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Femtosecond transparency in the extreme-ultraviolet region
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Electromagnetically-induced-transparency-like behavior in the extreme-ultraviolet region is studied theo-
retically, including the effect of intense 800 nm laser dressing of He 2s2p(1P o) and 2p2(1Se) autoionizing
states. We present an ab initio solution of the time-dependent Schrödinger equation in an LS-coupling
configuration-interaction basis set. The method enables a rigorous treatment of optical field ionization of these
coupled autoionizing states into the N = 2 continuum in addition to N = 1. Our calculated transient absorption
spectra show encouraging agreement with experiment.
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I. INTRODUCTION

The use of two laser fields to dress the eigenstates of a
three-level system has attracted significant attention over the
past two decades [1]. The interaction of light with a coherent
atomic ensemble leads to important quantum interference phe-
nomena, including electromagnetically induced transparency
(EIT) [2,3], in which the laser-induced coherence of atomic
states leads to quantum interference between the excitation
pathways that control the optical response. It can be used to
manipulate the linear and nonlinear susceptibilities of matter
from the near-infrared to the ultraviolet region. This has
resulted in applications such as slowed and stored light as
well as nonlinear frequency conversion [4].

Presently there is great interest in the application of light
in the x-ray regime, produced by high-order harmonics and
free-electron lasers, to investigate novel coherent x-ray optical
phenomena. In this context, the ultrafast electron dynamics
of autoionization processes in atoms has gained attention
in recent years. The advent of femtosecond and attosecond
extreme-ultraviolet (XUV) laser pulses in a pump-probe
setting has made it possible to follow these processes in real
time [5]. These experiments involving two coherent laser
pulses allow study of the time-resolved interaction of the
direct ionization pathway with pathways involving one or
more resonant states. This opens the possibility of new ways
to monitor and control the autoionization dynamics [6–8] and
consequently the XUV absorption properties of the dressed
medium.

The first theory of autoionizing states in a strong laser
field was formulated by Lambropoulos and Zoller [9]. Later
theoretical studies due to Bachau et al. [10] and Themelis et al.
[11] predicted the transformation of the original unperturbed
Fano line shape [12] into an Autler-Townes doublet due to Rabi
flopping between a pair of coherently coupled doubly excited
states. The suppression of autoionization due to strong-field
coupling of two autoionizing states was for the first time
experimentally studied in magnesium by Karapanagioti et al.
[13,14]. Loh et al. [15] observed EIT-like behavior in an
XUV probe induced by coherent coupling of the 2s2p(1P o)
and 2p2(1Se) doubly excited states in helium, where the
XUV probe was created from IR-laser-produced high-order
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harmonics. Specifically, that study used a femtosecond infrared
(IR) pulse both to couple the doubly excited states and to
produce the probe pulse. Buth et al. [16] predicted an EIT
for x rays in laser-dressed neon. More recently, Ranitovic
et al. [17] used a two-color multiphoton ionization of helium in
combined IR laser and XUV high-harmonic fields to control
the transparency. They showed that this scheme can induce
full electromagnetic transparency. Gilbertson et al. [6] studied
the photoabsorption spectrum in the XUV of laser-dressed
helium experimentally using a single attosecond pulse as well.
The results of that work have been explained theoretically
by Chu et al. [18] using a three-level model similar to that of
Ref. [19]. Very recently, the transient absorption in the XUV by
laser-dressed helium has been studied theoretically by Gaarde
et al. [20]. That study is restricted to the single-active-electron
approximation and to laser wavelengths and intensities where
single excitations below the first ionization threshold dominate
the XUV absorption.

Quantum-mechanical calculations of the photoabsorption
spectra for the dressed atoms represent a challenge for theory,
especially when the dressing-laser pulse couples doubly
excited states. The time-consuming solution of the time-
dependent Schrödinger equation (TDSE) is required for every
photon energy of the probe pulse. Tong and Lin [21] used
the time-dependent hyperspherical close-coupling method
to calculate laser-assisted photoionization cross sections of
helium in the XUV. An alternative theoretical treatment has
been introduced by Tong and Toshima [22] and successfully
used in Ref. [17]. It is based on the Floquet representation
and on the calculation of the autocorrelation function which
is independent of the probe-laser photon energy. Therefore,
the time- and memory-demanding numerical calculation of
the autocorrelation function is performed only once. Since the
photoabsorption cross section has a simple analytical de-
pendence on the autocorrelation function, its calculation is
not difficult. However, the approach introduced in Ref. [22]
involves a diagonalization of the Hamiltonian matrix in the
Floquet representation, typically having dimensions 106 ×
106, and this step is still challenging for a supercomputer.

To our knowledge, there is no method which enables a
routine theoretical calculation of the photoabsorption spectra
in the presence of a strong dressing-laser pulse. The aim of
the present work is to make a step toward the improvement of
the theoretical treatment of this problem. This study deals
with the modified Fano line shape in the photoabsorption
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spectrum of the He 2s2p(1P o) doubly excited state caused
by the coupling of this state with the 2p2(1Se) doubly excited
state by an IR femtosecond pulse. Loh et al. [15] studied
this effect experimentally and interpreted the obtained results
as EIT-like behavior. A simplified three-level [19] model
treatment of this problem was included in Ref. [15]. The
model describes formation of an Autler-Townes doublet and
takes into account the effect of the optical field ionization of
the doubly excited states due to the IR dressing laser using a
somewhat ad hoc adaptation of the Ammosov-Delone-Krainov
(ADK) method. Our approach presented in this work is
based on the numerical solution of the TDSE. It takes into
account the possible coupling of more than two autoionizing
states and the continuum in principle more accurately than
the approach presented in Ref. [15]. Therefore, the present
treatment of the optical field ionization of the doubly exited
states due to the coupling laser field is more quantitative
as well. Photoabsorption spectra calculated using parameters
corresponding to the experimental setup used in Ref. [15] are
compared with results obtained for reduced IR pulse intensity
and for significantly reduced IR detuning. Comparison of all
these results allows us to study the effect of the optical field
ionization and of the IR laser detuning on the formation of
EIT-like structures in the spectra.

The rest of this paper is organized as follows: The theo-
retical approach and assumptions of our model are discussed
in Sec. II. A detailed description of the field-free Hamiltonian
and static photoabsorption spectrum is given in Sec. III, while
Sec. IV discusses the photoabsorption yields of the dressed
atom.

Atomic units are used throughout the rest of the paper.

II. THEORETICAL APPROACH

The model introduced in the present study is based on the
experimental publication of Loh et al. [15]. In that experiment
the 2s2p(1P o) and 2p2(1Se) doubly excited states of He are
coupled by a strong 800 nm field. The 2s2p(1P o) and 2p2(1Se)
states are located at 60.15 [23] and 62.06 eV [24] above the
1s2 ground state, respectively. This system is then probed
after a variable time delay by an XUV pulse. The XUV
probe pulse is produced with a table-top, laser-based setup
by high-order harmonic generation (HHG). The authors use a
commercial Ti:sapphire laser system (2.4 W, 800 nm, 42 fs,
1 kHz) to produce the optical dressing and HHG beam.
The estimated photon flux at the source is 105 photons per
pulse for the high-order harmonic centered at 60.2 eV. The
XUV pulse duration is estimated to be 30 fs full width at
half maximum (FWHM). The dressing-pulse peak intensity
is 1.4 × 1013 W/cm2 and its duration is 42 fs FWHM. The
spectrometer used in [15] measures the transmission spectrum
instead of the absorption spectrum. The unknown fraction
of dressed atoms in the interaction volume prevents the
photoabsorption spectrum of the dressed atom from being
retrieved experimentally. Therefore, the authors measured the
transient absorption spectra and identified EIT-like structures.

The XUV laser pulse couples the 1s2 ground state with
the 2s2p(1P o) autoionizing state with energy 35.56 eV above
the N = 1 ionization threshold. Therefore, it is reasonable
to assume that every absorption of an XUV photon leads to

photoionization. The aim of the present work is to calculate
the population of the ground state at the end of the pulse as a
function of the XUV photon energy h̄ωX for different dressing-
probe time delays tD . The computed loss of the ground-state
population is interpreted as the total photoabsorption yield.
Its comparison with the yields obtained when the IR pulse is
absent allows for recognition of EIT-like structures.

Helium is a two-electron system. The two-particle basis
set used in the present calculations consists of LS-coupled
independent-particle basis functions [25–27]. The Hamilto-
nian for the interaction of each electron with the core is

h(r) = −1

2
∇2 − 2

r
, (1)

where r is the coordinate of the electron with respect to the
nucleus. The corresponding (radially rescaled) single-particle
radial wave function ϕ(r) for an electron with orbital angular
momentum l is given by(

−1

2

d2

dr2
+ l(l + 1)

2r2
− 2

r

)
ϕ(r) = εϕ(r). (2)

The atomic Hamiltonian including the interaction between the
electrons is

H = h(r1) + h(r2) + 1

r12
, (3)

where r12 = |r1 − r2| is the distance between the electrons.
To calculate the time development of the ground-state

population we solve the TDSE for the two linearly polarized
laser fields in the length gauge:

i
∂

∂t
�(r1,r2,t)

= [H + DI (t + tD) + DX(t) + VC]�(r1,r2,t), (4)

where DI,X(t) = EI,X(t) · d = EI,X(t) · (r1 + r2) are the in-
teraction operators for the IR- and XUV laser pulses in the
dipole approximation, respectively. VC denotes the complex
absorbing potential (CAP) added to treat ionization properly
within the context of a finite-volume calculation. As in the
experimental convention, a positive time delay tD means that
the XUV-probe pulse center arrives later than the pump pulse
center. The electric fields EI (t) and EX(t) are given by

EI,X(t) = ẑEI,X(t) = ẑE0
I,Xf (t) cos(ωI,Xt), (5)

where ωI,X are the IR and XUV laser field frequencies, ẑ
is the unit vector along the polarization axis, E0

I,X are the
peak amplitudes of the electric fields, and fI,X(t) are the
pulse envelopes. Throughout this work it is assumed that both
envelopes have the cos2 form

fI (t) =

⎧⎪⎨
⎪⎩

cos2
(

πt
τI

)
, − τI

2 � t � τI

2 ,√
0.13 cos2

(
π(t−tP )

τIP

)
, −τIP

2 � t − tP � τIP

2 ,

0 otherwise,

(6)

and

fX(t) =
{

cos2
(

πt
τX

)
, − τX

2 � t � τX

2 ,

0 otherwise,
(7)

where τI,X denote the durations of the respective laser pulses.
The second term in Eq. (6) denotes the IR postpulse which
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appears in the experiment [15] with time delay tP = 88 fs and
duration τIP = 30 fs. The CAP used in the present calculations
has the form [28]

VC =
{

0, r1 � rb and r2 � rb,

−iη[(r1 − rb)2 + (r2 − rb)2] otherwise,

(8)

where η > 0 is the strength of the CAP and rb is the inner
boundary of the absorber. The TDSE (4) is integrated in a
box using the expansion of the time-dependent wave function
�(r1,r2,t) in a basis set consisting of eigenstates of the field-
free atomic Hamiltonian H :

�(r1,r2,t) =
Lmax∑
L=0

NL∑
n=0

cLn(t)
Ln(r1,r2), (9)

where 
Ln(r1,r2) denotes the nth eigenfunction of H having
total angular momentum L and corresponding to the real “box”
eigenenergy εLn:

H
Ln(r1,r2) = εLn
Ln(r1,r2). (10)

The expansion (9) includes NL eigenstates for the angular
momentum L, and it includes all the angular momenta up
to Lmax. The basis set used in the variational calculations of
the field-free eigenstates 
Ln(r1,r2) consists of LS-coupled
independent-particle basis functions. Antisymmetric two-
electron basis functions coupled to form a state of definite S, L,
and parity P are constructed in terms of one-electron orbitals
(2) as explained in Refs. [25–27]. The radial one-electron wave
functions ϕjl(r) are obtained by solving Eq. (2) in a radial box
of size r0 > rb with boundary conditions ϕjl(0) = ϕjl(r0) = 0
for both positive and negative energies ε. The index j denotes
the number of nodes of the radial wave function inside the box.
Equation (2) is solved by expansion of the radial orbitals in
the basis set of B-splines [29]Bk

i (r) satisfying the bound-state
boundary conditions

ϕjl(r) =
∑
i,k

cjlikB
k
i (r). (11)

The radial box is divided into several intervals (denoted by
index k) by knots and the B-splines are defined in terms of the
knots in each interval.

Use of the LS-coupled basis as discussed above is nowadays
a standard technique frequently employed in the theoretical
treatment of both time-dependent [26,27,29,30] and time-
independent [25] problems for two-active-electron atomic
systems. The radial one-electron orbitals are often expressed in
terms of B-splines [26,29,30] or discrete-variable representa-
tion (DVR) basis sets [31]. An alternative representation to the
LS-coupled basis set is the hyperspherical method successfully
used by Tong and Lin [21].

In order to suppress the reflections from the outer boundary
of the radial box in the solution of the TDSE (4) and to keep
its size reasonably small, the CAP term (8) is added to the
Hamiltonian used for the time propagation. The presence
of this term makes the total Hamiltonian of the system a
complex symmetric rather than Hermitian operator [28]. One
note should be made at this point regarding the form of the
matrix elements of all the operators used here. Since all the cal-

culations are performed in the eigenrepresentation of the
field-free atomic Hamiltonian H not including the CAP, the
operators H , DI (t), and DX(t) have real matrix elements,
as is convenient in Hermitian quantum mechanics. VC is the
only non-Hermitian term in the total Hamiltonian. Therefore,
it is not necessary to distinguish the standard Hermitian
scalar product and complex symmetric product throughout the
present work (see Ref. [32] and references therein for details).

Both laser pulses are linearly polarized along the z axis,
and of course the 1Se ground state of He has zero projection
ML of the total orbital angular momentum on the polarization
axis. Accordingly, it is also enough to consider only the z

component of the dipole operator. According to the selection
rules for the matrix elements of the dipole moment operators
(dz)LnL′n′ = 〈
Ln| z1 + z2 |
L′n′ 〉, these are nonzero only if
L − L′ = ±1 [33].

Projection of the TDSE (4) on the eigenstates of the
field-free Hamiltonian (10) yields the following set of coupled
differential equations of the first order:

iċ(t) = [H + VC + DI (t + tD) + DX(t)]c(t), (12)

where c(t) is the vector of expansion coefficients used in (9)
and the matrices on the right-hand side are the representations
of the corresponding operators in the basis set 
Ln(r1,r2)
introduced above. The dimension of this system of differential
equations is N = ∑Lmax

L=0 NL. In the present representation H is
a real diagonal matrix of the field-free atomic eigenenergies.
Since VC given by Eq. (8) has no angular dependence, VC

is an imaginary and symmetric block-diagonal matrix with
Lmax + 1 nonzero blocks having dimensions NL. DI,X(t) are
real symmetric banded matrices with only nonzero blocks
corresponding to the coupling of the total angular momentum
L with L ± 1, because we only consider ML = 0 states in this
study. The physical picture of the phenomenon studied here
suggests that the IR dressing-laser pulse couples the singlet
autoionizing states 2s2p(1P o) and 2p2(1Se) and the continuum
states made accessible by the IR pulse. The energy difference
between the ground state and the lowest odd-parity, singlet
excited state, 1s2p(1Po), of the field-free atom is so high that
it requires more than 18 photons to be absorbed to excite
the ground state by the IR pulse. Transitions of higher orders
would thus be necessary to excite higher excited states directly
from the IR pulse acting on the ground state. Therefore, it is a
reasonable assumption to neglect the IR coupling of the ground
state with excited states. Note that the weak effect of the IR
field for intensities considered in this work is also suggested
in Ref. [34]. Therefore, the matrix elements of the dipole
operator in the interaction matrix for the IR field (dI

z )00L′n′

were explicitly set to zero (considering the ground state the first
element in the basis set). This assumption allows for a dramatic
improvement in the convergence of the solutions of the TDSE
with respect to the size of the basis set. On the other hand,
it is the primary role of the XUV probe-laser pulse to couple
the ground state with the autoionizing state 2s2p(1P o) and
with nearby continuum states. Since it has rather high photon
energy and low intensity (perturbative regime), it is unlikely
that the XUV coupling between the doubly excited states and
the continuum states will play any significant role. Therefore,
in the present study all the dipole matrix elements in the XUV
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FIG. 1. Structure of the matrices in the system of coupled
equations (13). The gray areas denote the nonzero submatrices
corresponding to definite total angular momenta L and their dipole
coupling. Matrix dI

z has zero first line and first column, while matrix
dX

z has nonzero values only in the first row and column.

interaction matrix DX(t) except those coupling to the ground
state (dX

z )00L′n′ , are explicitly set to zero. Note that a similar
approximation for the XUV coupling in a similar context
has been employed in Ref. [5]. Using this approximation the
system of coupled differential equations (12) can be written as
follows:

iċ(t) = [
H + VC + EI (t + tD)dI

z + EX(t)dX
z

]
c(t). (13)

The structure of the matrices is shown in Fig. 1. The atomic
system is initially in the ground state. Considering the ground
state to be the first element of the basis set, the initial condition
can be written as c0,1(t0) = 1, cL,n>1(t0) = 0. The neglect of
the ground-state coupling with the other field-free eigenstates
via the IR laser pulse allows for reduction of the total interval
for the propagation of the TDSE as well. Since τI > τX, it
would be necessary to start the propagation of the TDSE (12)
in the time t0 = −tD − τI /2, if this assumption were not made.
It would also then be necessary to perform the propagation of
the wave function until the time t1 = max{−tD + τI /2,τX/2}.
Although the total wave function described by the vector c(t)
changes at times t > t1 due to the presence of the CAP, the
population of the ground state will remain constant after the
end of the pulses, since the ground-state wave function is well
localized in the region where the CAP is zero. Therefore, for
the purpose of the present project it is enough to perform the
propagation until t1 and extract the population of the ground
state c0,1(t1). The approximation that the IR field does not
affect the ground state allows for the start of the propagation
at time t0 = −τX/2 and termination at time t1 = τX/2. In
view of the long duration of both pulses, this is an important
simplification of the numerical calculations.

The method of solution of the TDSE used in the present
work is based on the split-operator method in the basis
set representation and it is described in the Appendix in
detail. This represents an alternative approach to the higher-
order quadrature methods [26,35,36] frequently used in the
context of the interaction of atoms and molecules with
strong laser fields. Application of the split-operator technique
is straightforward in the case of wave-packet propagation
(for details see Ref. [37] and references therein). However,
the exponential of the time-dependent operator remains a
challenge in the basis set representation. Palacios et al. [38]
introduced an implementation in the DVR basis set which
has properties that allow for an efficient numerical calculation
of these exponentials. In the implementation used here these
time-dependent exponentials are calculated in the diagonal
representation of the dipole operators, as discussed in the
Appendix.

The photoabsorption yields obtained from the solutions
of the TDSE (13) together with the static photoabsorption
yield enable a calculation of the transient absorption spectra.
This allows us to relate the theoretical results presented here
with the experimental transient absorption spectra published
in Ref. [15].

III. FIELD-FREE HAMILTONIAN AND STATIC
PHOTOABSORPTION SPECTRUM

Although we have found that the eigenrepresentation of the
atomic Hamiltonian H without the CAP is more practical
for the solutions of the TDSE (13), it is useful to study
the spectrum of the complex symmetric Hamiltonian HC =
H + VC .

This representation allows for easier optimization of the
CAP parameter η and of the size of the radial box r0. The
complex eigenenergies allow for a better insight into the
structure of the discretized continuum and for an evaluation
of its quality for the solution of the full TDSE as well. The
eigenfunctions φLn(r1,r2) of the complex symmetric operator
HC = H + VC are given by the equation

HCφLn(r1,r2) = ELnφLn(r1,r2), (14)

where the indices L,n have identical meaning as in Eq. (10).
The complex eigenenergies can be written as ELn = Er

Ln −
iLn/2. They should reproduce well the energy positions Er

Ln

and widths Ln of the 2s2p(1P o) and 2p2(1Se) autoionizing
states for L = 0,1. In addition, the density of the discretized
continuum states must be sufficient to accurately describe the
interaction between the autoionizing states and the continuum
and to allow for converged calculation of the photoionization
yield. These properties of the basis set are controlled by the
size of the box r0, the position of the absorbing boundary rb,
and the strength of the CAP η, as is described in Ref. [28].

These parameters have been optimized in the present
calculations to the values r0 = 200 a.u. and rb = 150 a.u.
These values allow for a good representation of the complex
eigenenergies of the autoionizing states, they yield negligible
decay widths of the ground and low excited states, and they
provide a sufficient number of continuum states above the
ionization threshold. The radial box is spanned by 700 B-
splines of the sixth order. The LS-coupled expansion includes
the single-particle partial waves up to l = 19; every partial
wave includes 200 radial orbitals [see Eq. (2)]. In order to
describe the autoionizing states of the interest properly, the
configuration-interaction (CI) expansions of the states with
L = 0 and L = 1 include the doubly excited configurations,
where both electrons can occupy orbitals with l � 6 and j � 6.
In the remaining configurations one electron is restricted to
occupying a 1s, 2s, or 2p orbital, while the other electron
can occupy any orbital, constrained so that the configurations
contribute to the states with given spin S, total angular
momentum L, and parity P . The higher partial waves l

included in the expansion are required for the representation
of the continuum states having high total angular momentum
L; they are essential for obtaining converged solutions of the
full TDSE including the nonperturbative IR laser pulse.

As suggested in Ref. [28], the parameter η was optimized
by determining the stationary point of the complex-valued
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TABLE I. Comparison of the positions and widths of the 2s2p(1P o) and 2p2(1Se) doubly excited states calculated from diagonalization of
the Hamiltonian HC presented in this work with experimental values. The value η = 10−4 was used for the CAP parameter. The positions are
relative to the ground state 1s2. The values in parentheses are obtained by fitting the perturbation calculations to the Fano line shape.

Position (eV) Width (eV)

Present calculation Experiment Present calculation Experiment

2s2p(1P o) 59.687 (59.688) 60.15 [23] 0.0411 (0.0456) 0.0373 [23]
2p2(1Se) 61.747 62.06 [24] 0.0063 0.0059 [24]

function ELn(η) for L and n corresponding to the com-
plex eigenenergies of the autoionizing states 2s2p(1P o) and
2p2(1Se). A too low value of the parameter η leads to unphysical
reflections by the radial box boundary. On the other hand, a
too high value can lead to reflections by the CAP itself [39].
The stationary point of ELn(η) gives the best approximation
to the complex eigenenergies of the autoionizing states in the
finite basis set by minimizing the artificial reflections. This
optimization yields the value η = 10−4 for both autoionizing
states 2s2p(1P o) and 2p2(1Se).

Corresponding complex energies of these autoionizing
states calculated using this value are compared with previously
published experimental results [23,24] in Table I. The widths
of both autoionizing states calculated here are in good
agreement with the experimental results. The discrepancies
in their relative positions with respect to the ground state
are mainly due to the inaccurate representation of the 1s2

ground state by our truncated atomic Hamiltonian H. It gives a
computed ground-state energy of E1s2 = −2.883 43 a.u., while
the accurate experimental value is E

expt
1s2 = −2.903 78 a.u. [40].

To improve the ground-state energy (and subsequently the
relative positions of the doubly excited states) a significantly
larger basis set would be necessary. However, the difference
of doubly excited state energies is more important for the
calculations of the photoabsorption spectra than their relative
position with respect to the ground state. As can be seen from
Table I, the energy difference according to the calculations is
�E = 2.06 eV, while the experimental results give �Eexpt =
1.91 eV.

The distribution of the 1Se and 1Po continuum states in the
complex energy domain is plotted in Fig. 2. The IR laser pulse
assumed here allows for the optical field ionization of the
doubly excited states into the N = 2 continuum. Since Loh
et al. [15] suggested that inclusion of this effect is important
for the proper treatment of the phenomenon studied here, it
is important to have a sufficiently high density of continuum
states with higher total angular momenta L in the energy range
above the N = 2 ionization threshold. The present calculations
of the dipole matrix dI

z yield μab = 2.11 a.u. for the matrix
element coupling the 2s2p(1P o) and 2p2(1Se) states. This is in
good agreement with the previously published value 2.17 a.u.
obtained from the eigenchannel R-matrix calculations [15].

To understand the effect of the IR laser pulse it is a
necessary prerequisite to calculate the static photoabsorption
spectrum in the absence of the dressing-laser pulse. The
static photoabsorption yield corresponds to a Fano line shape
[12] across the known energy ω1 of the 2s2p(1P o) doubly
excited state with respect to the 1s2 ground state, which
has a known width 1 and value q1 of the Fano line-shape

parameter. However, it is a stringent test of our basis set
quality and of the CAP used throughout this work to calculate
this photoabsorption yield independently using the present
Hamiltonian and compare the corresponding spectrum with
previously published results [15]. This can be done by setting
E0

I = 0 in Eq. (13). Taking into account the low intensity of
the XUV laser field, it is most tractable to calculate the static
photoabsorption spectrum using time-dependent perturbation
theory. The corresponding loss of population of the ground
state is shown in Fig. 3. This curve should correspond to
the convolution of the Fano line shape with the XUV laser
pulse bandwidth. Therefore, we have fitted the absorption yield
obtained from the perturbation calculations to this convolution
and extracted the position, width, and line-shape parameter
of the 2s2p(1P o) autoionizing state. The fitting procedure
assumes a Gaussian envelope of the laser pulse with bandwidth
0.06 eV (FWHM).

Although the XUV pulse envelope used in the perturbation
calculations is different [see Eq. (7)], our numerical tests
showed that its spectrum is close enough to the spectrum
of the pulse with Gaussian temporal profile to allow us to
extract the line-shape parameter q1. The pulse with Gaussian
temporal profile has a Gaussian spectrum in the frequency
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FIG. 2. (Color online) Complex eigenenergies of the complex
symmetric field-free Hamiltonian HC spanning the interval of
energies probed by the XUV laser pulse. Energies of states with
the total angular momentum L = 0 and L = 1 are plotted. The
autoionizing states are labeled by their principal independent-particle
CI configurations. The autoionizing state with energy 62.22 eV
without label does not have a single dominant CI configuration;
its discrete component is a linear combination of the 2s3p and
3s2p configurations. The N = 2 ionization threshold is at energy
64.86 eV.
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FIG. 3. (Color online) Loss of the ground-state population in the
absence of the IR pulse and its comparison with the Fano line shape
convolved with the bandwidth of the pulse.

domain characterized by its bandwidth. On the other hand,
the envelope (7) used in the perturbation calculations has a
more difficult spectral profile that cannot be easily expressed
analytically. Therefore, fitting to the convolution of the Fano
line shape with the Gaussian spectral bandwidth is technically
simpler and easier to interpret than fitting to the convolution
with the spectral profile of the pulse (7).

The values for position and width obtained from the fitting
are compared with previously published results in Table I.
As expected, they agree very well with the values obtained
from diagonalization of HC . In addition, the fitting procedure
yields q1 = −2.71, in good correspondence with the value
−2.75 published in Ref. [15]. The convolved Fano line
shape corresponding to the fitted parameters is also shown
in Fig. 3. The good correspondence between the perturbation
calculations (using the cos2 XUV pulse envelope) and the Fano
line-shape fit convolved with the Gaussian function suggests
that the results are not sensitive to the details of the XUV pulse
envelope.

IV. PHOTOABSORPTION BY THE DRESSED
HELIUM ATOM

The loss of the ground-state population at the end of the
probe pulse p(ωX) = 1 − |c00(t1)|2 calculated from Eq. (13)
as a function of the XUV photon energy ωX for several time
delays tD is shown in Fig. 4. Equation (13) has been solved
using the method discussed in the Appendix with time step
�t = 0.06 a.u. Calculation of a single curve plotted in Fig. 4
required approximately 1500 h of CPU time. Since all the
points of the curves can be calculated independently, parallel
execution on the supercomputer made it possible to complete
calculation of all the curves within 48 h. Since the duration
of the dressing-laser pulse is longer than the duration of the
XUV pulse, different intensities of the IR field are probed at
different time delays tD . As can be seen in Fig. 4, the Fano
line shape disappears in the case of perfect overlap of the
two pulses, and the photoabsorption yield becomes essentially
structureless. The peak and the minimum shifted with respect
to the static case become more pronounced with increasing
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FIG. 4. (Color online) Loss of the ground-state population for
several time delays as a function of the XUV photon energy calculated
for the IR laser pulse with λI = 800 nm and peak intensity I 0

I =
1.4 × 1013 W/cm2.

time delay tD . An additional peak appears around the XUV
photon energy 60.6 eV for tD > 0 fs. Its energy position does
not change significantly with changing time delay. Loh et al.
[15] performed a model calculation of the photoabsorption
yield based on the three-level model developed in Ref. [19]
describing the Autler-Townes doublet formation. It explains
the presence of the additional peak in the photoabsorption yield
as well as the shift of the higher peak with respect to the static
case. The Ref. [15] model calculations that include optical
field ionization of the doubly excited states into the N = 2
continuum due to the IR field confirm that this effect leads to
a significant linewidth broadening. This broadening makes the
Autler-Townes doublet nearly invisible, and the position of the
peak at positive XUV detunings hardly shifts as the IR pulse
intensity is changed. Since the calculations presented in this
work were performed at an intensity that allows for optical
field ionization, our results are in good correspondence with
the theoretical considerations presented in Ref. [15].

The present calculations account for the time profile of both
pulses, whereby the photoabsorption yields shown in Fig. 4
together with the static photoabsorption yield plotted in Fig. 3
enable a calculation of the transient absorption spectra that can
be compared with experimental results published in [15].

The change of the optical density �Dopt is calculated using
the formula that takes into account the energy resolution of the
spectrometer used in the experiment [15]:

�Dopt(ωX)

= − log10

∫
exp

[−σ (ω)nt� − 4 ln 2
�ω2 (ω − ωX)2

]
dω∫

exp
[−σ0(ω)nt� − 4 ln 2

�ω2 (ω − ωX)2
]
dω

,

(15)

where σ (ω) and σ0(ω) are the photoabsorption cross section
of the dressed medium and the static photoabsorption cross
section in the absence of the IR pulse, respectively. nt is
the atom number density of the helium gas in the tube
and � is the length of the tube in the direction parallel
to the direction of laser propagation. �ω = 0.18 eV is the
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energy resolution of the spectrometer (FWHM) used in the
experiment [15]. Determination of the photoabsorption cross
section from the photoionization yield obtained from Eq. (13)
is not straightforward. The usual relation between the single-
photon absorption cross section and the photoabsorption rate
(probability per photon per second) dp/dt for an infinitely
long monochromatic pulse with photon energy ω is given by
the formula

σ (ω) = dp(ω)

dt

ω

I
, (16)

where dp/dt is the photoabsorption rate as a function of the
photon energy ω and I is the corresponding light intensity. This
formula assumes that the photoabsorption rate does not depend
on time. The situation in the present work is more complicated.
Both pulses have a finite duration, and the photoabsorption rate
varies with time. This time dependence should be included
in Eq. (16). However, when one takes into account other
assumptions made regarding the shape of the XUV pulse, it is
a good approximation to calculate the photoabsorption cross
section using the formula

σ (ωX) = A
p(ωX)ωX

TXIX

, (17)

where p(ωX) is the photoabsorption probability obtained from
Eq. (13), TX is the duration of the XUV pulse, and IX is
the corresponding XUV pulse intensity used to calculate
p(ωX). The scaling factor A approximately accounts for
the time dependence of the XUV field intensity and of
the photoabsorption rate. Its value was chosen so that the
calculated absorption spectra reproduce well the experimental
transient absorption spectra published in Ref. [15]. Since A

is related to the XUV pulse only, the value used to calculate
the static optical density is the same as the value used to
calculate the optical density in the presence of the IR field. The
comparison between our theoretical results and the Ref. [15]
experiment is presented in Fig. 5. The best correspondence
between the present calculations and experimental results was
achieved by setting A = 3.5 for the time delays tD = 0, 20,
and 40 fs. The remaining spectra with time delays tD = 60 and
80 fs compare best with the experimental results for A = 5.
Therefore, the best fit of the experimental data is obtained
when the product IXTX used in the calculations is smaller

than the values estimated in the experimental work [15]. The
calculated transient absorption spectra plotted in Fig. 5 have
been shifted on the energy axis by 0.45 eV to correct for
the inaccuracy of the 2s2p(1P o) doubly excited state position
with respect to the ground state in the present calculations
(see Table I and the discussion in Sec. III). A change of
the value of the parameter A affects the ratio of the peak
magnitudes in the transient absorption spectra; however, it
does not affect the positions of the structures in the curves.
As can be seen in Fig. 5, the present theoretical calculations
are generally in encouraging agreement with the experimental
results. The left peak that develops with increasing time delay
is a consequence of the rising maximum of the photoabsorption
spectrum due to the decreasing IR intensities probed by the
XUV pulse. The figure shows that this peak develops in the
present calculations more rapidly with increasing time delay
than is evident in the experimental results. The peak at positive
XUV detunings calculated in the present study corresponds
well to the experimental results. Since the probe pulse is
produced by the HHG, it is to be expected that its spatial and
frequency profiles have more difficult structures than a simple
Gaussian envelope as is assumed in this work. Therefore, the
discrepancies between the experimental transient absorption
spectra published in Ref. [15] and the spectra presented here
can possibly be attributed to the simplified shape of the XUV
pulse assumed in the present theoretical treatment.

Although the photoabsorption yields in Fig. 4 show the
reduced XUV photon absorption caused by the dressing IR
laser pulse, the relation between these results and the EIT-like
structures is not straightforward. The spectral peaks corre-
sponding to the dressed states of the Autler-Townes doublet
approach each other linearly as the Rabi splitting �c of the
states coupled by the IR laser pulse decreases. This behavior
is not apparent in Fig. 4. The Rabi splittings �c probed by
the peak of the XUV laser pulse at time delays tD = 0, 20,
and 40 fs are �c = 1.18, 0.62, and 0.0025 eV, respectively.
The splitting for larger time delays tD is significantly smaller
than the width of the 2s2p(1P o) doubly excited state. However,
Fig. 4 does not show any corresponding rapid change in the
energy separation of the peaks as the time delay is changed.
The clear interpretation of these photoabsorption yields is
complicated by the optical field ionization of the doubly
excited states, by the finite durations of the laser pulses, and
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FIG. 5. (Color online) Transient absorption spectra calculated using Eq. (15) for different time delays tD , and their comparison with
experimental results [15]. The value of the scaling constant A = 3.5 was used to calculate the spectra with time delays 0, 20, and 40 fs. The
value A = 5 was used to calculate the spectra with time delays 60 and 80 fs.
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FIG. 6. (Color online) Photoabsorption yield calculated for the
peak intensity of the IR field I0 = 7 × 1011 W/cm2 and for the
dressing pulse wavelength λI = 600 nm corresponding to the energy
difference between the 2s2p(1P o) and 2p2(1Se) doubly excited states.
Curves for time delays tD = 0,20,40 fs are compared with the static
photoabsorption yield with no IR pulse.

by the large detuning of the dressing laser from the energy
difference of the 2s2p(1P o) and 2p2(1Se) doubly excited states.
In order to eliminate the effect of the large IR detuning, another
calculation was performed with the wavelength of the IR laser
pulse modified to 600 nm. The corresponding photon energy
2.06 eV now matches the calculated energy difference between
the doubly excited states 2s2p(1P o) and 2p2(1Se) (see Table I).
In order to suppress the effect of the optical field ionization, the
peak intensity of the coupling IR laser pulse was decreased to
I 0
I = 7 × 1011 W/cm2. Corresponding photoabsorption yields

are shown in Fig. 6. This graph shows for tD = 0 fs two peaks
with energy separation 0.2 eV and a minimum between them
at energy close to the position of the static photoabsorption
peak. The Rabi splitting of the autoionizing states coupled
by the IR laser pulse with the reduced peak intensity used
here is �c = 0.27 eV. The curve for time delay tD = 20 fs
shows similar behavior. The energy separation of the peaks is
0.16 eV; the Rabi splitting of the 2s2p(1P o) and 2p2(1Se) doubly
excited states probed by the peak of the XUV laser pulse is
�c = 0.145 eV. In the case of a larger time delay tD = 40 fs,
the two peaks have a strong overlap and their energy separation
is smaller than the width of the 2s2p(1P o) doubly excited
state. This correspondence confirms that we can interpret
these structures as the Autler-Townes doublet. The energy
separations of the peaks for single time delays tD do not exactly
match the corresponding Rabi splittings �c, mainly because
of the finite duration of both pulses. Another reason could be
the coupling of additional doubly excited states by the IR laser
pulse that would add further complications to the three-level
picture. The presence of an additional autoionizing state in the
coupling scheme also appears to explain the smallest additional
peak at an energy below 59.4 eV which occurs at small time
delays in Fig. 6. The 2s2(1Se) doubly excited state is a good
candidate, since the energy difference between the 2s2(1Se)
and 2s2p(1P o) doubly excited states is 2.373 eV in the present
calculations. In general, the calculations performed with the
reduced IR intensity and with the photon energy adjusted
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FIG. 7. (Color online) The photoabsorption yield calculated for
the peak IR field intensity I0 = 1.4 × 1013 W/cm2 and for the
dressing pulse wavelength λI = 600 nm corresponding to the energy
difference between the 2s2p(1P o) and 2p2(1Se) doubly excited states.
Curves for time delays tD = 0,20,40 fs are compared with the static
photoabsorption yield.

as discussed above show the EIT-like structure more clearly
than the calculations performed with the parameters of the
IR laser pulse used in the experiment. This suggests that the
Autler-Townes structures in the calculations carried out using
the experimental parameters are not very pronounced simply
because the dressing-laser detuning is so large.

In order to investigate the manner in which the optical
field ionization of the autoionizing states affects the dressed
photoabsorption spectra, another calculation with the adjusted
IR laser pulse (λI = 600 nm) was performed. The experi-
mental peak intensity of the IR dressing-laser pulse I 0

I =
1.4 × 1013 W/cm2 was used. The resulting photoabsorption
yields for several time delays tD are shown in Fig. 7. This graph
shows a broad peak around the energy 58.7 eV and a richer
structure in the energy interval from 59.7 to 60.3 eV in the
case of perfect temporal overlap of the two laser pulses. These
structures approach each other with increasing time delay
tD . Since optical field ionization broadens the linewidths, the
characterization of the individual peaks in the photoabsorption
spectra is not straightforward. However, the well-pronounced
separation of the broad peak at negative XUV detuning and
the structure at positive XUV detuning is most likely related to
the coupling of the 2s2p(1P o) and 2p2(1Se) autoionizing states,
as can be assumed from the change of the separation with
increasing time delay tD . It is possible that the IR field at the
experimental peak intensity I 0

I = 1.4 × 1013 W/cm2 enables
coupling of additional autoionizing states, and this coupling
leads to the rich structure of peaks appearing at positive XUV
detunings.

V. CONCLUSIONS

This work presents a theoretical treatment of the pho-
toabsorption in the XUV for helium dressed by an IR laser.
The 2s2p(1P o) and 2p2(1Se) doubly excited states are coupled
by a strong 800 nm laser pulse with duration 42 fs. This
system is probed by a weak XUV pulse produced by HHG.
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The photoabsorption yields in the presence of both pulses
are calculated as a function of the XUV photon energy for
several dressing-probe time delays by solving the TDSE.
The calculated transient absorption spectra are in reasonable
correspondence with experimental results of Loh et al. [15].
The presence of the coupling IR laser significantly reduces
the peak photoabsorption yield, and changes of the time delay
between the dressing and probe pulses show the dependence
on the IR field intensity that is probed by the XUV photons.
Calculations performed with the wavelength of the dressing
laser modified to λI = 600 nm, corresponding to zero detuning
of the IR laser, clearly show a structure in the photoabsorption
spectrum that can be interpreted as an Autler-Townes doublet
and an EIT-like structure. This allows us to conclude that
this was not clearly pronounced in the experimental results
published in Ref. [15] primarily because of the large detuning
of the IR laser. The photoabsorption yields calculated for
different dressing-laser intensities showed that the optical field
ionization of the doubly excited states broadens the linewidths
and increasing the dressing-laser intensity leads to formation
of more complicated structures in the photoabsorption spectra.
These could result from the increasing importance of addi-
tional autoionizing states at higher IR intensity.

The method of solution of the TDSE presented in this work
proved to be stable and suitable for theoretical treatment of
two-active-electron atoms in pump-probe settings of the laser
pulses with the potential for further improvement in the future.
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APPENDIX: METHOD OF SOLUTION OF THE TDSE

Since it is necessary to integrate the system of equations
(12) for a set of different XUV photon energies h̄ωX and
pump-probe time delays tD , it is important to employ an
integration method that efficiently meets these requirements.
After tests of several different methods used elsewhere in
similar contexts (e.g., Runge-Kutta [26] and Crank-Nicholson
[37]) we chose to implement the split-operator technique [37]
in a basis set representation. The basic idea of this propagation
method is that if the total time-dependent Hamiltonian HT (t)
can be written as a sum of the time-independent and time-
dependent parts HT (t) = H0 + H1(t), the propagation of the
wave function between times t and t + �t , where �t is
sufficiently small, can be implemented to second order in the
time step, as follows:

�(t + �t) = exp

(
− i�t

2
H0

)
exp

[
−i

∫ t+�t

t

H1(t ′)dt ′
]

× exp

(
− i�t

2
H0

)
�(t) + O[(�t)3]. (A1)

If we denote

FI,X(t,�t) =
∫ t+�t

t

EI,X(t ′)dt ′, (A2)

then the application of this method to the present system of
equations (13) yields

c(t + �t) = exp

[
− i�t

2
(H + VC)

]

× exp
[ − idI

zFI (t + tD,�t) − idX
z FX(t,�t)

]

× exp

[
− i�t

2
(H + VC)

]
c(t) + O[(�t)3].

(A3)

The first and third exponential terms in this equation can be
calculated rather easily, as they are time independent (for a
fixed time step �t) and all the matrices are block diagonal.
Since the eigenrepresentation of the field-free Hamiltonian H

is used, this term can be expressed using the Crank-Nicholson
formula

exp

[
− i�t

2
(H + VC)

]

= 1 − i(H + VC)�t/4

1 + i(H + VC)�t/4
+ O[(�t)3], (A4)

which is accurate to second order in the time step. Although
the evaluation of this term requires a matrix inversion, it is not
demanding, as it can be performed independently for every
block matrix corresponding to a definite angular momentum
L. In addition, it is necessary to perform this step only once
before calculating the time propagation, as this term is time
independent.

Calculation of the second exponential in Eq. (A3) is more
difficult, as it explicitly depends on time and is not block
diagonal. Since dI

z and dX
z do not commute (see the structure

in Fig. 1), we can write this term using the split-operator
formula (A1) as follows:

exp
[ − idI

zFI (t + tD,�t) − idX
z FX(t,�t)

]

= exp

[
− i

2
dI

zFI (t + tD,�t)

]
exp

[ − idX
z FX(t,�t)

]

× exp

[
− i

2
dI

zFI (t + tD,�t)

]
+ O[(�t)3]. (A5)

The most straightforward way to calculate these exponentials
is using the eigenrepresentations of dI

z and dX
z :

exp
[ − idI

zFI (t + tD,�t) − idX
z FX(t,�t)

]

= UI diag

{
exp

[
− iλI

k

2
FI (t + tD,�t)

]}
UT

I

× UXdiag
{

exp
[ − iλX

k FX(t,�t)
]}

UT
XUI diag

×
{

exp

[
− iλI

k

2
FI (t + tD,�t)

]}
UT

I , (A6)

where λ
I,X
k are the eigenvalues of dI,X

z and UI,X are
the corresponding matrices of the column eigenvectors.
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Substitution of this result together with Eq. (A4) into Eq. (A3)
and denoting

V1 = UT
I

1 − i(H + VC)�t/4

1 + i(H + VC)�t/4
UI ,

(A7)
V2 = UT

I UX, cI (t) = UT
I c(t)

yields

cI (t + �t) = V1diag

{
exp

[
− iλI

k

2
FI (t + tD,�t)

]}
V2

× diag
{

exp
[−iλX

k FX(t,�t)
]}

VT
2

× diag

{
exp

[
− iλI

k

2
FI (t + tD,�t)

]}
VT

1 cI (t).

(A8)

This propagation scheme in one time step means that the wave
function is first expressed in the eigenrepresentation of dI

z

and propagation for a quarter of the time step is performed
using the field-free Hamiltonian augmented by the CAP. Then
the wave function is propagated in the IR field for half of
the time step. After that the wave function is transformed
into the eigenrepresentation of the XUV dipole operator and
the propagation for one time step is performed in the XUV
field only. The wave function is transformed back to the
IR eigenrepresentation again and the propagation steps in
the IR field only as well as the step using the field-free
Hamiltonian are performed. This propagation scheme involves
only two matrices which are time dependent and they are
diagonal in different representations. It means that only two
changes of representation are necessary in every time step.
Note that application of Eq. (A8) in two subsequent time
steps allows for multiplication by the matrix VT

1 V1 between
the steps. Therefore, every propagation step involves three
matrix-vector multiplications and two diagonal matrix-vector
multiplications, where only the diagonal matrices are time
dependent. The matrix V2 is real and the matrix VT

1 V1 is
complex symmetric. After the transformation of the initial

state vector c(t0) from the energy eigenrepresentation of H to
the diagonal representation of dI

z , the rest of the propagation
is performed in this basis. This approach is permissible in
the context of the problem studied here, because we need
to determine the depletion of the field-free ground state at
the end of the XUV laser pulse only, rather than information
about the evolution of the complete wave function during the
pulse. Note that only the function FX(t,�t) depends on the
XUV photon energy h̄ωX and the information about the time
delay tD appears only in the diagonal matrix in Eq. (A8).
Therefore, the same matrices VT

1 V1 and V2 can be used in all
the time-dependent calculations for all the values of h̄ω and tD
of interest.

One more note related to Eq. (A5) should be made at this
point. The split operator method is used there to calculate
the exponential involving matrices dI

z and dX
z which do not

commute. The nonzero commutator is a consequence of the
approximation introduced in Sec. II, where we neglect the
effect of the IR laser field on the ground state and neglect the
XUV couplings that do not involve the ground state (see Fig. 1).
The validity of this approximation implies that the commutator
[dI

z ,d
X
z ]FI (t + tD,�t)FX(t,�t) is sufficiently small that we

can write the exponential on the left-hand side of Eq. (A5)
simply as a product of two exponentials. This would change
the form of the final time propagator (A8) in such a way that
it will contain only two time-dependent matrices. Therefore,
this approach would save one matrix-vector multiplication in
every time step. However, its impact on the accuracy of the
time propagation needs to be tested and its implementation
will be the subject of forthcoming research.

In conclusion, the time required to calculate the matri-
ces VT

1 V1 and V2 (matrix diagonalization, inversion, and
matrix-matrix multiplication) is negligible compared to the
calculations of the time propagation using Eq. (A8). This
propagation scheme is of the second order in the time step
and scales as N2 with the dimension of the basis set used
(since it involves only matrix-vector multiplications in every
time step).
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