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Nonadiabatic atomic ionization by intense subcycle laser pulses
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The atomic photoionization by a subcycle linearly polarized laser pulse is studied with numerical solutions
of the time-dependent Schrödinger equation for a hydrogenlike atom. In this regime, the presumption for the
adiabatic ionization theories that atoms are ionized directly from an initial bound state to the continuum state
will fail. The nonadiabatic ionization channels turn out to play important roles: the bound electrons can climb
up the energy ladder and get ionized from a certain bound state other than the original one. This process leaves
significant fingerprints in carrier-envelope-phase-sensitive phenomena like total ionization yield and momentum
asymmetry of the photoelectrons. For the modeling of subcycle pulses, the inconsistency of the popular vector
potential definition is noticed and a modified version with an analytic envelope is presented that is capable of
describing pulses with arbitrary pulse width.
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I. INTRODUCTION

In recent years, the great progress in the generation
of ultrashort laser pulses has made possible the shortest
electromagnetic pulses which consist of one or less optical
cycles (measured full width at half maximum of the pulse’s
envelope) [1,2]. From the terahertz band [3], to the visible
spectrum [4,5] and the extreme ultraviolet band [6,7], the
single-cycle pulses start a new era for ultrafast science. The
theoretical description of the single-cycle pulses and their
interaction with matter has caught the interests of many
researchers [8–16].

Atomic photoionization by pulses with durations that are
large compared with the period of the carrier frequency is
a well-understood process that is similar to ionization by a
continuous-wave field [17]. In this regime, the atomic-orbital
frequency is higher than the optical frequency; thus, the
atomic dipole follows adiabatically the oscillations of the
external field. As a result, the ionization rate depends on
the instantaneous electric field. In this case the ionization
rate can be calculated by using the projection of the evolved
Volkov state on the ground state, as is done in Keldysh-type
theories [18], or by using the Landau-Dyhne formulation [19].
These adiabatic theories are built upon the presumption that
atoms are ionized directly from an initial bound state to the
continuum states.

On the other hand, when the pulse duration approaches
the period of the carrier, nonadiabatic effects take place [20].
As a result, the laser pulse induces transitions between the
bound atomic states. Because a portion of the particles could
be captured in these states, suppression of the ionization of the
atom has been reported [20,21].

In this paper, we study the photoionization in an intense
linearly polarized subcycle laser pulse by solving the time-
dependent Schrödinger equation (TDSE) numerically. The
inconsistency of the vector-potential definition is discussed
and an accurate theoretical description for subcycle pulses is
presented. The results show that, in the subcycle regime, when
the pulse duration decreases, the major ionization channel
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gradually changes from the adiabatic ionization channel to the
nonadiabatic one. This process leaves important fingerprints
in carrier-envelope-phase (CEP)-sensitive observables, such
as the ionization yield and the momentum asymmetry of pho-
toelectrons as identified in the paper. Since these phenomena
have been used as effective ways to determine the CEPs of
few-cycle pulses [22,23], in the case that a determination of
the CEPs for subcycle pulse is required, the effects discussed
in this paper should be taken into account.

II. THE DESCRIPTION OF SUBCYCLE PULSE

The dc component in the carrier-envelope (CE) model with
an envelope multiplied by a carrier wave is found to cause
nonphysical results [15,16]. So, largely, the vector potential
definition has been used instead to cancel out the dc part. It
starts by defining the vector potential A(t) as

A(t) = Re

[
− c

iω0
E0f (t) exp(iω0t + iφ0)

]
, (1)

where ω0 = 2π/T0 is the carrier frequency, T0 is the period,
φ0 represents the absolute phase or CEP, E0 is the amplitude,
and f (t) is a real Gaussian-like envelope function. The electric
field is then derived as the first derivative of the vector potential.
As long as the envelope function f (t) satisfies

lim
t→±∞ f (t) = 0, (2)

the E field is guaranteed to have a zero dc component.
However, having a zero dc component is only a minimal

requirement. Not all the assumed envelopes are physically
meaningful: f (t) is only physically meaningful as long as
the spectrum content remains invariant under the change
of its CEP [15]. Since a phase shift should not change its
Fourier spectrum E(ω), the weighted center frequency ωc =∫ ∞

0 ω|E(ω)|2dω/
∫ ∞

0 |E(ω)|2dω should remain unchanged
when the CEP changes. As revealed by Fig. 1, the vector
potential model remains at high accuracy for pulse durations
down to three quarter cycles (τp ≈ 0.75T0) for the four
popularly used envelope functions, but fails for even shorter
ones. The pulse width τp is defined as the full width at half
maximum (FWHM) of |f (t)|2. The above checking procedure
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FIG. 1. (Color online) Phase dependence of the center frequency
difference �ωc/ω0 = |ωc(φ = 0) − ωc(φ = π/2)|/ω0 vs the normal-
ized pulse duration for various pulse shapes; the envelopes are given
by a sin2 with f (t) = sin2[πt/(2.75τp)] (0 < t < 2.75τp), a Gaussian
with f (t) = exp [−(1.17t/τp)2], a hyperbolic secant with f (t) =
sech(1.76t/τp), and a Lorentzian with f (t) = 1/[1 + (1.29t/τp)2].

is similar to that used in Ref. [15]. The reason why the
vector-potential definition works in the long pulse limit but
fails when the pulse is short enough could be explained by the
Bedrosian theory.

To cover the whole range of pulse widths, we can modify the
vector-potential definition by assuming f (t) to be an analytic
envelope f̃ (t) = u(t) + iû(t), where real functions u(t) and
û(t) make up a Hilbert transform pair. By doing this, the
derived E field expression becomes an analytic function and,
as long as the dc part is removed, an analytic function will
always fulfill the condition that its spectrum content remains
invariant under the change of its CEP by its definition.

By taking a first time derivative, the E field could be derived
and normalized to be

E(t) = Re[E0|Ad (0)|−1Ad (t)f̃ (t) exp(iω0t + iφ0)]. (3)

The expression has a similar structure to the CE expression
except for the self-modulation factor |Ad (0)|−1Ad (t). The
function

Ad (t) = 1 − i
˙̃f

ω0f̃
(4)

is the self-modulation function, where ˙̃f is the first time
derivative of f̃ (t). At the slow-varying-envelope limit, where
the change of the envelope is much slower compared to the
rapid oscillating carrier wave, ˙̃f /ω0 → 0 and the expression
reduces to the standard CE expression with |Ad (0)|−1Ad (t) =
1. The total phase of this pulse is expressed as follows:

φ(t) = ω0t + φ0 + arg[f̃ (t)] + arg[Ad (t)]. (5)

The last two terms cause this transform-limited pulse to chirp
intrinsically, which has been verified experimentally to exist
in subcycle terahertz pulses [24].

Figure 2 shows the typical waveforms with different CEPs
[Fig. 2(a)] and their relative frequency shift [Fig. 2(b)] for
a Lorentzian analytic envelope with f̃ (t) = 1/(1 − 2it/τp).

FIG. 2. (Color online) (a) Quarter-cycle waveforms with different
CEPs (φ = 0 and φ = π/2) and (b) their relative frequency shift
δω/ω0 vs time for the Lorentzian analytic envelope function f̃ (t) =
1/(1 − 2it/τp).

Unless otherwise noted, this envelope is used throughout the
paper.

III. THE THEORETICAL MODEL
AND SIMULATION RESULTS

For a hydrogenlike atom interacting with a subcycle laser
pulse linearly polarized along the x axis, the Hamiltonian in
atomic units is given by

H =
[
−1

2

∂2

∂x2
+ V (x) − E(t)x

]
, (6)

where V (x) = −1/
√

1 + x2 is the Coulomb potential with soft
core. The TDSE is solved numerically by the split-operator
method [25] with the initial wave function being obtained
by imaginary time propagation. The maximal grid point is
taken to be 960 a.u. with a grid spacing of �x = 0.25 a.u.
and time propagation step to be �t = 0.03 a.u.. A cos1/2-like
absorbing mask function is used to avoid the reflections
from the boundaries. The numerical simulation is performed
until the final time tf that is 50 times larger than the width
of the pulse under consideration, so the slowest ionization
signal could be collected. Since we are interested in the
ionization signal measure in forward (P+) and backward (P+)
directions along the polarization axis, the following integration
of the probability flux near the absorbing boundaries (at x+ for
P+, and x− for P−) is performed during the simulation:

P+ =
∫ tf

0
jx+ (t)dt,

(7)

P− =
∫ tf

0
jx− (t)dt,

where

jx(t) = Re

[
−i�(x,t)∗

∂

∂t
�(x,t)

]
(8)
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and �(x,t) is the wave function. The asymmetry coefficient a

is defined as

a = (P+ − P−)/(P+ + P−) (9)

and the total ionization probability reads P = P+ + P−.
This one-dimensional model is used throughout the paper.

Such a model could overestimate the total ionization proba-
bility [26] and exaggerate the Coulomb effects by forcing the
electron wave packet to “see” the core every time it returns.
However, compared to a fully three-dimensional calculation,
it can give qualitative pictures with much less time cost.

A. The total ionization probability versus CEP

With E0 = 0.08 a.u. (corresponding to an intensity of
2.3 × 1014 W/cm2) and the carrier wavelength of 800 nm, we
calculated the total ionization probability as a function of CEP
for different pulse width. The results are shown in Fig. 3(a)
and are compared to the adiabatic ionization probability which
is calculated using the quasistatic approximation for tunneling
ionization for a hydrogen atom in its ground state. As discussed

FIG. 3. (Color online) The total ionization probability vs CEPs
for a hydrogenlike atom at ground state interacting with intense
subcycle pulses with pulse width changing from 0.2 cycles to 0.6
cycles. (a) The TDSE results are compared to (b) those calculated
with quasistatic tunneling rate Rtun(E(t)) = 4

E(t) exp(− 2
3

1
E(t) ).

in the introduction, the adiabatic ionization is characterized
by a dependence on the instantaneous field. Because of this
field-history-independent nature of the adiabatic ionization,
the total ionization probability remains the same whether an
E(t,φ0) pulse or a time-reversal E(−t,φ0) pulse is applied. On
the other hand, for any laser pulse with symmetric envelopes
(as in the calculations of this paper), the time-reversal field
corresponds to the CEP reversal field with E(−t,φ0) =
E(t, − φ0) (as long as pulses with φ0 = 0 correspond to the
cosinelike pulses). Thus, in this case, a sign change of the
CEP should not change the total ionization probability. This
characteristic of the adiabatic ionization is clearly shown in
Fig. 3(b) with the ionization probability to be distributed
symmetrically according to the axis φ0 = 0. However, as we
find in Fig. 3(a), this characteristic symmetry for adiabatic
ionization disappears. The peaks that are supposed to be at
φ0 = 0 gradually shift to the right as the pulse width decreases.
This is a clear demonstration of the transfer from the adiabatic
ionization channel to the nonadiabatic one.

For a pulse duration longer than the half cycle, the adiabatic
ionization is still overwhelming and the main characteristics of
the adiabatic ionization can still be identified: approximately
symmetrical according to axis φ0 = 0 and bigger ionization
probability for longer pulses [comparing the probability of 0.5
cycles to 0.6 cycles in Fig. 3(a)]. For even shorter pulses, bound
electrons that escape from the adiabatic channel are sure to
decrease gradually as predicted by adiabatic theory and shown
in Fig. 3(b). Thus, any abnormal increase of the ionization
probability should only be attributed to the nonadiabatic
channel. This is exactly what happens in the sub-half-cycle
region: as shown by Fig. 3(a), a shorter pulse with the same
peak intensity as the longer ones, and thus less energy, could
surprisingly have a much bigger ionization probability. This
abnormal increase of the ionization probability implies that the
nonadiabatic ionization could be very important when pulse
width is in the sub-half-cycle region.

The breakdown of the symmetric pattern in Fig. 3(a)
actually implies that the time reversal of the laser fields can
change the final ionization yields. This field-history-dependent
nature of the nonadiabatic ionization is out of the reach
of any adiabatic theory. The instantaneous ionization rate
with an adiabatic tunneling view, such as the Ammosov-
Delone-Krainov (ADK) rate [27,28], can hardly explain this
dependence. Even the more recent Yudin-Ivanov (YI) model
[29], which includes the contribution from direct multiphoton
ionization, may still fail to cover the corner. Rather than
tunneling or direct multiphoton ionization from the initial state,
the nonadiabatic ionization implies that there could be a third
possibility: the bound electron may climb up the energy ladder
and finally get ionized from a certain bound state other than the
original one. Since the pulses are far from resonance with the
atom, the multiphoton transitions between bound states must
have played important roles. As pulse width decreases from
0.4 to 0.3 cycle, the spectra of the pulses may expand into a
resonant area of multiphoton transition and it would not be
really surprising to find a quick opening of the nonadiabatic
ionization channels [Fig. 3(a)]. However, a detailed model of
the process could be complex, as multienergy levels could have
been involved. To model the nonadiabatic ionization process,
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FIG. 4. (Color online) The TDSE results of total ionization
probability vs CEPs for a hydrogenlike atom at ground state
interacting with intense subcycle pulses with pulse intensity changing
from 0.06 to 0.10 a.u.

one also needs to take into account the coherent population
transfer by the ultrabroadband subcycle pulses [30,31].

Furthermore, the amount of the shift of the curves is
generally a function of the intensity (Fig. 4). As the amplitude
increases from 0.06 a.u. (1.26 × 1014 W/cm2) to 0.10 a.u.
(3.51 × 1014 W/cm2), the shift of the curve from the origin
decreases while the level of the ionization increases as ex-
pected. The dependence of the shift of the curve on the intensity
is explainable. As intensity goes up to 3.51 × 1014 W/cm2,
the tunneling rate increases dramatically. As a result, this
contribution from the adiabatic channel tends to drive the curve
back to the symmetric position shown in Fig. 3(b).

B. The asymmetry of photoelectrons

The asymmetries of angular distributions of photoelectrons
are a function of the CEP for few-cycle pulses because of
the inversion asymmetry of the waveform [22]. It will surely
remain true for subcycle pulses. In this paper, we focus on
the role of the symmetry phase φs at which the number of
photoelectrons going to the left equals to the number going
to the right [a(φs) = 0]. The symmetric phase has been found
to be important [22]. It gives detailed information about the
ionization process.

In the few-cycle cases, while the strong-field approximation
(SFA) theory predicts φs = 0 mod π , it has been found in
marked contrast to be φs ∼ −π

3 mod π for intensity between
1 × 1013 W/cm2 and 1 × 1014 W/cm2 when calculated via
solution of the TDSE [32]. These conclusions were confirmed
by semiclassical methods [33] and the anti-intuitive symmetric
phase is explained to be the result of the long-range Coulomb
effect in detail [22,33].

In the subcycle region, this symmetric phase is still around
φs ∼ −π

3 mod π for pulses longer than a half cycle. However,
as shown by Fig. 5, it shifts dramatically to the right when the
pulse width decreases from a half cycle to 0.2 cycle.

Again, to explain this shift of the symmetric phase, we need
to take new effects into account. However, this time, it is not

FIG. 5. (Color online) The asymmetry coefficient as a function
of CEP obtained by TDSE with pulse width varying from 0.2 to 0.6
cycles.

the Coulomb force but the nonadiabatic ionization pro-
cess which should take responsibility. While the long-range
Coulomb force scatters the photoelectrons that return to the
core but lets go the directly ionized ones, thus resulting in
the shift of the symmetric phase, the nonadiabatic ionization
process changes the birth rate of the directly ionized electrons
versus the returning ones. In the adiabatic regime, this rate has
been supposed to be 1 for cosinelike pulses. In the nonadiabatic
region, the leading part of the pulse will still directly ionize
the electrons. What makes an important difference is that it
may also drive the atoms to higher energy states [21]. Atoms
in higher energy states are much easier to ionize than those in
the original ground state. So the later part of the pulse will take
advantage of that and the yield of the returning photoelectrons
will increase. Thus, by suppression of the direct photoelectrons
and increasing the returning ones, the symmetric phase tends
to return to φs = 0 mod π . This results in a shift of the
CEP-dependent momentum asymmetry to the right as shown
in Fig. 5. In this case, the symmetric phase again proves its
importance in giving detailed information about the ionization
processes.

IV. CONCLUSIONS

We studied the interaction of the intense subcycle pulses
with a hydrogenlike system by solving the TDSE numerically.
The results show that the nonadiabatic ionization process
becomes very important when the pulse width is in the
half-cycle region. And it leaves significant fingerprints in
CEP-sensitive phenomena. For the description of the subcycle
pulses, the vector-potential definition is found to be inade-
quate. Alternatively, we have presented an accurate expression
for subcycle pulse with arbitrary pulse width.
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