕ−(�) correspond to
the occupied states for k ∈ [−kF ,kF ] and � ∈ [−�F ,�F ],
respectively. The positive parts of the dressed energies ε(k)
and ϕ(�) correspond to the unoccupied states. The integration
boundaries kF and �F characterize the Fermi points with the
conditions ε− (±kF ) = ϕ− (±�F ) = 0. The pressure is given
by

p = − 1

2π

∫ kF

−kF

ε−(k)dk (9)

at zero temperature. We calculate the particle densities through
the relations (5). Nevertheless, the boundary lines, which
correspond to nf = 0 or nb = 0, can be determined by
analyzing the dressed energy at the point kF = 0 or �F = 0.

For a pure fermion state, ϕ(�) is gapful, i.e., ϕ(�) > 0.
Thus, the TBA equations (8) reduce to the free fermion
potential ε(k) = k2 − μf . The phase boundaries for the phase
transitions from vacuum into the pure fermion state, and from
the pure fermion state into the mixture of bosons and fermions,
are determined by

ε− (0) � 0, (10)

ϕ− (0) � 0, (11)

respectively. From the condition (10), we obtain the phase
boundary for pure fermions μf � 0, or, equivalently, μ �
−H/2.

From the conditions (11) and ε(k) = k2 − μf , we obtain
the phase boundary

H̃ � 1

2π
[(4μ̃f + 1) arctan

√
4μ̃f − √

4μ̃f ] (12)

for the coexistence of bosons and fermions. Here we used the
dimensionless units H̃ ≡ H/ε0 and μ̃f ≡ μf /ε0 with ε0 = c2.
For the strong-coupling regime, i.e., μf � ε0 or H � ε0, we
find that phase boundary condition (12) reduces to

μ̃ � 1

4

{(
3πH̃

)2/3
[

1 + 2

15

(
3πH̃

)2/3
]

− 2H̃

}
, (13)

with μ̃ ≡ μ/ε0. For the weak-coupling regime, i.e., μf � ε0

or H � ε0, the phase boundary condition becomes

μ̃ � H̃

2
+ 2

π

√
H̃ − 1

4

(
1 − 8

π2

)
. (14)

On the other hand, at zero temperature, the TBA equations
with the Bose state as the reference state are given by [33]

ε(k) = k2 − μb +
∫ kF

−kF

a2(k − k′)ε−(k′)dk′

+
(∫ −�F

−∞
+

∫ ∞

�F

)
a1(k − �)ϕ−(�)d�,

ϕ(�) = μb − μf −
∫ kF

−kF

a1(k − �)ε−(k)dk, (15)

with the Fermi points ε−(±kF ) = ϕ−(±�F ) = 0. Similarly,
the dressed energies ε−(k) and ϕ−(�) correspond to the
occupied states for k ∈ [−kF ,kF ] and � ∈ [−�F ,�F ], re-
spectively. We see that for the Bose reference state, the fully
polarized fermions provide a ferromagnetic ordering at the
ground state. If H < 0, i.e., μf < μb, then the dressed energy

ϕ(�) is greater than zero. The dressed energy ϕ is gapful. Thus,
the ground state is a pure boson state. Therefore, for H < 0,
the TBA equations (15) reduce to Yang-Yang thermodynamics
equations for the Lieb-Liniger Bose gas [32],

ε(k) = k2 − μb +
∫ kF

−kF

a2(k − k′)ε−(k′)dk′,

from which we easily determine the phase boundary for the
phase transition from vacuum into the pure boson state, i.e.,
μ � H/2; see Fig. 1.

III. EQNARRAY OF STATE AND UNIVERSAL SCALINGS

Recent experiments on quantum criticality of ultracold
atoms [28,31] and a theoretical scheme of mapping out
quantum criticality of cold atoms [22–25] open the possibil-
ity to explore such universal behavior in low-dimensional,
multicomponent, interacting Fermi and Bose gases. As the
temperature is tuned over the crossover temperatures, the
scaling functions of thermodynamical properties give rise to
universal behavior, which entirely depends on the symmetry of
the excitation spectrum and dimensionality of the system. This
gives a promising way to explore the hidden symmetry of these
models, for example, the quantum Ising model with transverse
file displays emergent E8 symmetry [35]. In the critical regime,
the thermodynamic functions of the homogeneous gas can be
cast into some universal scaling forms [20,21]. For example,
the density and compressibility near the critical point μ = μc

can be written as

n(T ,μ) = n0 + T
d
z
+1− 1

νz G
(

μ − μc

T
1
νz

)
, (16)

κ(T ,μ) = κ0 + T
d
z
+1− 2

νz F
(

μ − μc

T
1
νz

)
. (17)

Here, n0 (κ0) is the regular part of the density (compressibility)
induced from the background, G (F) is a universal scaling
function describing the singular part of the density (com-
pressibility) near the critical point μc, d is the dimensionality
of the system, z is the dynamical critical exponent, and ν

is the correlation length exponent. From the above relation,
the dimensionless universal scaling functions G(μ−μc

T νz ) and
F(μ−μc

T νz ) display universal scaling behavior near the critical
point of μ = μc, i.e., the density (compressibility) curves
with a subtraction of the background density (compressibility)
intersect at the critical point for different temperatures. This
feature can be used to detect the phase boundaries at zero
temperature from finite-temperature density profiles of the
trapped gas.

Before discussing the universal scaling behavior of the
Bose-Fermi mixture, we will discuss quantum criticality of
several simple examples. The simplest example is the 1D
ideal Fermi gas. The ideal Fermi gas obeys the Fermi-Dirac
distribution; it is easy to derive the density distribution
for free fermions nf (T ,μ) = −√

T /(2
√

π )Li1/2(− exp(μf

T
)),

where Lin(x) = ∑∞
l=1 xl/ ln is the standard polylogarithmic

function. In comparison with the universal scaling given by
Eq. (16), the critical exponent z = 2 and the correlation length
exponent ν = 1/2 with the dimensionality d = 1 can be read
off of the universal scaling form. Here the scaling function is
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G(x) = −1/(2
√

π )Li1/2(− exp(x)). There is no background
density for the vacuum–Fermi-gas transition, i.e., n0 = 0,
where the critical point μc = 0. It was also shown that d = 1,
z = 2, and ν = 1/2 for the vacuum into the TLL phase
transition in the 1D hard-core bosons [22], the 1D attractive
Fermi gas [24], and the 1D interacting Bose gas with strongly
repulsive interactions [25].

In order to investigate the quantum critical behavior in the
vicinity of the phase boundary between the phase of a mixture
of bosons and fermions and the phase of the fully polarized
fermions, we will derive the equation of state from the TBA
equations (3). For the strongly interacting regime, i.e., c � 1,
or T/ε0 � 1, we can rewrite the TBA equations (3) as

ε(k) ≈ k2/β − A,
(18)

ϕ(�) = μf − μb − 4pc

c2 + 4�2
+ 4c(4c2 − 48�2)p2

(c2 + 4�2)3
,

where

A ≈ μf + T

∫ ∞

−∞
a1(�) ln

{
1 + exp

[
−ϕ(�)

T

]}
d�,

β = 1 − 2T c

π

∫ ∞

−∞

4c2 − 48�2

(c2 + 4�2)3
ln

[
1 + e− ϕ(�)

T

]
d�,

p2 = − βT 2

4
√

π
Li 5

2
(−e

A
T ). (19)

With the help of these relations, the pressure (4) can be
calculated in a straightforward way as

p = −
√

β

4π
T

3
2 Li 3

2

(−e
A
T

)
(20)

that serves as the equation of state of the model with strong
repulsion. The thermodynamical properties can be obtained
from the usual thermodynamical relations. This analytical
equation of state (20) essentially covers the universal TLL
thermodynamics and encodes the critical exponents in the
critical regimes.

At very low temperatures, i.e., T � ε0, the thermodynam-
ics of the model is governed by the TLL physics associated
with a linear dispersion. In the mixed phase of bosons and
fermions, the low-energy physics belongs to a universality
class of a two-component TLL [17,18]. In this low-temperature
limit, we further calculate the pressure

p ≈ 2A3/2

3π

(
1 + π2

8

T 2

A2

)
,

where

A ≈ μ + H

2
− 4

π

(
H

2
− p

c

)
tan−1 2�0

c

+ 2H�0

πc
+ cπT 2

12H�0
, (21)

with �0 = c

√
p

Hc
− 1

4 . After a lengthy algebra, we find a
universal leading order of temperature corrections to the free
energy,

F = E0 − πCT 2

6

(
1

vb

+ 1

vf

)
, (22)

where the two velocities in the strongly repulsive regime are
given by

vs = 4π2n

3γ
sin(πα),

(23)

vf = 2πn

{
1 − 4

γ
[πα + sin(πα)]

}
.

The parameter α is determined by the relation α ≈ nb/n for a
small H � 1. The ground-state energy is given by

E = 1

3
n3π2

{
1− 4

γ

[
1

2
+ sin(πα)

π
+

(
1

2
− α

)
cos(πα)

]}
.

(24)

The TLL is maintained under a crossover temperature at
which the linear temperature-dependent entropy breaks down;
see Fig. 2. The exact analytic expression of thermodynamic
functions (22) from the usual TLL description is only accurate
for a limited range of temperatures and density. However, the
TLL description is incapable of describing quantum criticality
for it does not contain the right fluctuations in the critical
regime. The equation of state (20) contains the proper universal
scaling functions, which control the full thermodynamical
properties in the quantum critical regimes. Near the critical
point, the thermal dynamical properties can be cast into
universal scaling forms, for example, (16) and (17). There
exist no-longer-free fermions in the TLLF phase, shown in
Fig. 2, due to the presence of an exponentially small number
of bosons at finite temperatures. They behave like a TLL
for temperatures below the crossover temperatures (white
triangles and squares). The TLLM stands for a two-component
TLL of the mixture of bosons and fermions described by (22).

FIG. 2. (Color online) Contour plot of entropy S vs chemical
potential from the TBA (3): quantum criticality driven by the
chemical potential for H = 0.1ε0. The crossover temperatures (white
squares and triangles) separating vacuum, TLLF , and TLLM from the
quantum critical regimes are determined from the breakdown of linear
temperature-dependent entropy from (22). Here the TLLF stands for
the TLL of fermions where an exponentially small number of bosons
are populated at finite temperatures, whereas TLLM denotes the TLL
of the mixture. The vacuum evolves into a quasiclassical regime at
finite temperature.
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FIG. 3. (Color online) The density nb and compressibility κb vs
chemical potential μ for H/ε0 = −1 at different temperatures. The
curves intersect at the critical point μ = H/2, i.e., the phase boundary
between the pure boson phase and the vacuum. Here t = T/ε0.

It is straightforward to work out the critical exponents for
the phase transition from vacuum into the free fermions and
into the Bose gas phase, i.e., d = 1, z = 2, and ν = 1/2; see
[22,24,25]. Using the TBA equations (3), we verify the scaling
behavior of the mixture for the phase transitions from vacuum
into the pure Bose state, shown in Fig. 3, and from vacuum
into the pure Fermi state, shown in Fig. 4. We see that both the
density and compressibility at different temperatures intersect
at the critical point. For both cases, the compressibility always
evolves a round peak as the temperature decreases. This
indicates the density of state changes when the phase transition
occurs. As the temperature approaches the limit T → 0, the
compressibility tends to divergence.

Comparing the density, which is numerically obtained from
the pressure (4), with the universal scaling form of Eq. (16),

FIG. 4. (Color online) The density nf and compressibility κf

vs chemical potential μ for H/ε0 = 1 at different temperatures.
The curves intersect at the critical point μ = −H/2, i.e., the phase
boundary between the pure fermion phase and the vacuum. Here
t = T/ε0.

FIG. 5. (Color online) The density nb and compressibility κb vs
chemical potential μ for H/ε0 = 1 at different temperatures. In this
setting, the intersection nature can map out the zero-temperature
phase boundary for the phase transition from the free fermions into
the mixture of bosons and fermions. Here t = T/ε0.

we can extract the critical exponent z = 2 and the correlation
length exponent ν = 1/2 with the dimensionality d = 1. Here
we numerically demonstrate the universal scaling behavior of
the mixture of bosons and fermions in Figs. 3–5. For practical
convenience, here we have chosen the density of bosons
nb to demonstrate the intersections for the phase transitions
from vacuum into the phase of pure bosons, and from the
phase of fermions into the mixture, where nb does not have a
background near the transition points; see Figs. 3 and 5. For
a fixed effective magnetic field H , we see that by a proper
temperature scaling, the density curves nb(T )/

√
T at different

temperatures intersect at the points μc. In Fig. 5, we display
the scaled density distributions for different temperatures by
numerically solving the TBA equations (3)–(5). It is also
seen that the compressibility curves at different temperatures
intersect at the critical point μc. The compressibility tends
to divergence as the temperature tends to zero. It evolves to a
round peak at low temperature due to the change of the density
of states around the critical points. The quantum criticality
near the critical points associating the phase transitions from
vacuum into the phase of pure bosons and the phase of
pure fermions reveals a subtle difference in thermodynamical
properties; see Figs. 3 and 5.

IV. QUANTUM CRITICALITY IN THE HARMONIC TRAP

In the experiment with cold atoms, the 1D quantum gas is
realized by tightly confining the atomic cloud in two (radial)
dimensions and weakly confining it along the axial direction
in an external harmonic trap. For the mixture of bosons and
fermions in a harmonic trap, we can calculate its density
distribution profiles by evaluating the thermodynamical dy-
namics within the local-density approximation. According
to the local-density approximation, the system reaches local
equilibrium in each small interval around each point x in the
external trap. The density distribution of the trapped gas is
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then obtained via the local equation of state [16,34]. Within
the local-density approximation, the chemical potentials in
the equation of state (4) as well as in the TBA equations are
replaced by the local chemical potentials given by

μb(x) = μb(0) − Vb(x), (25)

μf (x) = μf (0) − Vf (x). (26)

Here the external potential is defined as Vb(x) = Vf (x) =
mω2x2/2 with harmonic frequency ω, and the characteristic
length for the harmonic trap is a = √

h̄/mω. For this case,
Eqs. (25) and (26) can be alternatively represented as

μ(y)/ε0 = μ(0)/ε0 − y2

for a fixed H , where the dimensionless coordinate is given
by y = x/(a2c). From the Bethe ansatz equations, the di-
mensionless density nb/c and nf /c can be obtained for fixed
dimensionless chemical potential μb/ε0 and μf /ε0. The total
particle number N is obtained from

Na2
1D

a2
= 4

∫ ∞

−∞

nb(y) + nf (y)

c
dy

with the 1D scattering length a1D = −2/c. We define a
polarization rate between the Bose particle number and the
total particle number α ≡ Nb/N . For fixed μ(0)/ε0 and H/ε0,
we can calculate Na2

1D/a2 and α. In the presence of the
confined potential, the length scale of the system at quantum
criticality is still much smaller than the trap size. Therefore,
the critical behavior of the homogeneous gas can be mapped
out by the density profiles of gas at finite temperatures [22].

We fix Na2
1D/a2 and α in the trapped gas of the mixture; the

density profiles reveal a universal scaling behavior of the gas.
Figure 6 shows the density profiles of bosons and fermions in
the harmonic trap for Na2

1D/a2 = 1 and α = Nb/N = 0.5 at
different temperatures. Here we find that bosons and fermions
coexist in the trap center accompanied by the phase of pure
fermions at the edges. We further demonstrate how to map
out the zero-temperature phase boundaries from the density
profiles of the trapped gas at finite temperatures. In Figs. 7(a)

FIG. 6. (Color online) The density distribution at different tem-
peratures with Nta2

1D/a2 = 1 and α = 0.5.

FIG. 7. (Color online) The densities nb and nf vs normalized
position for Na2

1D/a2 = 1 and α = 0.5 at different temperatures. The
density curves intersect at the critical point that maps out the phase
boundaries of the trapped gas. Here t = T/ε0.

and 7(b), we demonstrate the scaled density distributions
of bosons and fermions. It is clearly seen that the scaled
density curves for different temperatures intersect at the critical
point of the trapped gas. Thus the critical point, separating
the mixture of bosons and fermions from the phase of pure
fermions, is mapped out. Similarly, the density curves of
fermions intersect at the critical point that maps out the phase
boundary for the phase transition from vacuum into the phase
of free fermions.

V. CONCLUSION

In summary, we have studied the phase diagram, universal
TLL, and quantum criticality of the 1D Bose-Fermi mixture
by means of the TBA equations. We have derived the equation
of state and universal TLL thermodynamics of the model for
strong repulsion. We have proven that the low-energy physics
of the Bose-Fermi mixture are described by a two-component
TLL. The universal scaling behavior of thermodynamical
properties at quantum criticality provides a physical origin
of quantum critical phenomena. Furthermore, the quantum
criticality of the Bose-Fermi mixture in a harmonic trap has
been studied within the local-density approximation. It turns
out that the phase diagram and critical properties of the bulk
system can be mapped out from the density profiles of the
trapped mixture gas at finite temperatures. Our exact results
can help with the experimental study of quantum critical
phenomena in a 1D harmonic trap.
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S. Föling, L. Pollet, and M. Greiner, Science 329, 547 (2010).
[30] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,

and S. Kuhr, Nature (London) 467, 68 (2010).
[31] C.-L. Huang et al., Nature (London) 470, 238 (2011).
[32] C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969).
[33] Z.-X. Hu, Q.-L. Zhang, and Y.-Q. Li, J. Phys. A 39, 351 (2006).
[34] V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86, 5413

(2001); C. Menotti and S. Stringari, Phys. Rev. A 66, 043610
(2002).

[35] R. Coldea et al., Science 327, 177 (2010).

013608-7

http://dx.doi.org/10.1126/science.1059318
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1103/PhysRevLett.88.160401
http://dx.doi.org/10.1103/PhysRevLett.88.160401
http://dx.doi.org/10.1103/PhysRevLett.89.150403
http://dx.doi.org/10.1103/PhysRevLett.93.183201
http://dx.doi.org/10.1103/PhysRevLett.93.183201
http://dx.doi.org/10.1103/PhysRevA.79.021601
http://dx.doi.org/10.1103/PhysRevA.79.021601
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1103/PhysRevLett.90.170403
http://dx.doi.org/10.1103/PhysRevLett.91.150403
http://dx.doi.org/10.1103/PhysRevLett.93.120404
http://dx.doi.org/10.1103/PhysRevA.3.393
http://dx.doi.org/10.1063/1.1666778
http://dx.doi.org/10.1103/PhysRevA.73.021602
http://dx.doi.org/10.1016/j.aop.2005.11.017
http://dx.doi.org/10.1103/PhysRevA.72.061604
http://dx.doi.org/10.1103/PhysRevA.72.061603
http://dx.doi.org/10.1103/PhysRevA.72.061603
http://dx.doi.org/10.1103/PhysRevA.78.023621
http://dx.doi.org/10.1103/PhysRevA.79.053604
http://dx.doi.org/10.1103/PhysRevA.79.053604
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.105.245702
http://dx.doi.org/10.1103/PhysRevA.83.043613
http://dx.doi.org/10.1103/PhysRevA.84.011602
http://dx.doi.org/10.1103/PhysRevA.84.011602
http://dx.doi.org/10.1103/PhysRevA.84.023616
http://dx.doi.org/10.1103/PhysRevA.84.023616
http://dx.doi.org/10.1088/1751-8113/44/10/102001
http://dx.doi.org/10.1103/PhysRevA.84.013604
http://dx.doi.org/10.1103/PhysRevA.84.013604
http://dx.doi.org/10.1103/PhysRevA.83.031605
http://dx.doi.org/10.1038/nphys1477
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09703
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1088/0305-4470/39/2/006
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevA.66.043610
http://dx.doi.org/10.1103/PhysRevA.66.043610
http://dx.doi.org/10.1126/science.1180085

