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Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme
ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization
in a prealigned molecular ion H2

+ produces clear MATI spectra which show a forward-backward asymmetry in
angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time
delay �τ between the two laser pulses, and the photoelectron kinetic energies Ee . The features of the asymmetry in
MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences
of continuum electron wave functions can be extracted from the CEP φ and time delay �τ dependent ionization
asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI
angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum
electron wavelengths are less than the internuclear distance.
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I. INTRODUCTION

Recent developments in the synthesis and characterization
of ultrashort laser pulses [1–3] provide the tools necessary
for investigating electron dynamics in atoms, molecules, and
solids, and bear the promise of electron control in matter [4].
Ultrashort laser pulse technology advances have led to imaging
pump-probe techniques such as laser Coulomb explosion
imaging (LCEI) [5] for nuclear motion to laser-induced
electron diffraction (LIED) [6,7] for coupled electron-nuclear
motion. In LIED, the focus is on using near femtosecond (fs)
laser-induced electron scattering [8–12] to image molecular
structure. Electrons have great potential for probing the time
resolved transient structure of molecules, materials, and even
biological systems via ultrafast electron diffraction (UED) [13]
due to their large scattering cross sections. Furthermore, recent
ultrashort laser pulses offer now the possibility of creating
coherent electron wave packets (CEWPs) inside molecules on
the attosecond (as) time scale and subnanometer size [14,15].
Recently the pump-probe techniques combining an extreme
ultraviolet (XUV) attosecond and a femtosecond infrared (IR)
pulse have become an important tool in investigations of the
characterization of CEWPs. Many methodologies [16–20],
such as streaking and interferometry, have been adopted in
past research. In particular, by using a train of XUV attosecond
pulses and an IR field, Johnsson et al. demonstrated that the ion
yield in helium can be controlled through pulse time delays,
whereas such an effect is absent in argon [21]. They attributed
the ionization control in helium to interference between
transiently bound (below ionization threshold) electron wave
packets which can modulate the probability that an electron
is excited out of the atomic ground state. The interferences
of atomic electron wave packets from two-path ionizations
by XUV and by XUV and IR laser pulses with pulse time
delay have been obtained experimentally [22] and simulated
numerically [23]. Most recently, based on such pump-probe
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schemes the high sensitivity to electron-nuclear dynamics in
coherent electron-nuclear wave packets has been monitored
from molecular high-order harmonic generation (MHOHG)
signal intensities generated with few-cycle attosecond laser
pulses [24]. Such XUV-pump-XUV-probe experiments at the
1 fs temporal scale have been successfully realized in tracing
atomic coherences [25].

The interference effects of coherent electron and nuclear
wave packets from one-photon and two-photon processes in
the past have been used to control photoelectron angular
distributions in atomic and molecular systems [26–28] and
the angular distribution of the products in molecular pho-
todissociation [29–31]. The breaking of spatial symmetry in
photoelectron angular distributions arising from simultaneous
interference photoionization processes was reported in both
atomic Rb and molecular NO [26]. Based on a quantum
interference between two photoionization processes, a method
for measurement of phase differences of continuum electron
wave functions was provided in both linearly and elliptically
polarized laser fields [28]. A theoretical description of the
angular distribution for one- and two-photon transitions was
reported including the contribution of interference effects
[29]. Such asymmetrical photodissociation and its control
can be achieved by symmetry-breaking interference between
two multiphoton pathways which produce isoenergy states of
different symmetry [31]. However most of these investigations
were focused on femtosecond time scales and low photon
energy regimes.

In the present work, we focus on the effects of the
relative carrier envelope phase (CEP) φ and time delay �τ

in an ultrashort (sub-femtosecond and attosecond) two-color
XUV laser pulse ionization on the angular distribution of the
corresponding photoelectron energy spectra in the symmetric
molecular ion H2

+. It has been shown previously that with
ultrashort intense XUV laser pulses, resulting kinetic energy
spectra of protons from Coulomb explosion lead by a simple
inversion procedure to reconstruction of the initial nuclear
probability distribution [32]. Very recently XUV free-electron

013413-11050-2947/2012/85(1)/013413(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.013413
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lasers (FEL) have been developed to trace ultrashort nuclear
wave packet motions in molecular D2

+ and N2 and to induce
isomerization of acetylene cations [33]. Attosecond XUV laser
pulses have been used to study interference effects of molec-
ular orbital configurations in LIED [34,35], ultrashort charge
transfer processes in ion-atom collisions [36], and effects of the
Cooper minimum on photoionization [37] by monitoring the
photoelectron momentum and angular distribution in H2

+ and
H2 molecules. By two-photon interferometry with identical
attosecond XUV pulses the correlation dynamics in coherently
excited doubly excited resonances of helium can be extracted
in real time [38]. The effects of the CEP of a few-cycle
attosecond laser pulse on ionized electron momentum and
energy spectra have been well analyzed in atoms [39]. In
this paper we present numerical results of angular distri-
bution of photoelectron spectra in a prealigned molecular
ion H2

+ with two-color XUV linearly polarized attosecond
laser pulses by solving numerically the corresponding time-
dependent Schrödinger equation (TDSE). Atomic attosecond
photoionization processes in the weak field regime have been
treated by perturbation theory methods [40]. Here we use a
two-dimensional (2D) model, restricting the electron motion
in a plane with static nuclei, thus enabling to go beyond pertur-
bation theory and independent of gauge transformations [41].
The two-color XUV ultrashort laser pulses with frequencies
ω1 = 0.76 a.u. (atomic units) = 20.7 eV (wavelength λ1 = 60
nm) and ω2 = 1.53 a.u. = 41.6 eV (λ2 = 30 nm) and duration
1.2 fs are employed to ionize H2

+, where h̄ω1 < Ip and
h̄ω2 > Ip (Ip = 1.1 a.u., ionization potential of H2

+ at Re =
2.0 a.u.). Using intensity I0 = 1014 W/cm2 our simulations
generate XUV molecular above-threshold ionization (MATI)
spectra. Our similar previous one-dimension (1D) non-Born-
Oppenheimer simulations of H2

+ under similar conditions [32]
showed that nuclear motion is not discernible (measurable)
with attosecond pulses due to the large bandwidth and duration
shorter than the femtosecond nuclear time scale. We focus
therefore on the photoelectron spectra with static nuclei and
show that the CEP φ and attosecond time delay �τ dependence
of the asymmetry in angular distributions of photoelectron
MATI spectra is due to the interference effect of CEWPs
from different multiphoton ionization pathways.. For shorter
few-cycle XUV laser pulses, the angular distributions show
more complex interference characteristic due to the large
bandwidth of such pulses [41]. At large internuclear distance
configurations effects of LIED or UED occur as well due
to the electron wavelengths shorter than the internuclear
distance.

The paper is arranged as follows: In Sec. II we briefly
describe the computational methods for time-dependent quan-
tum electron wave packet calculations for H2

+ from the
corresponding TDSE. The results of the photoelectron angular
distributions and momentum distributions for different time
delay �τ and CEP φ are presented and discussed in Sec. III.
Due to the interference effect of coherent continuum electron
wave packets from different multiphoton ionization pathways
asymmetric photoelectron angular distributions are observed
and analyzed based on perturbative models of multiphoton
ionization. Finally, we summarize our findings in Sec. IV.
(Throughout this paper, a.u., e = h̄ = me = 1 are used unless
otherwise stated.)

II. NUMERICAL METHODS

Considering a static nuclear H2
+ molecular ion, the cor-

responding TDSE is appropriately written with respect to the
center of mass of the two protons at positions ±R/2 as

i
∂

∂t
ψ(r,t) =

[
− 1

2
�2 +Ven + VL(t)

]
ψ(r,t). (1)

Here a 2D (planar) model of the laser polarization in the
molecular plane is adopted which has been shown to be
adequate to describe electron motions in laser fields for two
center problems [42]. We use polar coordinates to describe
the field-molecule dynamics where the radial and angular
variables are easily separated. For the 2D x-aligned H2

+
problem in (ρ,θ ) polar coordinates, (x = ρ cos θ , y = ρ sin θ ),
the corresponding TDSE is

i
∂

∂t
ψ(ρ,θ,t) = −1

2

[
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂2θ

]
ψ(ρ,θ,t)

+ [Ven + r · E(t)]ψ(ρ,θ,t). (2)

Equation (2) is obtained by using a splitting method in three
dimensions which separates the perpendicular z coordinate,
thus reducing the problem to 2D [43]. Ven is the electron-proton
attraction Coulomb potential

Ven = − 1√
ρ2 ± Rρ cos θ + R2/4 + α

. (3)

α is a regularization parameter to remove Coulomb singulari-
ties (this corresponds to averaging over the third dimension
perpendicular to the plane of the molecule, that is, the z

direction). Here we choose α = 0.35, allowing the accurate
reproduction of the ground, the first excited electronic potential
energies, and ionization potential Ip of H2

+ [34]. The laser-
electron radiative coupling is described by the time-dependent
potential VL(t) in the length gauge for a two-color linear
polarization laser pulse,

E(t) = E1(t) + E2(t + �τ ) = eE1f (t) cos(ω1t + φ1)

+ eE2f (t + �τ ) cos[ω2(t + �τ ) + φ2]. (4)

e is the laser polarization vector, ω1 and ω2 are angular
frequencies of the laser pulses E1(t) and E2(t) corresponding
to wavelengths λ1 = 2πc/ω1 and λ2 = 2πc/ω2, and �τ is the
time delay between the two pulses. A smooth pulse envelope
f (t) = sin2(πt/T ) with time duration T and maximum
amplitude E1,2 for intensity I1,2 = cE2

1,2/8π are adopted in
the simulations. The relative CEP between the two-color laser
pulses is defined as φ = φ2 − φ1. For convenience we set
φ1 = 0 and then the relative CEP reduces to φ = φ2. We
note that the time delay �τ can be fixed experimentally with
zeptosecond (10−21 s) accuracy [44].

We solve the 2D TDSE in Eq. (2) by a second-order accurate
split-operator method with the time step δt and error δt3,

ψ(t + δt) = exp(−iVI δt/2) exp(−i �2 δt/2)

×exp(−i �2δt/2) exp(−iVI δt/2)ψ(t)+O(δt3),

(5)

where VI = Ven + VL(t), combined with a fifth-order finite
difference method and Fourier transform technique in the
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spatial steps δρ and δθ [45]. To circumvent numerical problems
with ρ singularities of the Laplacian in polar coordinates (ρ,θ ),
we adopt a high order Crank-Nicholson method combined with
the fifth-order finite difference method to obtain a regularized
2D Laplacian propagator in H+

2 ensuring unitarity at each
time step δt in Eq. (5) [43]. The time step is taken to
be δt = 0.01 a.u. = 0.24 as, the spatial discretization is
δρ = 0.25 a.u. for a radial grid range 0 � ρ � 128 a.u. and the
angle grid step δθ = 0.025 rad. To prevent unphysical effects
due to the reflection of the wave packet from the boundary, we
multiply ψ(ρ,θ,t) in the radial coordinates at each time step
by a “mask function” or absorber with the form

g(t) =
{

1, ρ < ρa,

cos1/8 [π (ρ − ρa)/2ρabs], ρa � ρ � ρmax.
(6)

For all results reported here we set the absorber domain ρa =
ρmax − ρabs = 104 a.u. with ρabs = 24 a.u., exceeding well the
field induced electron oscillation αd = E0/ω

2 of the electron,
ρmax � αd = 0.1 a.u. at I0 = 1014 W/cm2, λ = 60 nm (ω =
0.76 a.u.).

In order to illustrate the photoelectron angular distribution
spectra, the energy dependence of the ionization probabilities
is explored based on a Fourier analysis of the associated flux
[electron current density J (t)]. The time-dependent electron
wave function ψ(ρ,θ,t) generates the radial flux J (t) at large
distance ρ0 = 100 a.u. before the electron wave packet is
absorbed. The electron angular distributions are obtained from

J (θ,t)

= 1

2i

[
ψ∗(ρ,θ,t)

∂ψ(ρ,θ,t)

∂ρ
− ∂ψ∗(ρ,θ,t)

∂ρ
ψ(ρ,θ,t)

]
ρ0

.

(7)

The total corresponding angular distribution is obtained by
integration over time t ,

J (θ ) =
∫

J (θ,t)dt, (8)

and the energy-resolved angular differential yield (photoelec-
tron spectra) is obtained after a time Fourier transform

J (θ,E) ∼
∫

e−iEtJ (θ,t)dt. (9)

The corresponding energy distribution is obtained by integrat-
ing over angle θ ,

J (E) =
∫

dθJ (θ,E), (10)

where E = p2/2 is the kinetic energy of an ionized electron
with wave vector k = p = 2π/λe (in a.u.), p is the momentum
of a photoelectron of wavelength λe.

An asymmetry ratio as the difference of probability between
the positive and negative half of the momentum (angular)
distributions at a particular photoelectron kinetic energy Ee

can be defined as

A(Ee) = P
Ee+ − P

Ee−
P

Ee+ + P
Ee−

, (11)

where P
Ee± denote the total angular distributions of continuum

electron wave packets in forward (+) momentum directions,

P
Ee+ =

∫ π/2

−π/2
dθJ Ee (θ ), (12)

or backward (−) momentum directions,

P
Ee− =

∫ 3π/2

π/2
dθJ Ee (θ ). (13)

The angular distribution J Ee (θ ) at Ee is obtained by integrat-
ing over energy,

J Ee (θ ) =
∫ Ee+ω/2

Ee−ω/2
dEJ (θ,E). (14)

III. RESULTS AND DISCUSSIONS

In the present work we investigate photoionization pro-
cesses of a prealigned single electron molecular ion H2

+
ionized by an intense ultrashort bichromatic XUV laser pulse
with sub-femtosecond and attosecond duration. The two laser
wavelengths are set at λ1 = 60 nm and λ2 = 30 nm, corre-
sponding to angular frequencies ω1 = 0.76 a.u. = 20.7 eV
and ω2 = 2ω1 = 1.52 a.u. = 41.6 eV, which are respectively
below and above the equilibrium (Re = 2 a.u.) ionization
potential Ip = 1.1 a.u. of the H2

+ 1sσg electronic state. Such
a laser pulse can produce photoelectron wave packets with the
same kinetic energies by combination of multiply multiphoton
transitions and steer them through different pathways in the
continuum, thus creating the interference effects of CEWPs in
the photoelectron spectra. In the present calculations the laser
polarization is parallel to the molecular axis of H2

+ which is
aligned with the x axis, and the intensities of the two-color
laser pulses are also fixed at I1 = 2I2 = 1.0 × 1014 W/cm2

(E1 = √
2E2 = 5.34 × 10−2 a.u. = 2.65×108 V/cm). At

the intensity I1 = 1.0 × 1014 W/cm2, (3 × 10−3 a.u.), ω1 =
0.76 a.u., the ponderomotive energy Up = I1/4ω2

1 = 1.2 ×
10−3 a.u., corresponding to a Keldysh parameter γ =√

Ip/2Up = 21.3 � 1 and thus implying a multiphoton
regime.

A. MATI spectra with bichromatic XUV laser pulses

We initially consider the case of photoelectron MATI
spectra in a multicycle laser pulse with duration T = 12τ =
50 a.u. = 1.2 fs (1 optical cycle, o.c., τ = 2π/ω2 = 100 as)
for each XUV laser pulse, that is, T = 6 o.c. for λ1 = 60 nm
and T = 12 o.c. for λ2 = 30 nm laser pulses. We have shown
previously that in a multicycle one-color laser pulse the CEP
has no influence on the symmetry in the photoelectron angular
distributions, and the breaking of symmetry requires shorter
few-cycle (�3τ ) pulses [46]. In Figs. 1(a)–1(c) we illustrate
the photoelectron energy spectra calculated by Eq. (10) in the
two-color XUV laser pulse [Eq. (4)] with fixed CEP φ = 0
for three different time delays �τ = 0, 4τ (400 as), and
8τ (800 as), respectively. The fundamental XUV laser pulse
wavelength and CEP are fixed at λ1 = 60 nm and φ1 = 0,
which serves as a reference, while the second λ2 = 30 nm
XUV laser pulse has variable peak time and phase φ2 (φ = φ2),
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KAI-JUN YUAN AND ANDRÉ D. BANDRAUK PHYSICAL REVIEW A 85, 013413 (2012)

0 1.0 2.0 3.0 5.0

Energy (a.u.)

-10

0

-20

-30

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

4.0

-10

0

-20

-30

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

-10

0

-20

-30

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

Δτ=4τ

Δτ=0

Δτ=8τ

(c)

(b)

(a)

 E e1  E e2  E e3  E e4  E e5  E e6  E e7

0.10

0.05

0.0

-0.05

-0.10

0.08

0.04

0.0

-0.04

-0.08

0.06

0.03

0.0

-0.03

-0.06

E
 (

a
.u

.)
E

 (
a
.u

.)
E

 (
a
.u

.)

0 4 8 12 18

Time (units of τ)
16 24

(f)

(e)

(d)

FIG. 1. (Color online) Photoelectron kinetic energy spectra (left column) for prealigned molecular ions H2
+ at internuclear distance

Re = 2 a.u. in the intense ultrashort bichromatic λ1 = 60 nm (ω1 = 0.76 a.u.) and λ2 = 30 nm (ω2 = 1.52 a.u.) XUV laser pulses (right column)
with CEP φ = 0, duration T = 12τ = 50 a.u. = 1.2 fs, intensities I1 = 2I2 = 1.0 × 1014 W/cm2, and different time delays [(a), (d)] �τ = 0,
[(b), (e)] 4τ (400 as), and [(c), (f)] 8τ (800 as). The classical kinetic energies Ee of MATI peaks are shown as the dashed vertical lines. Signal
intensities of the MATI spectra are on a logarithmic scale in arbitrary units.

as shown in Figs. 1(d)–1(f). We note that the vibrational
frequency of H2

+ is ω = 2000 cm−1 with a period of 15 fs,
thus confirming that a frozen nuclei calculation is valid for
sub-femtosecond and attosecond laser pulses. The laser fields
are displayed in Figs. 1(d)–1(f) (blue solid line) for different
time delays �τ and CEPs φ.

In Fig. 1 we see that for all cases clear MATI peaks with
energy separation �E = ω1 = 0.76 a.u. have been obtained
in the photoelectron spectra. The intensity of the high order
MATI peaks varies with time delay �τ . In the XUV laser field
of Eq. (4) the MATI spectrum intensity decreases gradually

as the photoelectron kinetic energy increases, and high order
peaks become very weak. For example, the MATI spectrum in
Fig. 1 at photoelectron energy Ee4 = 2.58 a.u. corresponding
to 5ω1 − Ip is more than 8 orders (108) weaker than that the
first peak Ee1 = 0.3 a.u.. In particular, we note the suppression
of the Ee5 = 3.34 a.u. and Ee6 = 4.1 a.u. peaks at �τ = 0,
4τ and the emergence of the Ee6 peak at �τ = 8τ . In the
following we will mainly focus on the first three low order
MATI spectra, Ee1, Ee2, and Ee3 peaks. The multiple MATI
peaks imply increasing nonperturbative effects which are
obtained from the numerical simulations.
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B. Asymmetry of MATI angular distributions

Figure 2 shows the 2D momentum (px,py) distributions
of photoelectron spectra for different time delays �τ and
CEPs φ of two-color XUV laser pulses. We only illustrate
the distributions with low energy photoelectron momentum
p ranging from −2 to 2 a.u. (Ee � 2 a.u.) which covers
the first three MATI peaks as shown in Fig. 1, where
px = p cos θ and py = p sin θ . In Fig. 2 the results show a
time delay �τ and CEP φ sensitive photoionization process.
In the momentum distributions (px,py), the signature of
scattering effects appears as nodes or “wings,” which are
independent of time delay �τ and CEP φ. When the two
one-color XUV laser pulses overlap temporally (�τ = 0), the
photoelectron momentum distributions display two rings at

(a) Δτ=0
φ=0 φ=π

(b) Δτ=4τ

(c) Δτ=8τ
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FIG. 2. (Color online) 2D momentum distributions (px,py) of
photoelectron spectra for H2

+ at Re = 2 a.u. in the ultrashort bichro-
matic λ1 = 60 nm and λ2 = 30 nm XUV laser pulses with duration
T = 12τ = 1.2 fs, intensities I1 = 2I2 = 1.0 × 1014 W/cm2, and
different CEPs φ = 0 (left column) and π (right column) and
time delays (a) �τ = 0, (b) 4τ (400 as), and (c) 8τ (800 as), as
shown in Figs. 1(d)–1(f). The classical momenta pe corresponding
to MATI peak energies Ee = p2

e /2 in Fig. 1 are shown as dashed
circles with radii pe1 = 0.775 a.u. (Ee1 = 0.3 a.u.), pe2 = 1.456 a.u.
(Ee2 = 1.06 a.u.), and pe3 = 1.908 a.u. (Ee3 = 1.82 a.u.).

pe1 = 0.775 a.u. (Ee1 = 0.3 a.u.), pe2 = 1.456 a.u. (Ee2 =
1.06 a.u.), and pe3 = 1.908 a.u. (Ee3 = 1.82 a.u.), that is,
the first three MATI peaks separated by one photon energies
�E = 0.76 a.u. = ω1, which are asymmetric and mirror image
of each other. The asymmetry in positive-negative (forward-
backward) momentum distributions strongly depends on the
CEP φ and photoelectron kinetic energies Ee (pe). As
illustrated in Fig. 2(a) at momentum pe3 = 1.908 a.u. (Ee3 =
1.82 a.u.), only half “ring” distribution can be observed in the
positive or negative momentum plane and a near unidirectional
electron flux dominates with maximum asymmetry which
depends on the CEP φ. Increasing time delay �τ , the
photoelectron spectra display a multiring structure gradually,
and interference fringes can be observed radially parallel to the
laser pulse polarization. With �τ = 8τ (800 as) it is almost
symmetric with essentially equal electron distributions (flux)
in opposite directions for both cases of CEPs φ = 0 and π ,
that is, with such time delay �τ the photoelectron angular
distributions are mostly independent of the CEP φ. Moreover,
the momentum distributions exhibit distinct redial interference
patterns.

A perturbative model of multiphoton ionization can be used
to describe the CEP φ dependent asymmetry of the momentum
distribution. In the multiphoton ionization processes, the
multipathway CEWPs with anergy Ee will interfere each other
in the continuum, leading to the asymmetry. Details are derived
in the Appendix. From Eqs. (A10), (A13), and (A18) in the
Appendix, we see that for the photoelectron momentum and
angular distributions, the CEP dependent asymmetry terms can
be simply expressed as

dP Ee
ion

d�
∝ cos(�φ + �ξ ) = cos(φ + �ξ ), (15)

where the laser pulse phase difference �φ = φ. The contin-
uum electron wave function phase difference �ξ is insensitive
to the laser pulse CEP φ in the perturbative limit. Then the CEP
φ dependence of angular distributions becomes a function of
cos φ. The relation between asymmetric angular distributions
at φ = 0 and π is simply

dP Ee
ion(φ = 0)

d�
= −dP Ee

ion(φ = π )

d�
∝ cos(�ξ ). (16)

From Eq. (16) we see that the angular distributions for
CEPs φ = 0 and π do exhibit an exact opposite asymmetry.
Therefore as shown in Fig. 2 the momentum distributions
of MATI spectra are forward-backward asymmetric in the
polarization direction (molecular x axis) and mirror images
of each other.

To quantitatively describe the sensitivity of the angular
distribution asymmetry to the pulse CEP φ, time delay �τ

and photoelectron kinetic energy Ee, in Fig. 3 we show the
asymmetry ratio A(Ee) obtained from Eq. (11). In Fig. 3(a) we
first show the degree of asymmetry in the angular distributions
of photoelectron spectra at particular photoelectron kinetic
energies Ee in the two-color XUV laser pulses with varying
CEP φ from 0 to 2π , where the time delay is fixed at
�τ = 0. The photoelectron kinetic energies are respectively
Ee1 = 0.3 a.u., Ee2 = 1.06 a.u., and Ee3 = 1.82 a.u. From
Fig. 3(a) we see that the asymmetry ratio A(Ee) is a sinusoidal
function of the CEP φ, in good agreement with the theoretical
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FIG. 3. (Color online) H2
+ (Re = 2 a.u.) asymmetry ratio A(Ee)

[Eq. (11)] of MATI spectra at special photoelectron kinetic energies
Ee1 = 0.3 a.u., Ee2 = 1.06 a.u., and Ee3 = 1.82 a.u. as functions of
(a) CEP φ (�τ = 0) and (b) time delay �τ (φ = 0) in the ultrashort
bichromatic λ1 = 60 nm and λ2 = 30 nm XUV laser pulse.

predictions cos(φ + �ξ ) in Eqs. (A10), (A13), and (A18) in
the Appendix, thus confirming the multiphoton regime of the
processes. The continuum electron wave packet directions
after ionization (photoionization angular distributions) are
determined by the relative phase of the two laser pulses. Here
we emphasize that for the single color multicycle laser pulse
no symmetry breaking is appreciably produced, as well as
reported in the H atom [46]. On ionization by such bichromatic
XUV laser pulses the influence of the interference effect of
CWEPs between the two transition pathways results in the
CEP φ dependent asymmetry in the photoionization angular
distributions. This observation also agrees with the results of
atomic Rb induced by a bichromatic 280 and 560 nm light [26],
where for the one-photon and two-photon ionization processes
from the ground 1sσg electronic state, the corresponding
angular momenta of the photoelectron are L = 1 and L = 0
and 2, respectively. In the molecular case, due to nonspherical
symmetry, more angular momenta are induced [8,35,47]. The
odd and the even electron angular functions will interfere

in the continuum, constructively on one side of the electron
ionization and destructively on the other side. However for
the ω1 + ω1 + ω1 + ω1 and ω2 + ω2 ionization processes at
energies Ee3, the corresponding interference effects cannot
contribute to the asymmetry in the angular distributions due
to the same parity of the continuum electron wave functions
[see also Eq. (A14)]. Only the interference between the odd
and even parity wave functions in the continuum results in
the forward-backward asymmetry in angular distributions. In
Eqs. (A10), (A13), and (A18), the phase difference �ξ of
continuum electron wave functions is defined by �η − �φ.
As shown in Fig. 3(a) the degree of asymmetry A(Ee) reaches
extreme values ∼±0.5 for Ee1 = 0.3 a.u. at the CEPs φ =
0.4π and 1.4π , leading to the maximum CEWP interference,
constructive and destructive respectively in forward (θ = 0◦)
and backward (θ = 180◦) directions where the transition
amplitude phase differences �η = 0 or π , whereas for values
of A(Ee) ∼ 0 where no interference occurs and �η = ±π/2,
the corresponding CEP is φ = 0.9π . Therefore based on the
observations of the asymmetry ratio A(Ee1) one can measure
the phase difference of the continuum electron wave func-
tions for two-pathway ionization �ξEe1 = �η − φ = 0.4π

at Ee1.
At higher electron kinetic energies Ee2 and Ee3, similar

ionization processes with the interference effects of CEWPs
induce the CEP φ dependent asymmetry ratios A(Ee2) and
A(Ee3) in Fig. 3(a). Comparing with A(Ee1), the degree
of symmetry breaking A(Ee2) is less pronounced, however,
A(Ee3) shows strong asymmetric characteristics with ampli-
tude 0.9. For the MATI peaks at the photoelectron energy
Ee3, many multiphoton ionization pathway interferences oc-
cur, thus enhancing the asymmetry. We conclude that the
interference arising from the creation of multipathway electron
wave packets is sensitive to the photoelectron kinetic energy
Ee. From Fig. 3(a) we get at Ee2 = 1.06 a.u. and the CEPs
φ = 0.35π and 1.35π the extreme values are A(Ee2) = ±0.23
and A(Ee3) = ±0.9 at Ee3 = 1.82 a.u. and the CEPs φ = 0.4π

and 1.4π where �η = 0 or π . For the case of A(Ee2) =
A(Ee3) = 0 without interference effects (�η = ±π/2), the
corresponding CEPs are φ = 0.85π and 0.9π . Then the
measured phase difference of the transition amplitudes are
respectively �ξEe2 = 0.35π for Ee2, and �ξEe3 = 0.4π for
Ee3. We note that the phase differences �ξ of the continuum
electron wave functions at both energies Ee1 and Ee3 are nearly
equal.

We next investigate the effects of the time delay �τ

on the asymmetry ratio A(Ee). Figure 3(b) displays the
results of the MATI spectra at photoelectron kinetic energies
Ee1 = 0.3 a.u., Ee2 = 1.06 a.u., and Ee3 = 1.82 a.u. as a
function of time delay �τ where CEP φ = 0. A(Ee) also
varies sinusoidally with the time delay �τ , similarly to
Fig. 3(a) where A(Ee) illustrates the sensitivity of the CEP
φ. Varying the time delay �τ corresponds to altering the
CEP of the total laser pulse in Eq. (4), that is, ω2�τ = φ′
[see also Figs. 1(d)–1(f)]. For example, for the ionization at
Ee1 from Fig. 3(b) we obtain that the vanishing asymmetry
ratio A(Ee1) = 0 occurs at approximately �τ ≈ 0.05τ and the
minimum value A(Ee1) = −0.5 at �τ ≈ 0.3τ corresponds to
phases φ′ = 0.1π and 0.6π . From Fig. 3(a) we have measured
the phase difference �ξ = 0.4π . The total phase differences
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�η = ω2�τ + �ξ = φ′ + �ξ = 0.5π and π , which are in
good agreement with the predictions in Eq. (A10) where the
corresponding interference terms are cos(�η) = 0 and −1.
Moreover, comparing Figs. 3(a) and 3(b) we note that the
asymmetry ratios A(Ee) have oscillation amplitudes which
are clearly different. In the case of the CEP φ dependence,
strong overlap of the two-color laser pulses (�τ = 0) during
the ionization processes results in strong interference effects
of the CEWPs from the two pathways, therefore leading
to constant amplitude of A(Ee). In Fig. 3(b), on the other
hand, the longer the time delay �τ , the decreasing overlap
of the two-color laser pulses produces less simultaneous
interference amplitudes β in Eqs. (A10) and (A13), that
is, the asymmetry ratio A(Ee) decreases. Photoionization
products show an overall symmetric angular distributions, as
illustrated in Fig. 2(c) for the results of �τ = 8τ (800 as).
By increasing the time delay �τ of the two laser pulses, the
asymmetry of the angular distributions decreases as shown
in Fig. 2. The corresponding momentum distribution shown
in Fig. 2 illustrates an interference finger with ring structure
parallel to laser pulse polarization (radial interference) which
is enhanced gradually. When ionization at λ1 = 60 nm laser
pulse is separated in time from that at λ2 = 30 nm as shown
in Fig. 1(f), that is, two distinct ionization routes into the
continuum, radial interference patterns thus appear clearly.
At time delay �τ = 4τ (400 as) in Fig. 1(e) one sees that
in Fig. 2(b) both simultaneous interference effects and radial
interference fingers appear due to superposition of angular
momentum states [49]. The radial interference fingers are
enhanced as the time delay �τ increases, as shown in Fig. 2(c)
where for time delay �τ = 8τ (800 as) triple rings appear
clearly around momentum p = 0.775 a.u. (Ee1 = 0.3 a.u.).
Similar results of evolutions of the asymmetry ratio A(Ee)
with time delay �τ can also observed at different CEPs φ,
such as π shown in Fig. 1(e) and 1(f), but with a phase
shift φ.

In Fig. 4 we next show the results of the photoelectron
momentum (px , py) distributions for a shorter, few-cycle,
attosecond bichromatic intense XUV laser pulse. The laser
parameters are the same as those used in Fig. 2 but with fewer
cycles T = 4τ = 400 as duration. The pulse CEPs φ = π/2
and 3π/2 nearly correspond to the extreme values of A(Ee) in
Fig. 3(a). The signature of the CEP φ and time delay �τ depen-
dence on the asymmetry is again clearly observed. For all cases
the photoelectron spectra show complicated distributions, and
the well-resolved MATI peaks of Fig. 2 disappear. Due to
the broad energy width of the attosecond pulse, the ionized
electron energy spread increases, simultaneously introducing
a spread in electron wave packets. Such an effect appears
also in 1D non-Born-Oppenheimer simulations, where all
vibrational resolution is lost with sub-femtosecond pulses [32].
Such broad energy and momentum electron wave packets
produce additional interference patterns in the photoelectron
angular distributions. The scattering nodes in angle as shown
in Fig. 2 at pe1 = 0.775 a.u. are still observed. The Fourier
transform of the two-color attosecond XUV pulse with �τ = 0
gives an energy half width �ε ≈ 0.75 a.u. For the continuum
electron momentum p = 0.775 a.u., the momentum width
corresponds to �p =

√
p2 + 2�ε − p = 0.67 a.u. Analysis

of the momentum distributions in Fig. 4 shows the same

(a)   Δτ=0
φ=π/2 φ=3π/2

φ=3π/2

(b)   Δτ=4τ
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φ=π/2
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FIG. 4. (Color online) 2D momentum distributions (px,py) of
photoelectron spectra for H2

+ at R = 2 a.u. in the bichromatic λ1 =
60 nm and λ2 = 30 nm few-cycle XUV laser pulses with duration
T = 4τ = 400 as, intensities I1 = 2I2 = 1.0 × 1014 W/cm2, and
different CEPs φ = π/2 (left column) and 3π/2 (right column) and
time delays (a) �τ = 0, (b) 4τ (400 as), and (c) 12τ (1.2 fs). The
classical momenta pe at MATI peak energies Ee = p2

e /2 (Fig. 1)
are shown as dashed circles with radii pe1 = 0.775 a.u. (Ee1 =
0.3 a.u.), pe2 = 1.456 a.u. (Ee2 = 1.06 a.u.), and pe3 = 1.908 a.u.
(Ee3 = 1.82 a.u.).

momentum spread �p ≈ 0.6 a.u., thus producing wider
interference patterns. Increasing the time delay �τ increases
resolution of the spectra, as shown for �τ = 12τ , where
many clear rings appear in Fig. 4(a) due to enhanced radial
interference.

C. Effects of LIED at large internuclear distance
on MATI spectra

Finally we consider the case of the photoionization for
H2

+ at a large internuclear distance R = 10 a.u. Such large
distance geometries are now being considered for attosecond
pulse generation due to the high energy MHOHG spectra
by electron recombination with neighboring ions [48]. The
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FIG. 5. (Color online) 2D momentum distributions (px,py)
of photoelectron spectra for extended molecular ions H2

+ at
large internuclear distance R = 10 a.u. in the bichromatic λ1 =
100 nm (ω1 = 0.456 a.u.) and λ2 = 50 nm (ω2 = 0.91 a.u.)
XUV laser pulses with duration T = 12τ = 2.0 fs, intensities
I1 = 2I2 = 1.0 × 1014 W/cm2 and different CEPs φ = 0 (left
column) and π (right column) and time delays (a) �τ = 0
and (b) 8τ (1.33 fs). The classical momenta pe at MATI
peak energies Ee = p2

e /2 are shown as dashed circles with
radii pe1 = 0.66 a.u. (Ee1 = 0.26 a.u.), pe2 = 1.16 a.u. (Ee2 =
0.716 a.u.), pe3 = 1.51 a.u. (Ee3 = 1.172 a.u.), and pe4 = 1.78 a.u.
(Ee4 = 1.628 a.u.).

dependence of the photoionization angular distributions on
the molecular orientation and geometry (internuclear distance
R) is in fact a consequence of interference between two
single center spherical wave functions [6,34]. The momentum
distributions (px,py) for different time delays �τ = 0 and
8τ = 1.33 fs are displayed in Fig. 5. In Fig. 6 we also illustrate
the corresponding MATI angular distributions J Ee (θ ) at three
special photoelectron kinetic energies Ee1 = 2ω1 − Ip, Ee2 =
3ω1 − Ip, and Ee3 = 4ω1 − Ip. The same bichromatic intense
XUV laser pulse as used in the above simulations is adopted
but with longer wavelengthes λ1 = 100 nm [ω1 = 0.456 a.u. <
Ip(R = 10 a.u.) = 0.65 a.u.] and λ2 = 50 nm [ω2 = 0.91 a.u.
> Ip(R = 10 a.u.)] and duration T = 12τ = 2.0 fs. The CEPs
in Figs. 5 and 6 are also set at φ = 0 and π . As seen in Figs. 5
and 6, the CEP φ and delay time �τ sensitivity of the forward-
backward asymmetry in the momentum distributions can be
observed again, the same as the equilibrium photoionization
results in Fig. 2. For the large internuclear distance R config-
urations of the molecular ion H2

+, the initial electronic 1sσg

state involves a single electron delocalized over two atomic
centers since the molecular orbital ψ1sσg

∼ (1sa + 1sb)/
√

2.
The overall angular distribution is given in [6,34,49] for a δ(t)

excitation pulse for electron momentum p as

dP Ee
ion

d�
∝ F(�) cos(p · R/2). (17)

The total angular distribution F(�) contains now many
interference pathways due to the infinite energy width of a
δ(t) pulse. Nevertheless this is modulated by the two center
electron phase cos(p · R)/2 which depends on the internuclear
distance R. From Eqs. (A10) and (A13) the angular distribution
term F(�) in Eq. (17) is a function of φ (�η), therefore we
conclude that the asymmetry in forward-backward momentum
and angular distributions in Figs. 5 and 6 are mainly due to the
constructive and destructive interference effects of the electron
wave packets in the continuum which is critically sensitive to
the CEPs φ and time delay �τ predicted in Eqs. (A10), (A13),
and (A18). As seen in Fig. 6(a) at time delay �τ = 0, the
MATI angular distributions show complete asymmetries and
mirror images for the CEPs φ = 0 and π at special energies
Ee. Increasing time delay �τ decreases the degree of the
asymmetry. At �τ = 8τ we see that the asymmetry nearly
vanishes and the symmetric angular distributions are obtained
for both CEPs φ = 0 and π .

Comparing with Fig. 2, the results illustrated in Figs. 5
and 6 show more complex angular distributions. From Eq. (17)
we see that the angular distributions are also functions of
the product of internuclear distance and electron momentum:
p · R. At equilibrium in Fig. 2 the electron wavelength λe > Re

in low energy MATI angular distributions, thus no diffraction
occurs. Under the condition of λe < R the considerable LIED
due to electron-proton scattering can be induced. For the
photoionization at R = 10 a.u. in the bichromatic XUV laser
fields, in Fig. 6 the corresponding wavelength of the photo-
electron with kinetic energy Ee1 = 0.26 a.u. (p1 = 0.72 a.u.),
Ee2 = 0.716 a.u. (p2 = 0.1.16 a.u.), and Ee3 = 1.173 a.u.
(p3 = 1.51 a.u.) are, respectively, λe = 2π/p = 9.5, 5.4, and
4.2 a.u., less than molecular internuclear distance R = 10 a.u.,
therefore leading to new effects due to electron diffraction.
The signature of these diffraction effects appear clearly as
“wings” at angles in the corresponding electron angular and
momentum distributions in Figs. 5 and 6. For the second MATI
peak at photoelectron energy Ee2 = 0.715 a.u. (p = 1.16 a.u.),
the interference term predicted in [6,34], cos(p · R/2) =
cos(pR cos θ/2) has maxima at cos θ = nπ/6 � 0 ± 1/2, ±1,
that is, θ = 0, ±π/3, ±π/2, ±2π/3, and π , and for the third
MATI peak at Ee3 = 1.173 a.u. (p3 = 1.51 a.u.), θ = ±35◦,
±65◦, and ±π/2. The numerical results in Fig. 6 are consistent
with the theoretical predictions. The similar complex LIED and
interference patterns in MATI angular distributions for large
internuclear distance configurations in H2

+ have also been
observed in both linearly and circularly polarized λ = 400 nm
laser pulses [50]. In fact increasing the internuclear distance
R is similar to the concept of increasing the photon energy
to match the internuclear distance. Thus the asymmetry in the
angular distributions is dependent on the internuclear distance
R as well. Of note is that at delay time �τ = 8τ = 1.33 fs
in Fig. 6(b) no LIED wings appears in the MATI angular
distributions at photoelectron kinetic energy Ee3. This is
mainly results from the weak two-center interference at higher
photoelectron energy due to the decrease of the ionization
probability and less Coulomb potential effects. At short
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(a) Δτ=0
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FIG. 6. (Color online) MATI angular distributions J Ee (θ ) at specific photoelectron kinetic energies (left column) Ee1 = 0.26 a.u., (middle
column) Ee2 = 0.716 a.u., and (right column) Ee3 = 1.172 a.u. for molecular ions H2

+ at large internuclear distance R = 10 a.u. in the
bichromatic λ1 = 100 nm (ω1 = 0.456 a.u.) and λ2 = 50 nm (ω2 = 0.91 a.u.) XUV laser pulses with duration T = 12τ = 2.0 fs, intensities
I1 = 2I2 = 1.0 × 1014 W/cm2 and different CEPs φ = 0 and π and time delays (a) �τ = 0 and (b) 8τ (1.33 fs), cf. Fig. 5.

time delay �τ , the interference from the multiple pathway
ionization shown in Fig. 5 enhances the effects of LIED, thus
a clear wing structure is obtained in Fig. 6(a) at Ee3 for both
CEPs φ = 0 and π .

IV. CONCLUSIONS

We have presented MATI angular distributions of a
prealigned single electron molecular ion H2

+ produced by
a combination of ultrashort (few cycles) intense linearly
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polarized bichromatic XUV laser pulses from numerical
solutions of corresponding TDSEs for static nuclei at equi-
librium Re = 2 a.u. and large distance R = 10 a.u. The
ultrashort sub-femtosecond and attosecond pulses frequencies
ω2 = 2ω1 are chosen with ω1 < Ip and ω2 > Ip, that is,
below and above the ionization potential Ip in order to
create interference multiple ionization pathways. The pulse
durations are in the attosecond time regime in order to
ensure static nuclear configurations as valid models for the
patterns of LIED in the ionization. The numerical results
show that at intensities I = 1014 W/cm2 and wavelengths
λ1 = 60 and λ2 = 30 nm multiple energy peaks occur in the
MATI spectra, thus producing simultaneous LIED spectra
at different photoelectron wavelengths λe. At equilibrium
λe > Re negligible diffraction occurs, whereas at R = 10 a.u.,
λe < R, two-center interference patterns are enhanced. The
MATI angular distributions at different photoelectron energies
Ee exhibit forward-backward asymmetries due to interference
effects from multiple ionization pathways illustrated in Fig. 5.
These asymmetries are shown to be critically sensitive to the
relative CEP φ, the time delay �τ between the two attosecond
XUV laser pulses and the MATI photoelectron energies Ee.
In general the asymmetric angular distributions are mirror
images of each other for the CEPs φ = 0 vs φ = π . This
behavior is predicted by a perturbative multiple ionization
approach resulting in identifiable interference terms which
are simple functions of cos θ , the dipolar interaction, and
cos �η, where �η = �φ + �ξ with �φ the phase difference
between the electric field amplitudes of each pulse and �ξ ,
the phase difference between the final continuum electron
states. An increase in time delay �τ decreases gradually the
degree of the asymmetry in the angular distributions due to
decreasing interference between the multiphoton ionization
pathways, converging finally to single pulse symmetric angular
distributions. Finally, the pulse energy width �E ∼ 1/T with
T the pulse duration, imposes a limit on MATI energy E and
corresponding momentum p resolution. In conclusion, intense
attosecond pulses allow for measuring MATI spectra with
multiple energy peaks at different static nuclear geometries.
The resulting photoelectron spectra exhibit asymmetries in
angular distributions for ionization by bichromatic pulses. The
asymmetries depend on the relative pulse CEPs but also on
the phase difference between final continuum electron wave
functions.
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APPENDIX: PERTURBATIVE MODEL OF
MULTIPATHWAY CEWP INTERFERENCE

To understand the sensitivity of the CEP φ and time delay
�τ to the asymmetry in the photoionization momentum and
angular distributions we adopt a perturbative theoretical model
of a multiphoton ionization. Usually for direct one-photon

ionization processes by laser pulses, the ionization differential
probability can be expressed simply in the dipole form [51]:

dPion

d�
∝ ∣∣〈ψEe

c (r)
∣∣TH |ψ0(r)〉∣∣2 = ∣∣〈ψEe

c (r)
∣∣r · E|ψ0(r)〉∣∣2

,

(A1)

where ψEe
c (r) is the continuum electron wave function with

energy Ee and ψ0(r) is the initial state. TH is a transition
operator corresponding to the transition from the initial state
|ψ0〉 to the continuum state |ψEe

c 〉. According to the numerical
simulation results, here we only consider the case of linearly
polarized laser pulses. In a one-color laser pulse, the angular
distributions of electrons emitted in one-photon ionization
processes have the simple forms respectively P(ω1) ∝ α0 +
α1 cos2 θ , where θ is the angle between the photoelectron
momentum p and orientation of the molecular R internuclear
(laser polarization) axis, and coefficients αi , i = 0,1,2, . . .,
depend on laser pulses and the initial state. Each transition
matrix amplitude shows that the CEP φ has no influence
on the multiphoton ionization angular distributions of the
photoelectron spectra.

For a combination of bichromatic laser pulses of frequen-
cies ω1 and ω2 = 2ω1, the electron can be ionized via multiple
pathways to reach the same final energies in the continuum
simultaneously. The two-photon (ω1 + ω1) transition matrix
element A2ω1 reads in the perturbative dipole approximation
as

A2ω1 = 〈
ψEe

c

∣∣TH |ψ0〉

=
∫

lim ε→0
dEe

n

〈
ψEe

c

∣∣r · E|ψn〉〈ψn|r · E|ψ0〉
Ee

0 − Ee
n + ω1 + iε

= PP
∫

dEe
n

〈
ψEe

c

∣∣r · E|ψn〉〈ψn|r · E|ψ0〉
Ee

0 − Ee
n + ω1

− iπδ
(
Ee

0 − Ee
n + ω1

)〈
ψEe

c

∣∣r · E|ψn〉〈ψn|r · E|ψ0〉
= Re(A2ω1 ) + iIm(A2ω1 ), (A2)

where the integral sums over all intermediate (virtual) states
|ψn〉. Equation (A2) applies to continuum intermediate states
|ψn〉 and/or high density Rydberg states [41]. The transition
amplitude in Eq. (A2) can thus be written as

A2ω1 = R2ω1e
iη2ω1 ,

R2ω1 =
√

[Re(A2ω1 )]2 + [Im(A2ω1 )]2, (A3)

η2ω1 = tan−1[Im(A2ω1 )/Re(A2ω1 )],

where η2ω1 is the phase of the transition amplitude of the two
ω1 photon ionizations. The total transition matrix element is
separated into a nonresonant (virtual) principle part PP integral
and a resonant transition ω1 = Ee

n − Ee
0, where Ee

0 and Ee
n is

the energies of the initial and intermediate electronic states.
For continuum energies or dense states such as Rydberg states,
the PP integral becomes negligible due to cancellation from
fluctuations of the denominators Ee

0 − Ee
n + ω1 > 0 and Ee

0 −
Ee

n + ω1 < 0 in Eq. (A2), that is,

PP
∫ ∞

−∞
dEe

n

〈
ψEe

c

∣∣r · E|ψn〉〈ψn|r · E|ψ0〉
Ee

0 − Ee
n + ω1

= 0. (A4)
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The nonresonant (virtual) processes in Eq. (A4) occur on a time
scale τnr = 1/|Ee

0 − Ee
n + ω1|. In this limit can one assume

that the total transition element depends on the resonant
process, that is, the imaginary fact of the transition amplitude
in Eq. (A2),

A2ω1 ∝ 〈
ψEe

c

∣∣r · E|ψn〉〈ψn|r · E|ψ0〉. (A5)

In polar coordinates the parallel dipole interaction simply takes
the form r · E = rE(r0 · e) = rE cos θ , where r0 is the unit
position vector, and then the radial and angular variables in the
transition matrix element are easily separated. The transition
matrix element A2ω1 can then be written as [29]

A2ω1 ∝ T2ω1f2ω1 (θ )eiξ2ω1 E(ω1)2

= T2ω1f2ω1 (θ )E0(ω1)2eiξ2ω1 +2φω1 , (A6)

where ξ2ω1 = η2ω1 is the bound state continuum electron wave
function phase and φ2ω1 and φω1 are the pulse CEPs. T2ω1

and f2ω1 (θ ) are, respectively, the radial and angular parts
of the reduced transition moments. In the case of bound
state resonances only, Im(A2ω1 ) = 0 in Eq. (A2), so the
corresponding phase of Re(A2ω1 ) is the same as the continuum
transition amplitude in Eq. (A6) since the final state |ψc〉 is the
same.

1. Interference of CEWPs at energy Ee1 = 2ω1 − Ip

For the photoelectron angular distributions with energy
Ee1 = 2ω1 − Ip, that is, simultaneous two-photon (ω1 +
ω1) in Eq. (A5) and one-photon (ω2 = 2ω1) ionizations in
Eq. (A1), the total transition probability is the square of the
two amplitudes with an interference term of the cross prod-
ucts of the two one- and two-photon ionization amplitudes,
that is, dP Ee1

ion /d� = P(2ω1) + P(ω2) + P(2ω1,ω2), where
P(2ω1,ω2) is the interference term which can be simply written
as [28,29]

P(2ω1,ω2) ∝ A∗
2ω1

· Aω2 + A2ω1 · A∗
ω2

(A7)

= T2ω1f2ω1 (θ )E0(ω1)2E0(ω2) cos(�η), (A8)

where A2ω1 and Aω2 are, respectively, the matrix element of
the two- and one-photon absorptions, and the angular factors
are obtained in the perturbative limit for linear polarization
parallel to the molecular axis,

f2ω1 (θ ) = 〈(r0 · e)(r0 · e)(r0 · e)〉 = cos3 θ. (A9)

The two field amplitudes are defined as E(ω2) =
E0(ω2) exp(iφω2 ) and E(ω1) = E0(ω1) exp(iφω1 ). The total
phase difference �η between the transition amplitudes for
the two-pathway ionizations is the sum of difference phases
of the laser pulses �φ and of the continuum electron wave
functions �ξ , that is, �η = �φ + �ξ with �φ = φω2 − 2φω1

and �ξ = ξω2 − ξ2ω1 , where ξω2 and ξ2ω1 are, respectively, the
phases of continuum electron wave functions for direct one
ω2 and two ω1 photon ionizations. Then the total angular
distributions can be finally written as sums of direct and
interfering photoionization distributions,

dP Ee1
ion

d�
∝ α0 + α1 cos2 θ + α2 cos4 θ + β cos3 θ cos(�η).

(A10)

The coefficient β is determined by the intensities of the two
laser pulses. We note that Eq. (A10) contains odd order terms in
both cos θ and cos(�η) = cos(�φ + �ξ ). The simultaneous
interference effect will therefore break the symmetry of the
electron flux in forward (positive) and backward (negative)
directions and the angular distributions will vary periodically
with the phase difference �φ of the laser pulses. At �η =
π/2 there is no interference and at �η = 0 and π one gets
maximum asymmetry as illustrated later.

2. Interference of CEWPs at energy Ee2 = 3ω1 − Ip

Photoionization processes can also occur in higher kinetic
energy Ee2 = 3ω1 − Ip channels after absorption of three ω1

photons (ω1 + ω1 + ω1), giving a direct transition P(3ω1)
with α0 + α1 cos2 θ + α2 cos4 θ + α3 cos6 θ angular distribu-
tion. This is combined with a one ω1 and one ω2 photon
(ω1 + ω2) transition, giving P(ω1 + ω2) ∝ α0 + α1 cos2 θ +
α2 cos4 θ angular distributions. Therefore the simultaneous
interference term between these two multiphoton ionization
pathways can be written as

P(3ω1,ω1 + ω2) ∝ A∗
3ω1

· Aω1+ω2 + A3ω1 · A∗
ω1+ω2

= T3ω1f3ω1 (θ )E0(ω1)4E0(ω2) cos(�φ).

(A11)

A3ω1 and Aω1+ω2 are transition amplitudes from ω1 + ω1 + ω1

and ω1 + ω2 pathway ionizations. The corresponding angular
factor is given by

f3ω1 (θ ) = 〈(r0 · e)5〉 = cos5 θ. (A12)

Then one can express the overall angular distributions

dP Ee2
ion

d�
∝ α0 + α1 cos2 θ + α2 cos4 θ + α3 cos6 θ

+β cos5 θ cos(�η), (A13)

where αi and β are pulse dependent coefficients with transition
amplitude phase differences �η = �φ + �ξ , �φ = φω2 −
2φω1 and �ξ = ξω1+ω2 − ξ3ω1 . ξ3ω1 and ξω1+ω2 are the phases of
the continuum electron wave functions for the 3ω1 and ω1 + ω2

pathways ionizations. The ionization is in fact a three-pathway
ionization process. The ω1 + ω1 + ω1 transition corresponds
to three successive one photon transitions giving rise to a
single transition amplitude A3ω1 = R3ω1e

iη3ω1 , whereas the
ω1 + ω2 transition corresponds to two amplitudes, A′

ω1+ω2

andA′
ω2+ω1

whose sum is defined asAω1+ω2 = Rω1+ω2e
iηω1+ω2 .

Again, a phase difference dependent asymmetry in the angular
distributions is obtained due to the odd order terms in both
cos θ and cos(�η) in Eq. (A13).

3. Interference of CEWPs at energy Ee3 = 4ω1 − Ip

Similar results for total angular distributions can be ob-
tained for the ionization processes with next higher kinetic en-
ergy Ee3 = 4ω1 − Ip via five-pathway transitions after direct
absorptions of four ω1 photons (ω1 + ω1 + ω1 + ω1), and two
2ω photons (ω2 + ω2), and one 2ω and two ω photons (ω1 +
ω1 + ω2). For this multipathway ionization, the interference
is simply the sum of the contributions from all pathways. We
note that in the ionization processes three-pathway interference
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occurs, that is, the four ω1 photon ionization with transition
A4ω1 = R4ω1e

iη4ω1 , two ω2 photon ionization with transition
A2ω2 = R2ω2e

iη2ω2 , and the three-photon ionization processes
A2ω1+ω2 = R2ω1+ω2e

iη2ω1+ω2 corresponding to three amplitudes
A′

2ω1+ω2
, A′

ω1+ω2+ω1
, and A′

ω2+2ω1
interfere with each other.

Then we get respectively A4ω1 and A2ω2 interference,

P(4ω1,2ω2) ∝ A∗
4ω1

· A2ω2 + A4ω1 · A∗
2ω2

= T4ω1f4ω1 (θ )E(ω1)4E(ω2)2 cos(2�η0), (A14)

A4ω1 and A2ω1+ω2 interference,

P(4ω1,2ω1 + ω2) ∝ A∗
4ω1

· A2ω1+ω2 + A4ω1 · A∗
2ω1+ω2

= T ′
4ω1

f ′
4ω1

(θ )E(ω1)6E(ω2) cos(�η1),

(A15)

and A2ω2 and A2ω1+ω2 interference,

P(2ω2,2ω1 + ω2) ∝ A∗
2ω2

· A2ω1+ω2 + A2ω2 · A∗
2ω1+ω2

= T ′′
4ω1

f ′′
4ω1

(θ )E(ω1)2E(ω2)2 cos(�η2),

(A16)

where transition amplitude phase differences are �η0 =
�ξ0/2 + �φ, �η1 = �ξ1 − �φ, and �η2 = �ξ2 − �φ, and
�ξ0,1,2 are phase differences of corresponding continuum

electron wave functions. The angular parts of the reduced
transition matrix elements in Eqs. (A14)–(A16) transform as

f4ω1 (θ ) = cos6 θ, f ′
4ω1

(θ ) = cos7 θ, f ′′
4ω1

(θ ) = cos5 θ.

(A17)

The total angular distributions for the Ee3 MATI peaks at
energy Ee3 = 4ω1 − Ip are then

dP Ee3
ion

d�
∝ α0 + α1 cos2 θ + α2 cos4 θ + α3 cos6 θ

+α4 cos8 θ + β0 cos6 θ cos2(�η0)

+β1 cos5 θ cos(�η1) + β2 cos7 θ cos(�η2), (A18)

From Eqs. (A14)–(A18) we see that both odd and even powers
of cos θ and cos(�η) are obtained in the interference terms,
that is, an even number of transition cos6 θ term occurs for
odd-odd parity interference, whereas the terms cos5(θ ) and
cos7(θ ) correspond to odd-even transition interferences. In
Eqs. (A14) and (A17) the term cos6 θ cos2(�η0) comes from
the interference between the four ω1 and two ω2 photons
ionization processes, which is symmetric in both angle θ and
phase difference �η0. Thus the interference between A4ω1

and A2ω2 does not contribute to the asymmetry of the angular
distribution. The asymmetry from the cos(�η) [cos(�φ)]
phase term only appears in the high odd multiphoton terms
cos5 θ and cos7 θ via interferences of A2ω1+ω2 with A2ω2 and
A4ω1 transition amplitudes, respectively.
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