
PHYSICAL REVIEW A 85, 013604 (2012)

p-wave stabilization of three-dimensional Bose-Fermi solitons
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We explore bright soliton solutions of ultracold Bose-Fermi gases, showing that the presence of p-wave
interactions can remove the usual collapse instability and support stable soliton solutions that are global energy
minima. A variational model that incorporates the relevant s- and p-wave interactions in the system is established
analytically and solved to probe the dependencies of the soliton stationary states on key experimental parameters.
Under attractive s-wave interactions, bright solitons exist only as metastable states susceptible to collapse.
Remarkably, the presence of repulsive p-wave interactions alleviates this collapse instability. This dramatically
widens the range of experimentally achievable soliton solutions and indicates greatly enhanced robustness. While
we focus specifically on the boson-fermion pairing of 87Rb and 40K, the stabilization inferred by repulsive p-wave
interactions should apply to the wider remit of ultracold Bose-Fermi mixtures.
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I. INTRODUCTION

The study of wave mechanics and propagation in nonlinear
media is a fundamental concept within physics. In particular,
solitons are a general nondispersive solution to the one-
dimensional nonlinear wave equation. Bright solitons have
been observed in many areas of physics, such as in water [1],
liquid hydrogen [2], optics [3], and atomic Bose-Einstein
condensates (BECs) [4–6]. In the latter case, these self-trapped
matter waves are supported by a balance between attractive
atomic scattering interactions and repulsive zero-point kinetic
energy between bosons. As well as being of fundamental
interest in many-body quantum physics, bright matter-wave
solitons are being touted for potential uses in atom interfer-
ometry [4,5,7,8] and surface characterization [9]. However,
when realized in three-dimensions these solitons exist only as
metastable states prone to catastrophic collapse [10,11].

Ultracold Bose-Fermi (BF) gases have received a great
deal of recent experimental attention and have been real-
ized through 7Li-6Li [12], 23Na-6Li [13], 87Rb-40K [14],
174Yb-173Yb [15], and 84Sr-87Sr [16] mixtures. At such low
temperatures, the scattering of atoms with nonzero relative
angular momentum is heavily restricted such that p-wave
and higher interactions are typically negligible. Furthermore,
the Pauli exclusion principle forbids identical fermions from
interacting via s-wave collisions. Thus, for an ultracold
Bose-Fermi mixture (in which the fermions are identical),
the dominant interactions are s-wave boson-boson and boson-
fermion interactions. It has been shown theoretically that a
repulsive Bose gas and a noninteracting Fermi gas coexisting
in a radial waveguide can be coupled together by an attractive
boson-fermion interaction to form a self-bound state in which
the components are co-localized in space [17–19]. It is these
“Bose-Fermi solitons” that we will consider in this paper.
Note that distinct types of solitons have been predicted in
Bose-Fermi mixtures, i.e., those supported in the presence
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of an optical lattice [20] and those corresponding to a
localized Bose gas embedded within an extended fermionic
background [21].

However, just as in the case of an attractively interacting
3D Bose-Einstein condensate [10,11,22], a 3D Bose-Fermi
system is prone to collapse when the interspecies interaction
becomes too attractive [23–26]. While certain effects have
been highlighted to raise the threshold for collapse, e.g., finite
temperature effects in Bose-Fermi mixtures [27] and Feshbach
resonance management [28], possession of angular momentum
[29], and fragmentation [30] in Bose-Einstein condensates, the
instability to collapse ultimately remains in the system. Indeed,
by considering these 3D effects, Karpiuk et al. [18] confirmed
that Bose-Fermi solitons are unstable to collapse when the
attractive Bose-Fermi interactions become too strong. This
showed that the soliton solutions exist only within a narrow
range of interaction strengths and atom numbers, but these
predictions included only s-wave interactions.

The 87Rb-40K system appears particularly well suited to
support BF solitons since its natural boson-fermion interaction
is strongly attractive. Furthermore, by exploiting scattering
resonances, the p-wave interaction between fermions can now
be experimentally engineered to significant values [31]. It is,
thus, the rationale of this work to explore the way in which
p-wave interactions may modify Bose-Fermi soliton solutions.
In order to obtain the stationary soliton solutions we perform a
variational approach using a cylindrically symmetric Gaussian
ansatz for the boson and fermion density distributions. Via the
Gross-Pitaveskii model for the bosons and the Thomas-Fermi
approximation for the fermions, we derive an analytic form for
the energy of this coupled system up to p-wave interactions
(for the boson-fermion and fermion-fermion interaction).

Written in terms of a generalized length scale � for the
size of the co-localized wave packets, we find that the total
variational energy of the Bose-Fermi system is of the form

E ∼ �2 + 1

�2
± 1

�3
± 1

�5
. (1)
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The consecutive terms represent, respectively, radial potential
energy, zero-point kinetic energy, s-wave interaction energy,
and p-wave interaction energy. In the absence of p-wave in-
teractions and for net attractive (negative) s-wave interactions,
bright solitons are known to form but only as metastable
states (local energy minima) prone to a collapse instability.
We will show that the addition of repulsive (positive) p-wave
interactions has a dramatic stabilizing effect on the soliton
solutions, removing this collapse instability and promoting the
solitons to ground states of the system (global energy minima).

In Sec. II we describe our methodology and derive the
variational energy for the system up to and including the
relevant p-wave interactions. In Sec. III A we consider
the properties of the soliton solutions in the absence of
p-wave interactions and show that our results are consistent
with previous findings. In Sec. III B we progress to the
main thrust of our work (to map out the properties in the
presence of p-wave interactions) and demonstrate the capacity
of p-wave interactions to stabilize against a collapse of the
system. Note that we focus our results on a 87Rb-40K mixture,
due to the naturally large and attractive s-wave scattering
length between the species [14,23,32], and fermion-fermion
p-wave interactions, due to their capacity to be engineered
experimentally [31]. Finally, in Sec. IV, we discuss and
conclude our findings.

II. VARIATIONAL MODEL OF BOSE-FERMI SOLITONS

A. System overview and the variational ansatz

We consider a degenerate gas of identical fermions coex-
isting with a Bose-Einstein condensate of bosons, all at zero
temperature. Neglecting quantum and thermal fluctuations, we
will model the fermion and boson gases within the mean-field
picture. Each gas is confined by an axially homogeneous
waveguide potential VB{F }(r) = 1

2mB{F }ω2
B{F }r

2, where ωB{F }
is the radial trap frequency experienced by the bosons
{fermions} and mB{F } is the boson {fermion} mass. Due to the
low energy of the atomic collisions, the s-wave and p-wave
interactions are modelled by contact interactions characterized
by a single length scale, the scattering length. Within the
Bose gas, the atoms interact predominantly via s-wave
scattering with characteristic length aB (p-wave interactions
are negligible). Within the Fermi gas, s-wave interactions
are suppressed via the Pauli exclusion principle and the
leading atomic interaction is p wave with a scattering length
aF [25]. For overlapping clouds, the bosons and fermions
additionally interact with each other, predominantly via the
s-wave interaction, of length scale aBFs , but we will also
include the corresponding p-wave interaction, with effective
scattering length aBFp [25].

Bright solitons require an attractive interaction to enable
self-trapping of the wave. Here we shall consider the case
where this interaction arises from the s-wave boson-fermion
coupling. A rudimentary requirement is, thus, that the boson
and fermion gases are overlapping in space and this enables us
to assume the same ansatz for the boson and fermion density
distributions. We will assume that the radial profile of the
fermion and boson gases is a Gaussian. This is an exact result
in the quasi-1D limit (formally expressed as h̄ωB � μB and

h̄ωF � μF , where μB and μF are the chemical potentials of
the boson gas and fermion gas, respectively [33]) for which
the radial profile coincides with the Gaussian ground harmonic
oscillator state.

The most obvious choice for a suitable axial profile is, by
analogy to 1D bright bosonic soliton result, a sech-profile [34].
However, with this choice we are unable to obtain analytic
solutions for the variational energies. Karpiuk et al. [18]
pursued this choice numerically. Instead, to obtain an analytic
form for the variational energies, we employ a Gaussian axial
profile. From studies of bright BEC solitons it has been shown,
first, that sech and Gaussian axial profiles give very similar
results, and, second, that both forms of ansatz give very
good agreement with more precise theoretical treatments, e.g.,
numerical solutions of the Gross-Pitaevskii equation [10,11].
We will, thus, consider the boson {fermion} density nB{F } to
have a cylindrically symmetric Gaussian profile,

nB{F }(r) = NB{F }
π3/2LzL2

r

exp

(
− z2

L2
z

)
exp

(
− r2

L2
r

)
, (2)

where Lr and Lz are the radial and axial sizes, respectively,
and NB {F } is the number of bosons {fermions}. We consider
that Lr and Lz are common for both the bosons and the
fermions.

Note that the validity of the mean-field Gross-Pitaevskii
model for the boson gas requires that NB � 1. Furthermore,
our description of the Fermi gas component is based on the
Thomas-Fermi approximation which is valid for N

1/3
F � 1

[34]. We will only consider parameters that satisfy this large
N limit.

B. Energetics of the system

We will consider the total energy density of the Bose-Fermi
state ε[nB,nF ] to be the sum of the boson contribution
εB[nB], fermion contribution εF [nF ], and boson-fermion term
εBF [nB,nF ] [25]. We will proceed by modeling each energy
contribution of the Gaussian wave packets in turn. Note that
the energy is the volume integral of the corresponding energy
density E = ∫

ε[n]dV . For a different choice of ansatz and
in the absence of p-wave interactions, Karpiuk et al. [18]
followed a similar variational approach to explore Bose-Fermi
soliton solutions.

1. Bosonic energy contribution

The energy density of the zero-temperature boson gas,
interacting via s-wave interactions of scattering length aB ,
is provided by the Gross-Pitaevksii model [34],

εB[nB] = h̄2

2m
|∇√

nB |2 + VB(r)nB + 2πh̄2aB

mB

n2
B. (3)

The terms of the right-hand side represent, respectively, the
kinetic, potential, and interaction energies of the boson gas.
For convenience we will express length in terms of the boson
harmonic oscillator length lho = √

h̄/mBωB and adopt dimen-
sionless variational length scales lz = Lz/lho and lr = Lr/lho.
Furthermore, we rescale energy by the bosonic harmonic
oscillator energy h̄ωB via E → E/(h̄ωB). Substituting nB(r)
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into Eq. (3) and integrating over space, one arrives at the
well-established expression for the total boson energy [34],

EB

NB

= 1

2

(
1

l2
r

+ 1

2l2
z

)
+ 1

2
l2
r + 1√

2π

aB

lho

NB

lzl2
r

. (4)

We will find that the energetics of the full Bose-Fermi system
[summarized in Eq. (1)] follow a similar pattern to this result
and so it is pertinant to make some general observations.
For aB > 0 there is no well-defined energy minimum within
this “energy landscape,” i.e., no static solution. However,
the energy does becomes minimized in the unphysical limit
lz → ∞, which represents the tendency of a wave packet
therein to disperse. We will henceforth refer to this as the
dispersive instability. For aB < 0 the negative interaction term
dominates over all other (positive) energy contributions in
the limit (lr ,lz) → (0,0), i.e., the global energy minimum is
a collapsed state of zero width. It is possible, for relatively
weak attractive interactions, to support local energy minima
in this system and, thus, static soliton solutions. However, for
stronger attractive interactions, no local energy minima exist
and the energy landscape decays monotonically as (lr ,lz) → 0.
A wave packet in this system will tend toward this zero-width
state. We will henceforth refer to this scenario as the collapse
instability.

2. Fermionic energy contribution

Determination of the mean-field fermionic energy density
in general requires solving NF coupled Hartree-Fock equa-
tions. In this manner, Karpiuk et al. [17] successfully modelled
BF soliton solutions, but the approach is only tractable for of
the order of 10 fermions. Instead, we will adopt an analytic
form for the fermion energy density derived by Roth and
Feldmeier [25]. Employing the Thomas-Fermi approximation,
this approach follows from deriving the energy density of a
homogeneous fermionic system and replacing the fixed density
with nF (r) (thus neglecting the contribution to the energy
from density gradients). The Thomas-Fermi approximation
is valid for the equilibrium state of a Fermi gas when the
fermion wavelength is much smaller than the system size. For
a trapped Fermi gas, it can be shown that this is satisfied
when N

1/3
F � 1 [34]. In agreement with this, the Thomas-

Fermi approximation has been shown to give an excellent
mean-field description of BF mixtures (in close agreement
with Hartree-Fock calculations) for NF ∼ 1000 [25,35]. Via
this approach, the energy density of the fermions (potential,
kinetic, and p-wave interaction terms, respectively) is [25],

εF [nF ] = VF (r)nF + 3h̄2(6π2)2/3

10mF

n
5/3
F + (6π2)5/3

5πmF

h̄2a3
F n

8/3
F ,

(5)

where aF is the p-wave contact interaction between fermions
[25]. Inserting the Gaussian profile nF (r) and integrating gives
the total fermionic energy,

EF

NF

= α
mB

mF

(
NF

lzl2
r

)2/3

+ 1

2

mF

mB

(
ωF

ωB

)2

l2
r

+ 4β
mB

mF

(
aF

lho

)3 (
NF

lzl2
r

)5/3

, (6)

where α = (9/50)62/3(3/5)1/2π1/3 ≈ 0.6743 and β =
(3/160π4)(3π/8)1/2(6π2)5/3 ≈ 0.1880.

3. Bose-Fermi energy contribution

Again, under the Thomas-Fermi approximation, the in-
teraction energy density between the bosons and fermions
εBF [nB,nF ] is [25],

εBF [nB,nF ] = 2πh̄2aBFs

μ
nBnF + (6π2)5/3

20πμ
h̄2a3

BFpnBn
5/3
F ,

(7)

where aBF s is the s-wave boson-fermion scattering coefficient,
aBFp is the p-wave scattering length, and μ = mBmF /(mB +
mF ). For the density profiles [Eq. (2)] the boson-fermion
interaction energy is

EBF

NB

= 1√
2π

aBF s

lho

mB

μ

NF

lzl2
r

+ β
mB

μ

(
aBFp

lho

)3 (
NF

lzl2
r

)5/3

.

(8)

C. Energy landscapes and obtaining the variational solutions

The total energy of our Gaussian Bose-Fermi wave packets
is given by E = EB + EF + EBF . On fixing the experimental
parameters (atom masses, atom numbers, scattering lengths,
and trap frequencies), the energy becomes confined to being
a function of only the wave-packet size parameters lr and lz.
This function E(lr ,lz) can be visualized as an energy landscape
in which the presence of an energy minimum represents a
variational solution. In practice, we numerically define this
energy landscape and perform a simple computational search
for such energy minima. Note that an unphysical solution can
occur at the origin representing the effect of collapse. It is
unphysical in the sense that a real Bose-Fermi system cannot
shrink to zero size; in reality, a collapse will eventually become
halted by the surge of three-body losses as the gas densities
rise. At most, only one physical solution is ever present in
these energy landscapes. We denote the coordinates of such a
variational solution by the coordinates l0

z and l0
r .

Where we map out regions of soliton solutions within a
particular parameter space, e.g., aBFs − NF space, this is done
by randomly sampling combinations of these parameters. We
typically restrict our numerical search to landscapes of extent
[0,2]lr × [0,10]lz.

D. Analytical limit: No p-wave interactions and NB � NF

We can gain a simplified analytic form for the total
variational energy if we neglect p-wave interactions (aF =
aBFp = 0) and assume NB � NF . The latter condition renders
the fermion-fermion energy terms negligible and makes
significant only terms involving NB . The total variational
energy then reduces to

E

NB

= 1

2l2
r

+ 1

4l2
z

+ l2
r

2
+

(
NB

aB

lho
+ aBFs

lho

mB

μ
NF

)
1√

2πlzl2
r

. (9)
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This form will enable us to gain physical intuition of the
system and provide simple criteria for the existence of stable
Bose-Fermi solitons. Importantly, it has the same form as the
Gaussian variational energy of a purely bosonic gas [10] but
with an effective s-wave scattering length given by [26]

aeff = aB + aBFs

NF

NB

(
mF + mB

mF

)
. (10)

A rudimentary requirement for the ability to self-trap is that the
net interactions are attractive (aeff < 0). This places a lower
bound on the ratio NF /NB for which Bose-Fermi solitons can
be self-supported,

NF

NB

> − aB

aBFs

(
mF

mF + mB

)
. (11)

Furthermore, bright bosonic solitons are established to
collapse when the scattering length is less than the critical
value ac

B = kclho/NB . For a 3D Gaussian wave packet the
dimensionless coefficient has been shown to be kc = −0.778
[10] (for other shapes of wave packet the value differs but
remains of the order of unity). This leads to an upper bound
for the ratio NF /NB in order to prevent collapse of the system,

NF

NB

<
kclho

NBaBFs

(
mF

mF + mB

)
− aB

aBFs

(
mF

mF + mB

)
. (12)

From Eqs. (11) and (12) it is evident that the soliton
solutions exist within a “window” of fermion atom number
NF whose width is,

�NF = kclho

aBFs

(
mF

mF + mB

)
. (13)

Equations (11)–(13) provide us with an estimate for the
locality and range over which BF solitons solutions may exist.
Equation (13) indicates that the width of the soliton bands
can be extended by employing weaker radial trapping and
weaker Bose-Fermi scattering length. However, we will find
that the soliton bands are even more restricted if the condition
NB/NF � 1 is removed. Indeed, the above equations predict
the existence of soliton solutions at the native Bose-Fermi
scattering length aBFs = −215a0. However, as we shall see,
the full variational results predict that the soliton bands become
vanishing narrow at this scattering length.

III. RESULTS

While our analytical results presented so far are applicable
to any Bose-Fermi species, we will focus our ensuing results
on a 87Rb and 40K mixture due to its naturally strong and
attractive Bose-Fermi coupling and its prominent experimental
occurence to date [14,23]. We will assume that the atoms
are spin-polarized and confined (in the radial direction) by
a magnetic trap such that the trap frequencies are related
via ωF /ωB = (mB/mF )1/2. Throughout our results we fix the
boson-boson s-wave scattering length to be the experimentally
measured value of aB = 99a0 [36], where a0 = 5.3 × 10−11 m
is the Bohr radius. We will consider the radial trap frequency,
boson and fermion atom numbers, and remaining scattering
lengths to be variables. In the cases where we fix the
boson-fermion s-wave scattering length, we take it to be its
native value of aBFs = −215a0, as measured by Ferlaino

et al. [32]. Note that the strength of boson-boson interactions,
boson-fermion interactions, and fermion-fermion interactions
can be experimentally tuned, typically over many orders of
magnitude, by using magnetic and optical fields to access
interatomic scattering resonances. For example, magnetic
Feshbach resonances have shown that for a 87Rb-40K mixture
aBF can be precisely tuned over the range [−1500a0,1500a0]
[37] while for 40K the p-wave interaction cross section has
been varied by over three orders of magnitude [31].

First, we will explore the soliton solutions in the absence of
p-wave interactions. Following this, we will consider how
p-wave interactions between fermions modify the soliton
solutions. We will not explicitly present results for finite
boson-fermion p-wave interactions but will comment on how
they affect the system in Sec. IV.

A. Absence of p-wave interactions

1. Soliton bands in NF − aB Fs space

Figure 1(a) presents the soliton solutions in the parameter
space of aBFs − NF for 105 bosons and various radial trap
frequencies [ωB/2π = 10 (green solid region), 100 (blue
dotted region), and 1000 Hz (black dashed region)]. For each
trap frequency, the soliton solutions exist in a narrow band in
the aBFs < 0 half-plane. (Note that on the scale of the figure
these bands appear as lines.) Above each band, the system
is unstable to dispersion and below the band it is unstable
to collapse. Each band scales approximately as −1/NF , as
indicated by rearranging Eqs. (11) and (12). The bands are
weakly dependent on trap frequency. Indeed, their differences
are apparent only on a much more magnified scale [inset
of Fig. 1(a)]. As ωB is increased, the bands shift upward in
aBFs and become slightly narrower. The latter change is in
qualitative agreement with Eqs. (11)–(13) which predict the
band width to scale in proportion to lho = √

h̄/mωB . Although
not visible in Fig. 1(a), the bands become progressively
narrower as NF increases. Indeed, beyond some critical
fermion number N crit

F we cannot detect further solutions.
This marks an important difference between the approximated
analytic predictions of Eqs. (11)–(13) and the full variational
solutions. For example, for trap frequencies ωB/2π = 10,100,
and 1000 and N crit

F ≈ 760,660, and 620, respectively.
Within the soliton bands, the soliton radial size l0

r remains
close to lho throughout. The axial size l0

z is infinite at its
dispersive boundary and reduces as aBFs is made more
attractive, with the soliton becoming almost spherical at the
point of collapse. This is qualitatively similar to the case for
BEC bright solitons [10]. Figure 2 shows how the soliton bands
change for different number of bosons [in both linear (a) and
logarithmic plots (b)]. For increasing NB the bands shift to
more negative aBFs and larger NF , and the bands becomes
wider as NB is reduced.

Our numerical results predict that, for the numbers of
bosons and fermions permitted by our model (�1), soliton
solutions do not occur at the native Bose-Fermi scattering
length aBFs = −215a0. The soliton solutions exist only for
scattering lengths aBFs 	 −215a0. However, our results show
that as NB and, by association, NF [since the ratio NB/NF must
remain within narrow bounds for soliton-supporting conditions
to be met; see, e.g., Eqs. (11)–(13)] is decreased the soliton
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FIG. 1. (Color online) (a) The bands of soliton solutions in
aBFs − NF space for a 87Rb-40K mixture with zero p-wave inter-
action. We present a fixed number of bosons NB = 105 and various
trap frequencies ωB/2π = 10 (green solid line), 100 (blue dotted
line), and 1000 (black dashed line) Hz. The inset provides a close
up of the soliton bands. (b) Energy landscapes (ωB/2π = 10 Hz,
NF = 500, and NB = 105) showing four distinct regimes: (i) well
above the soliton band (aBFs = −6200 a0), (ii) just above the band
(aBFs = −6260 a0), (iii) within the band (aBFs = −6296 a0), and
(iv) below the band (aBFs = −6350 a0). These plots corresponds to
the crosses in (a). In (iii) the soliton solution is highlighted by the
white cross.

solutions extend to smaller |aBFs |. Indeed, if one were to
extrapolate our predictions (beyond its strict regime of validity)
to lower atom number, one could imagine that the soliton bands
would reach aBFs = −215a0. Indeed, using a model valid for
low atom numbers, Karpiuk et al. [17,18] predict the existence
of BF solitons at the native aBFs = −215a0 for very low atom
numbers.

2. Energy landscape regimes

To gain physical insight into the system, in Figs. 1(i)–1(iv)
we present energy landscapes of four distinct regimes in this
parameter space. While we present the landscapes for a specific
set of parameters (ωB/2π = 10 Hz, NF = 500, and NB =

FIG. 2. (Color online) (a) The bands of soliton solutions in aBFs −
NF space for no p-wave contributions. We consider fixed trapping
ωB/2π = 100 Hz and various boson numbers of NB = 500 (green),
5000 (black), 50 000 (red), and 100 000 (blue). (b) Log-log plot of the
soliton bands in (a), with the analytic predictions of Eqs. (11) (dashed
line) and (12) (dotted line). The gray arrows indicate the direction of
increasing NB.

105), the qualitative behavior is generic. The location of each
case is indicated in the inset of Fig. 1(a) by crosses. These four
regimes [Figs. 1(i)–1(iv)] are as follows:

(i) Sufficiently above the soliton band, the net contact
interactions are repulsive (positive) and the energy landscape
consists of a downward “chute” aligned along the lz axis. Any
wave packet subjected to this system will disperse axially.

(ii) Just above the soliton band the net interactions become
attractive (negative) and compete with the positive energy
terms. The chute remains but the global energy minimum is
now at the origin, where the energy diverges to −∞. The
attraction is insufficiently strong to support a soliton.

(iii) Within the band, the play-off between the interspecies
attraction and repulsive zero-point kinetic energy leads to a lo-
cal energy minimum at [l0

r ,l
0
z ] (highlighted by the black/white

star), corresponding to the self-trapped soliton solution.
(iv) Below the soliton band the attractive interactions dom-

inate the kinetic energy such that the only energy minimum
is the global minimum at the origin, representing the collapse
instability of the system.

3. Comparison to the simplified limit of Eqs. (11) and (12)

In Fig. 2(b) we present a comparison between the vari-
ational predictions for the soliton bands and the simplified
analytic estimates provided by Eqs. (11) (dashed line) and (12)
(dotted line). For ease of observing the differences between the
two methods, the data are presented on a log-log plot. For a low
number of bosons (NB = 500) the variational solutions deviate
from the predictions. However, for larger boson numbers the
agreement is excellent. This is to be expected since these
predictions assume NB/NF � 1. Indeed for NB = 5000 and
above, the simplified forms give very good predictions for the
regimes of soliton solutions (indistinguishable from the full
variational results on the scale of this figure).

An important difference, however, is that according to the
analytical result, the width of the soliton band decreases as
1/NF , becoming vanishingly small only as NF → ∞. In
contrast, the full variational solutions disappear beyond a finite
NF . Furthermore, numerically, the bands increase in width as
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NB is increased, whereas the analytical prediction for the band
width is independent of NB.

4. Comparison to findings elsewhere

We compare our findings thus far to the relevant results
elsewhere. The works of Refs. [17,19] predict the existence
of Bose-Fermi solitons when the Bose-Fermi interaction
is sufficiently attractive, which is in qualitative agreement
with our findings. However, the 1D setting of these studies
prevented the modeling of collapse effects. To our knowledge
the only work to have explored Bose-Fermi solitons in 3D
is that of Karpiuk et al. [18]. Using mean-field Hartree-Fock
simulations and variational modeling they showed that Bose-
Fermi solitons exist over a range of atom numbers and Bose-
Fermi interaction strengths, in agreement with our findings. In
particular, they numerically explored a sech-Gaussian ansatz
for the BF solitons and presented a phase diagram (Fig. 7
of Ref. [18]). We have verified that our methodology agrees
to within 10% of their variational results. Such deviation is
anticipated due, in this work, to the use of a Gaussian ansatz,
which we note again allows an analytical prediction for the
governing variational equation.

One cannot directly compare our results to the works on the
stability of trapped Bose-Fermi mixtures due to the significant
role of trapping. However, in Ref. [26] an expression is derived
for the effective energy of the bosons in a (trapped) Bose-Fermi
mixture up to s-wave scattering (Eq. (11) in Ref. [26]). As
would be expected, for zero axial trapping, this is identical to
our Eq. (9).

The previous studies of Bose-Fermi solitons have consid-
ered only s-wave interactions. The significant step in the new
work presented here is the inclusion of p-wave interactions.
As we show in the following, p-wave interactions can be used
to modify the energy landscapes significantly such that soliton
solutions become global energy minima of the system and the
collapse instability is removed.

B. The role of p-wave fermion interactions

1. Soliton bands in aF − NF space

We now consider the presence of fermion-fermion (p-wave)
interactions. We fix the boson-fermion s-wave interaction to its
natural value aBFs = −215a0 and explore the parameter space
of aF − NF . The results are shown in Fig. 3 for fixed boson
number NB = 105 and various trap frequencies [ωB/2π = 10
(horizontal hatch), 100 (vertical hatch), and 1000 Hz (gray
region)]. Recall that in the absence of p-wave interactions, no
solitons were obtained for aBFs = −215a0. In contrast, in the
presence of repulsive p-wave fermion-fermion interactions,
we now see extensive regions of soliton solutions. The regions
become larger for increased trap frequency. This change in
size occurs due to a shift in the lower boundary of the regions;
the upper boundary is insensitive to ωB , as can be seen
in Fig. 3(a).

This enhanced stability when p-wave fermion-fermion
interactions are included arises from the fact that the fermion-
fermion interaction term in Eq. (6) scales as �−5. Thus, if
aF > 0, this term ensures that the energy diverges to positive
values as � → 0 and completely removes the presence of a

a F
/ a

0

FIG. 3. (Color online) (a) Soliton bands in aF − NF space
for boson-fermion interaction aBFs = −215 a0 in the presence of
fermion-fermion p-wave interactions. The number of bosons is fixed
to NB = 100 000 and we present trap frequencies of ωB/2π = 10
(horizontal hatch), 100 (vertical hatch), and 1000 Hz (gray region).
(b) Energy landscapes (for ωB/2π = 100 and NF = 20 000) of
(i) below the band (aF = 50 a0), (ii) within the band (aF = 125 a0),
and (iii) above the band (aF = 180 a0). The locations of these cases
are indicated in plot (a).

collapse instability. This energetic behavior is demonstrated
by the landscapes shown in Fig. 3(b).

(i) Below the relevant soliton band [e.g., the band shaded
with vertical hatch in Fig. 3(a)] there is a large low-energy
region in the landscape. However, the energy does diverge to
+∞ close to the origin [barely visible in Fig. 3(i)]. Note that
there is no energy minimum in this landscape—the transition
between the low-energy region and the divergent region is in
the form of a saddle point.

(ii) Solutions become supported when the fermion-fermion
interaction becomes larger and the play-off between all of the
energy contributions generates a global minimum in the energy
landscape (white cross).

(iii) Above the soliton band, the repulsive fermion-fermion
interaction becomes so large that it makes the system fully
dispersive.

Case (ii) is an intriguing prediction. It suggests that the
presence of repulsive p-wave fermion interactions leads to
solitons which are the global energy minimum of the system.
This indicates that such solitons would be far more robust and
stable than their bosonic counterparts, which are well known
to exist as metastable states prone to an irremovable collapse
instability.

In Fig. 4 we show how the bands change with the number
of bosons. As the number of bosons decreases, the bands shift
to lower NF and become narrower. Indeed, the bands scale
approximately as 1/NB , i.e., if we plot NF /NB on the x axis,
the bands approximately overlap with each other.
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FIG. 4. Soliton bands in aF − NF space for fixed trap frequency
ωB/2π = 100 Hz and boson numbers of NB = 10 000 (solid), 50 000
(dashed), and 100 000 (dotted).

C. Soliton bands in aF − aB Fs space

The simultaneous manipulation of more than one scattering
length has not been experimentally demonstrated. However,
in principle, this could be possible through a combination of
magnetic, optical, and confinement resonances. With this is
mind and by way of exploring the soliton solutions further,
we now turn to examine the regions of soliton solutions in
aF − aBFs space [Fig. 5(a)] for fixed NB and NF . We will see
that the parameter space is particularly interesting because it
offers the possibility of forming bright soliton solutions which
are deep global minima. In this case, we observe complex-
shaped regions of soliton solutions. This includes a large cusp
shaped region in the aF > 0 half-plane. Although not shown,
this region extends to indefinitely negative aBFs . Furthermore,
the soliton region features narrow “fingers” which extend far
into the aF < 0 half-plane.

We discriminate six distinct regions in this parameter
space which we interpret by reference to their typical energy
landscapes presented in Fig. 5(b):

(i) Above this narrow band the landscape is dominated
by dispersion with a localized collapse region, but no local
minimum exists.

(ii) Within the soliton band there exists a shallow energy
minimum [case (ii)] adjacent to the collapse and dispersive
regions.

(iii) Below the soliton band the whole landscape is unstable
to collapse.

(iv) and (v) In the regions containing points (iv) and (v)
there is no collapse region at the origin and there exists a
well-localized and deep energy minimum denoting a soliton
solution.

(vi) This region is dispersive due to the dominance of
repulsive interactions.

Regions (i)–(iii), and (vi) possess energy landscapes which
are analogous to those seen in Fig. 1(b). However, the most
intriguing regions are (iv) and (v). These solutions are the
most common type that exist in this parameter space. Like the

FIG. 5. (Color online) Soliton bands (as shown by their boundary
lines) in the parameter space of aF and aBFs . (a) We fix NB =
100 000 and NF = 500, and use ωB/2π = 10 (red dashed line), 100
(green solid line), and 1000 (blue dot-dashed line) Hz. (b) Energy
landscapes for the ωB/2π = 10 case at the points (i) aF = −2000 a0,
aBFs = −6280 a0; (ii) aF = −2000 a0, aBFs = −6295 a0; (iii) aF =
−2000 a0, aBFs = −6320 a0; (iv) aF = 2000 a0, aBFs = −6280 a0;
(v) aF = 3000 a0, aBFs = −6320 a0; and (iv) aF = 4000 a0, aBFs =
−6280 a0. These points are denoted in (a).

observation in Fig. 3(ii), the soliton now becomes the global
energy minimum of the system. However, these landscapes are
strikingly well localized and deep. The depth of this minimum
is typically of the order of 100 h̄ωB . For a comparison, for
a bright bosonic soliton the depth of the energy minima is
of the order of 0.1 h̄ωB . Within the context of our scaling
solutions (fixed Gaussian shape), this depth and narrowness of
the energy minima indicate extreme stability of the solutions
to shape modification, including collapse and dispersion.

For completenesss, Fig. 6 demonstrates how these extensive
soliton regions in aF − aBFs space become modified for
different NB . The presence of the “fingers” is sensitive to
NB but the main region of solutions persists, albeit shifting to
more negative aBFs with increasing NB .

While here we have limited our study to the p-wave interac-
tions of only the fermions, the same qualitative soliton regimes
and solutions are obtained if the p-wave boson-fermion
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FIG. 6. Soliton bands in the parameter space aF − aBFs (shown
by their boundary lines). We fix ωB/2π = 100 Hz and NF = 500 and
consider NB = 1000 (dashed line), 10 000 (solid line), and 100 000
(dotted line).

interaction is included instead (or, indeed, if both are included).
This is because the p-wave fermion-boson interaction has the
same functional form (scaling as �−5).

IV. DISCUSSION AND CONCLUSION

Our results show that in the absence of p-wave contribu-
tions the range of soliton solutions is rather limited, being
confined to narrow bands in the aBF − NF space. Indeed,
the solutions behave similarly to bright bosonic solitons
but with an effective scattering length. While reducing the
radial confinement widens the soliton bands, this also makes
the system more prone to collective excitations which may
disrupt the soliton. For a 87Rb-40K mixture and in the validity
regime of our approach (NB,NF � 1) we cannot locate soliton
solutions at the native boson-fermion scattering length of
−215 a0. Values of around −1000 a0 are required to reach
a soliton band at these atom numbers (indeed, the work of
Karpiuk et al. demonstrated that atom numbers of order unity
are required to support Bose-Fermi solitons at the native
87Rb-40K scattering length). While the scattering length can be
engineered to such large values through scattering resonance
tuning [37], the ensuing soliton bands appear to be so narrow
that experimentally locating them is likely to be problematic.
Furthermore, there remains a collapse instability in the system
and the ratio of bosons to fermions is constrained to small
values. In contrast, the presence of repulsive p-wave fermion-
fermion interactions has a dramatic stabilizing effect on the
system. This can lead to a removal of the collapse instability
such that the soliton solutions become global energy minima.
We find extensive soliton regimes, in which the soliton minima

are extremely deep, suggesting that they may form soliton
structures that are considerably more robust than in the absence
of p-wave interactions. The p-wave interaction also provides a
strong tuning parameter, enabling the boson-fermion ratio to be
dramatically varied. Importantly, for a potential experimental
realization of BF solitons, we find extensive soliton solutions
at the native boson-fermion interaction and with only moderate
fermionic interactions.

The remarkable capacity of repulsive p-wave interactions to
remove the collapse instability stems from the scaling behavior
of its energy contribution. Denoting a generalized length
scale of the Gaussian wave packet as �, the total variational
energy of the Bose-Fermi system is of the form

E ∼ �2 + 1

�2
± 1

�3
± 1

�5
. (14)

The first two terms, the kinetic and potential energy terms,
are always positive. The last two terms, the s-wave and
p-wave interaction energies, respectively, may be positive or
negative. In the absence of p-wave interactions, a negative
s-wave term will cause the energy to diverge to −∞ as
� → 0, signifying the presence of the collapse instability. For
nonzero p-wave interactions, the p-wave term dictates the
fate of the system as � → 0 and, importantly, for positive
p-wave interactions the collapse instability is completely
removed.

It is important to note that this scaling behavior originates
from the Thomas-Fermi approximation and so is not limited
to Gaussian wave packets. Consider homogeneous Bose and
Fermi gases in a large hard-wall box of volume �3. It is trivial
to see from Eqs. (3) and (5) that the energy scales as above,
minus the �2 term. Thus it is clear that the capacity of repulsive
p-wave interactions to stabilize against collapse will extend to
trapped Bose-Fermi mixtures in general.

While we have presented results for p-wave interactions in
only the fermion-fermion case, we find qualitatively similar
soliton regions, landscapes, and conclusions when including
boson-fermion p-wave interactions instead. This is because
the same energy scaling discussed above applies.

In conclusion, according to a variational model valid
for large atom number, the presence of repulsive p-wave
interactions in Bose-Fermi mixtures removes the collapse
instability and leads to stable, robust bright soliton stationary
states that are global energy minima of the system. We have
discussed specifically the boson-fermion pairing of 87Rb and
40K, but the stabilizing effect of repulsive p-wave interactions
should apply across all ultracold Bose-Fermi mixtures. Given
that the collapse instability has proved a major hindrance to
the controlled generation, manipulation, and interaction of
matter-wave solitons to date, these more stable p-wave entities
may provide a more versatile route to explore and exploit the
special characteristics of solitons.
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S. Röthel and A. Pelster, Eur. Phys. J. B 59, 343 (2007).

[25] R. Roth and H. Feldmeier, Phys. Rev. A 64, 043603 (2001); 65,
021603(R) (2002); R. Roth, ibid. 66, 013614 (2002).

[26] T. Karpiuk, M. Brewczyk, M. Gajda, and K. Rzazewski, J. Phys.
B 38, L215 (2005).

[27] X. J. Liu, M. Modugno, and H. Hu, Phys. Rev. A 68, 053605
(2003).

[28] H. Saito and M. Ueda, Phys. Rev. Lett. 90, 040403 (2003); F. K.
Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed,
Phys. Rev. A 67, 013605 (2003); S. K. Adhikari, ibid. 69, 063613
(2004); G. D. Montesinos, V. M. Perez-Garcia, and P. J. Torres,
Physica D 191, 193 (2004); V. V. Konotop and P. Pacciani,
Phys. Rev. Lett. 94, 240405 (2005); A. Itin, T. Morishita, and
S. Watanabe, Phys. Rev. A 74, 033613 (2006); G. Filatrella,
B. A. Malomed, and L. Salasnich, ibid. 79, 045602 (2009).

[29] F. Dalfovo and S. Stringari, Phys. Rev. A 53, 2477 (1996); S. K.
Adhikari, Phys. Rev. E 65, 016703 (2001); Phys. Rev. A 66,
043601 (2002); New J. Phys. 5, 137 (2003); N. A. Jamaludin,
N. G. Parker, and A. M. Martin, Phys. Rev. A 77, 051603(R)
(2008); 83, 059910(E) (2011); M. C. Tsatsos, A. I. Streltsov,
O. E. Alon, and L. S. Cederbaum, ibid. 82, 033613 (2010);
J. Abdullaev, A. S. Desyatnikov, and E. A. Ostrovskaya, J. Opt.
13, 064023 (2011).

[30] L. S. Cederbaum, A. I. Streltsov, and O. E. Alon, Phys. Rev.
Lett. 100, 040402 (2008).

[31] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev.
Lett. 90, 053201 (2003).

[32] F. Ferlaino, C. Derrico, G. Roati, M. Zaccanti, M. Inguscio,
G. Modugno, and A. Simoni, Phys. Rev. A 73, 040702(R)
(2006); 74, 039903(E) (2006).

[33] K. K. Das, Phys. Rev. Lett. 90, 170403 (2003).
[34] C. J. Pethick and H. Smith, Bose-Einstein Condensation in

Dilute Gases (Cambridge University Press, Cambridge, 2001).
[35] N. Nygaard and K. Molmer, Phys. Rev. A 59, 2974

(1999).
[36] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen,

and B. J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002).
[37] C. Klempt, T. Henninger, O. Topic, J. Will, W. Ertmer,

E. Tiemann, and J. Arlt, Phys. Rev. A 76, 020701(R) (2007).

013604-9

http://dx.doi.org/10.1103/PhysRevLett.96.170401
http://dx.doi.org/10.1103/PhysRevLett.96.170401
http://dx.doi.org/10.1088/0953-4075/41/4/045303
http://dx.doi.org/10.1103/PhysRevA.83.041602
http://dx.doi.org/10.1103/PhysRevA.83.041602
http://dx.doi.org/10.1016/j.physd.2008.07.011
http://dx.doi.org/10.1103/PhysRevA.57.3837
http://dx.doi.org/10.1103/PhysRevA.57.3837
http://dx.doi.org/10.1088/0953-4075/40/15/012
http://dx.doi.org/10.1016/j.physd.2008.07.001
http://dx.doi.org/10.1016/j.physd.2008.07.001
http://dx.doi.org/10.1103/PhysRevA.66.063602
http://dx.doi.org/10.1126/science.1059318
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1103/PhysRevLett.88.160401
http://dx.doi.org/10.1103/PhysRevLett.88.160401
http://dx.doi.org/10.1103/PhysRevLett.89.150403
http://dx.doi.org/10.1103/PhysRevLett.89.150403
http://dx.doi.org/10.1103/PhysRevLett.93.183201
http://dx.doi.org/10.1103/PhysRevLett.96.020401
http://dx.doi.org/10.1103/PhysRevLett.96.020401
http://dx.doi.org/10.1140/epjd/e2008-00067-5
http://dx.doi.org/10.1140/epjd/e2008-00067-5
http://dx.doi.org/10.1103/PhysRevA.79.021601
http://dx.doi.org/10.1103/PhysRevA.79.021601
http://dx.doi.org/10.1103/PhysRevA.82.011608
http://dx.doi.org/10.1103/PhysRevA.82.011608
http://dx.doi.org/10.1103/PhysRevLett.93.100401
http://dx.doi.org/10.1103/PhysRevLett.93.100401
http://dx.doi.org/10.1103/PhysRevA.73.053602
http://dx.doi.org/10.1103/PhysRevA.73.053602
http://dx.doi.org/10.1103/PhysRevA.72.053608
http://dx.doi.org/10.1103/PhysRevA.75.023616
http://dx.doi.org/10.1103/PhysRevA.76.023612
http://dx.doi.org/10.1103/PhysRevA.72.063602
http://dx.doi.org/10.1103/PhysRevA.76.043626
http://dx.doi.org/10.1103/PhysRevA.74.043620
http://dx.doi.org/10.1103/PhysRevA.74.043620
http://dx.doi.org/10.1103/PhysRevA.73.013612
http://dx.doi.org/10.1103/PhysRevA.73.013612
http://dx.doi.org/10.1103/PhysRevA.51.4704
http://dx.doi.org/10.1103/PhysRevLett.86.4211
http://dx.doi.org/10.1103/PhysRevA.64.055602
http://dx.doi.org/10.1126/science.1077386
http://dx.doi.org/10.1103/PhysRevLett.80.1804
http://dx.doi.org/10.1103/PhysRevA.64.033611
http://dx.doi.org/10.1103/PhysRevA.76.013609
http://dx.doi.org/10.1140/epjb/e2007-00288-x
http://dx.doi.org/10.1103/PhysRevA.64.043603
http://dx.doi.org/10.1103/PhysRevA.65.021603
http://dx.doi.org/10.1103/PhysRevA.65.021603
http://dx.doi.org/10.1103/PhysRevA.66.013614
http://dx.doi.org/10.1088/0953-4075/38/13/L02
http://dx.doi.org/10.1088/0953-4075/38/13/L02
http://dx.doi.org/10.1103/PhysRevA.68.053605
http://dx.doi.org/10.1103/PhysRevA.68.053605
http://dx.doi.org/10.1103/PhysRevLett.90.040403
http://dx.doi.org/10.1103/PhysRevA.67.013605
http://dx.doi.org/10.1103/PhysRevA.69.063613
http://dx.doi.org/10.1103/PhysRevA.69.063613
http://dx.doi.org/10.1016/j.physd.2003.12.001
http://dx.doi.org/10.1103/PhysRevLett.94.240405
http://dx.doi.org/10.1103/PhysRevA.74.033613
http://dx.doi.org/10.1103/PhysRevA.79.045602
http://dx.doi.org/10.1103/PhysRevA.53.2477
http://dx.doi.org/10.1103/PhysRevE.65.016703
http://dx.doi.org/10.1103/PhysRevA.66.043601
http://dx.doi.org/10.1103/PhysRevA.66.043601
http://dx.doi.org/10.1088/1367-2630/5/1/137
http://dx.doi.org/10.1103/PhysRevA.77.051603
http://dx.doi.org/10.1103/PhysRevA.77.051603
http://dx.doi.org/10.1103/PhysRevA.83.059910
http://dx.doi.org/10.1103/PhysRevA.82.033613
http://dx.doi.org/10.1103/PhysRevA.82.033613
http://dx.doi.org/10.1088/2040-8978/13/6/064023
http://dx.doi.org/10.1088/2040-8978/13/6/064023
http://dx.doi.org/10.1103/PhysRevLett.100.040402
http://dx.doi.org/10.1103/PhysRevLett.100.040402
http://dx.doi.org/10.1103/PhysRevLett.90.053201
http://dx.doi.org/10.1103/PhysRevLett.90.053201
http://dx.doi.org/10.1103/PhysRevA.73.040702
http://dx.doi.org/10.1103/PhysRevA.73.040702
http://dx.doi.org/10.1103/PhysRevA.74.039903
http://dx.doi.org/10.1103/PhysRevLett.90.170403
http://dx.doi.org/10.1103/PhysRevA.59.2974
http://dx.doi.org/10.1103/PhysRevA.59.2974
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://dx.doi.org/10.1103/PhysRevA.76.020701

