
PHYSICAL REVIEW A 85, 013602 (2012)

Rayleigh-Taylor instability in a two-component Bose-Einstein condensate with rotational symmetry
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The interfacial instability and subsequent dynamics in a phase-separated two-component Bose-Einstein
condensate with rotational symmetry are studied. When the interatomic interaction or the trap frequency is
changed, the Rayleigh-Taylor instability breaks the rotational symmetry of the interface, which is subsequently
deformed into nonlinear patterns including mushroom shapes.

DOI: 10.1103/PhysRevA.85.013602 PACS number(s): 03.75.Mn, 67.85.De, 67.85.Fg, 47.20.Ma

I. INTRODUCTION

The Rayleigh-Taylor instability [1–4] (RTI) is the insta-
bility of an interface between two fluids in a metastable
state. For instance, when a layer of a heavier fluid is laid
on a lighter fluid, the system is energetically unfavorable,
and the two fluids tend to exchange their positions. However,
if the two fluids are immiscible and their interface is flat,
the exchange cannot occur without breaking the translation
symmetry of the interface. Once an infinitesimal modulation
arises on the interface, it exponentially grows due to the RTI,
and the interface develops into complicated patterns, such as a
mushroom-shaped pattern. Such phenomena are found through
nature on a wide scale, ranging from laboratory to astronomical
scales. Recently, these kinds of interfacial instabilities have
been studied for a system of two-component Bose-Einstein
condensate (BEC) [5–8].

The RTI is a symmetry-breaking phenomenon, that is,
even when the interface has symmetry (e.g., the translation
symmetry of a flat interface and the rotational symmetry
of a spherical interface), an infinitesimal modulation grows
exponentially, and the symmetry is spontaneously broken.
The RTI with rotational symmetry breaking is an important
subject, occurring in a variety of systems: e.g., exploding
supernovas [9–11], imploding targets in inertial-confinement
fusion [12], and collapsing cavitation bubbles [13,14]. In the
present paper, we study the rotational-symmetry-breaking RTI
in a trapped two-component BEC. Systems of trapped BECs
that have so far been proposed for observing the RTI are a
tight, pancake-shaped system in which the two components
separate into two semicircular shapes [5] and a cigar-shaped
system in which a two-component BEC forms a domain
structure in the axial direction [6]. In these systems, however,
the symmetry-breaking RTI cannot be observed since the
relevant symmetry is broken from the initial state due to
the inhomogeneity of the trapped systems. In contrast, in the
present paper, we propose trapped systems that explicitly show
the symmetry-breaking RTI.

We consider a two-component BEC with rotational sym-
metry in which the two components separate radially and
the inner component is surrounded by the shell of the outer
component. The interface between the two components has a
spherical shape for a spherically symmetric trap and a circular
shape for a quasi-two-dimensional axisymmetric trap. If we
change a parameter in such a way that the inner component

tends to go out of the outer shell component, the RTI breaks
the rotational symmetry of the interface, and the spherical
or circular interface is deformed into various patterns. The
symmetry-breaking RTI can thus be realized in a trapped BEC.

This paper is organized as follows. Section II provides a
formulation of the problem, and Sec. III shows numerical
results. Section III A demonstrates the symmetry-breaking RTI
and subsequent dynamics for an axisymmetric oblate system.
Section III B shows dynamics for a spherically symmetric
trap and performs Bogoliubov analysis. Section IV gives
conclusions to this study.

II. FORMULATION OF THE PROBLEM

We consider a mixture of two kinds of bosonic atoms with
masses m1 and m2 confined in trapping potentials V1 and
V2, respectively. In the mean-field theory, the system is de-
scribed by the two-component Gross-Pitaevskii (GP) equation
(j �= j ′)

ih̄
∂ψj

∂t
=

(
− h̄2

2mj

∇2 + Vj + gjj |ψj |2 + gjj ′ |ψj ′ |2
)

ψj ,

(1)

where gjj ′ = 2πh̄2ajj ′ (m−1
j + m−1

j ′ ) with ajj ′ being the s-
wave-scattering length between the atoms in components j

and j ′. The macroscopic wave function ψj is normalized
as

∫ |ψj |2d r = Nj with Nj being the number of atoms in
component j . The two components are miscible for g11g22 >

g2
12 and immiscible for g11g22 < g2

12.
We solve the three dimensional (3D) GP equation in Eq. (1)

numerically, using the pseudospectral method [15]. The initial
state is the ground state prepared by the imaginary-time-
propagation method in which i on the left-hand side of Eq.
(1) is replaced by −1. We then add a small noise to the initial
state as a seed that triggers the RTI. The dynamics do not
depend on the initial noise qualitatively.

In the following calculations, we assume a dual-species
BEC with 85Rb and 87Rb, where the |f = 2,mf = −2〉 state
of 85Rb is component one and the |f = 1,mf = −1〉 state
of 87Rb is component two. This system has been realized
by Papp et al. [16] in which controlled phase separation
was observed by changing the s-wave-scattering length a11

of 85Rb using a magnetic-field Feshbach resonance, which is
variable in the range a11 = (50–900)aB with aB being the Bohr
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radius. Since a22 = 99aB and a12 = 213aB , the condition for
the phase separation is satisfied for a11 < 458aB .

III. NUMERICAL RESULTS

A. Rayleigh-Taylor instability in axisymmetric oblate systems

We first demonstrate the dynamics for an axisymmetric
oblate trap Vj = mj [ω2

⊥(x2 + y2) + ω2
zz

2]/2, where ωz �
ω⊥. We assume that the gravitational sag is compensated and
that the two components share a common trap center. Figure 1
shows the time evolution of the density and phase profiles of
the system, obtained by solving the 3D GP equation in Eq. (1).
The initial state is the ground state for a11 = 80aB and N1 =
N2, which has the axisymmetric circular interface between
the two components [Fig. 1(a)]. The repulsive interaction
of component one (inner) is then gradually increased, and
when it exceeds that of component two (outer), the system
becomes metastable, i.e., the state in which component one
surrounds component two becomes energetically favorable.

0 4.2 −π π

(a) t=0 ms (b) t=80 ms (c) t=92 ms

(d) t=104 ms

D1

D2

x

y

φ2

φ1

(e) t=92 ms

FIG. 1. (Color online) (a)–(d) Dynamics of the column-density
profiles D1 = ∫ |ψ1|2dz (upper panels) and D2 = ∫ |ψ2|2dz (lower
panels) in an axisymmetric trap with (ω⊥,ωz) = 2π × (25,1250) Hz.
The scattering length a11 is linearly increased from 80aB to 240aB

between t = 0 and t = 40 ms, and after that a11 is fixed to 240aB . The
numbers of atoms are N1 = N2 = 105. The unit of the column density
is 1012 cm−2. (e) Cross-sectional phase profile φj = arg[ψj (z = 0)]
of the lower half region of (c). The circles in (e) indicate examples
of quantized vortices created under the caps of the mushrooms. The
field of view is 65.4 × 65.4 μm in (a)–(d) and 65.4 × 32.7 μm in (e).
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FIG. 2. (Color online) Dynamics of the column-density profiles
D1 and D2 for N1 = 1.8 × 105 and N2 = 2 × 104. Other parameters
are the same as those in Fig. 1.

At t � 80 ms, the axisymmetry of the system is broken, and
the interface is modulated due to the RTI [Fig. 1(b)]. The
modulation of the interface subsequently grows to become a
fourfold mushroom shape [Fig. 1(c)]. Quantized vortices are
generated under the caps of the mushrooms in both compo-
nents [circles in Fig. 1(e)]. When the tops of the mushrooms
reach the edge or the center of the system, a highly nonlinear
pattern is observed [Fig. 1(d)]. The n-fold mushroom shapes
with n �= 4 are also observed, where n is larger for a larger final
value of a11.

The dynamics also depend on the ratio between the
numbers of atoms N2/N1. Figure 2 shows the dynamics for
N2/N1 = 1/9. After the repulsive interaction of component
one is increased, the RTI causes modulation at the interface
[Fig. 2(b)]. Since N2 is small, the ring of component two
splits into droplets that enter component one, forming small
mushrooms [Fig. 2(c)]. The droplets of component two then
go toward the center and gather. Their complicated shapes
are similar to air bubbles rising in water. The Rayleigh-Taylor
“bubbles” as shown in Figs. 1 and 2 have been studied in the
context of supernova explosions [10].

B. Rayleigh-Taylor instability in a spherically
symmetric system

Next we consider a system confined in a spherically sym-
metric trap given by Vj = mjω

2
j r

2/2 with r2 = x2 + y2 + z2.
The initial state is the ground state for a11 = 200aB and
ω1 = ω2 in which component two with a spherical shape is
surrounded by a shell of component one [Fig. 3(a)]. The trap
frequency ω1 of component one is then increased gradually.
The outer component is pushed inward by the increase in the
trap frequency, and the RTI is induced at the spherical interface.
At t � 36 ms, the RTI breaks the rotational symmetry, and
the spherical interface is modulated [Figs. 3(b) and 3(d)].
The interface is then deformed into a “mushroom ball”
[Fig. 3(e)].

The unstable modes of the interface are estimated by a
simple analysis. We assume inviscid, incompressible, and
irrotational fluids, and component two of a spherical bubble
with radius R is surrounded by component one. The excitation
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FIG. 3. (Color online) (a)–(c) Dynamics of the cross-sectional
density profiles d1 = |ψ1(z = 0)|2 and d2 = |ψ2(z = 0)|2 of compo-
nents one and two and (d), (e) the isodensity surfaces of component
two in a spherically symmetric trap with frequency ω1(t = 0) =
ω2 = 2π × 33.3 Hz. The trap frequency ω1 is increased such that
ω2

1 is linearly increased from (ω1/ω2)2 = 1 to 3 between t = 0 and
t = 30 ms, and after that (ω1/ω2)2 is fixed to 3. The scattering length
of component one is a11 = 200aB , and the numbers of atoms are
N1 = N2 = 5.2 × 106. The unit of the density is 3.0 × 1014 cm−3.
The field of view of each panel is 56.6 × 56.6 μm.

frequency � of the interfacial mode proportional to the
spherical harmonics Ym

l (θ,φ) is given by [17]

�2 = l(l + 1)

R [lm1n1 + (l + 1)m2n2]

×
[
n2f2 − n1f1 + (l − 1)(l + 2)

R2
σ

]
, (2)

where nj is the atomic density, fj is the external force acting
on an atom at the interface, and σ is the interfacial-tension
coefficient. If � is purely imaginary, i.e., the right-hand side of
Eq. (2) is negative, the mode is dynamically unstable. Using the
expression of σ for a two-component BEC derived in Ref. [18]
and fj = mjω

2
jR, we find that the modes for 1 � l � 7 are

unstable for the parameters in Fig. 3. [See Fig. 3(d) for the
interfacial pattern.]

From Eq. (2), we find that the RTI is induced by an
increase in ρ1 or f1 or by a decrease in ρ2 or f2. The density
ρj depends on the interaction: an increase (decrease) in ajj

expands (contracts) component j , decreasing (increasing) ρj .
The force fj acting on each component can be controlled if
the external trapping potential for each component can be
controlled independently. The RTI can thus be induced in

several ways: for example, (i) an increase in the scattering
length of the inner component, (ii) a decrease in the trap
frequency of the inner component, (iii) a decrease in the
scattering length of the outer component, or (iv) an increase
in the trap frequency of the outer component. The dynamics
shown in Figs. 1 and 3 correspond to (i) and (iv), respectively.
We have numerically confirmed that the RTI can be observed
for all the methods (i)–(iv) for both axisymmetric oblate traps
and spherically symmetric traps.

For a more precise understanding of the instability, we
perform a Bogoliubov analysis for a spherically symmetric
trap. We expand the GP equation in Eq. (1) up to the first order
of the deviation δψj (r) from the metastable state �j (r) with
spherical symmetry. The excitation mode of the form

δψj = uj (r)Ym
l (θ,φ)e−i�t + v∗

j (r)Ym∗
l (θ,φ)ei�t (3)

obeys the Bogoliubov-de Gennes equations (j �= j ′)
(
Kjl + Vj − μj + 2gjj�

2
j + gjj ′�2

j ′
)
uj

+gjj�
2
j vj + gjj ′�j�j ′(uj ′ + vj ′ ) = h̄�uj , (4a)

(
Kjl + Vj − μj + 2gjj�

2
j + gjj ′�2

j ′
)
vj

+gjj�
2
j uj + gjj ′�j�j ′ (uj ′ + vj ′ ) = −h̄�vj , (4b)

where μj is the chemical potential and

Kjl = − h̄2

2mj

[
d2

dr2
+ 2

r

d

dr
− l(l + 1)

r2

]
. (5)

The wave function �j is assumed to be real without loss of
generality. We numerically diagonalize Eq. (4) to study the
stability of the system. If there is a complex frequency �,
the corresponding mode grows exponentially, and the system
is dynamically unstable. Figure 4 shows the imaginary part
of the Bogoliubov excitation frequency Im� as a function
of (ω1/ω2)2. The critical value of (ω1/ω2)2 above which
Im� rises increases with an increase in l, and above this
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FIG. 4. (Color online) Imaginary part of the Bogoliubov exci-
tation frequency Im� as a function of (ω1/ω2)2. The parameters
are the same as those in Fig. 3. The modes for l � 10 are plotted,
where l is defined in Eq. (3). The vertical line indicates (ω1/ω2)2 = 3,
corresponding to the parameter in Fig. 3.
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critical value of (ω1/ω2)2, Im� monotonically increases. At
(ω1/ω2)2 = 3 (the vertical line in Fig. 4), which corresponds
to the parameter in Fig. 3, the modes of l = 1–10 are unstable.
Among these modes, the mode which has the largest Im�

dominates the unstable dynamics. In Fig. 4, since Im� of the
l = 5–7 modes are all comparably large, these modes will
dominate the unstable dynamics. For these parameters, the
analytic expression in Eq. (2) estimates that the modes of l =
1–7 are unstable whereas the modes of l = 1–10 are unstable
in Fig. 4. The difference is attributed to the assumptions of
incompressibility and inhomogeneous density distribution in
Eq. (2) and the ambiguity in the interfacial-tension coefficient
σ for a trapped system.

IV. CONCLUSIONS

In conclusion, we have investigated the interfacial insta-
bilities and subsequent dynamics in phase-separated two-
component BECs. Since the initial state has rotational symme-
try, the symmetry-breaking nature of the RTI can specifically
be observed in this system. We have demonstrated the RTI and
ensuing dynamics for an axisymmetric oblate trap (Figs. 1

and 2) and a spherically symmetric trap (Fig. 3), and the
mushroom-shaped patterns are observed for both systems,
breaking the rotational symmetry. We performed a Bogoliubov
analysis for the spherically symmetric system and obtained an
unstable spectrum (Fig. 4).

In view of the recent development in the control of two-
component BECs [16,19,20], we expect that not only the phe-
nomena predicted in the present paper but also other theoretical
predictions [5–8,21–24] concerning interfacial instabilities in
two-component BECs will be realized in experiments in the
near future.
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