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Coherent control of quantum tunneling in an open double-well system
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We investigate how to apply a high-frequency driving field to the quantum control of a single particle in an
open double-well system. The linear stability analysis points out that the stability depends on the external-field
parameters and the loss (or gain) coefficients of the system, and the instability leads to a transition of the
Floquet quasienergy from real to complex values and results in decaying probabilities for the particle to be in the
double well. By combining analytical solutions in the high-frequency approximation with numerical calculations
based on an accurate model, we exhibit quantum-dynamical behavior of the particle such as Floquet oscillation,
coherent destruction of tunneling, quasi-NOON-state population, partial one-particle tunneling, and the decay of
the probabilities of occupation, which are due to the competition and balance between the quantum coherence
and the loss (or gain) effect. The results suggest an experimental method for testing quantum motion in an open
system by adjusting the driving field.
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I. INTRODUCTION

Periodically driven double-well systems have received
much attention over the last few years [1,2]. The main research
interest has been motivated by the desire to show coherent
control of quantum tunneling through such a system [3–6].
For applications, open quantum systems have recently become
the subject of extensive studies [7]. The non-Hermiticity was
due to the presence of various gain or loss mechanisms in
open systems [8–11], which brought much new content to
the study of quantum control [12–15]. For a single particle,
the non-Hermitian double-well system (or the mathematically
equivalent two-level system) is a basic system that is useful
for researching coherent control [16–18]. It is not only a
simple extension of the corresponding Hermitian one-body
system, but can also be used to simulate non-Hermitian
many-body systems without interactions [19], whereas the
zero interaction strength can be realized by the Feshbach
resonance technique [20]. However, most previous works on
non-Hermitian double-well systems took into account the
effect of a static field on the stationary states [16–18] and
the incoherent control of quantum tunneling [21]; only a few
works concerning the coherent control via a periodic external
field have been reported [22].

In this paper, we study a different non-Hermitian system
with a single particle held in an open and high-frequency-
driven double well and seek the analytical solutions and their
boundedness conditions. By applying the coherent-control
method of the Hermitian system [23,24] to the non-Hermitian
system, we explore the competition and balance between the
coherent enhancement or suppression of tunneling and the loss
(dissipation) or gain from the environment and further apply
them to manipulate the stable quantum motions. Under the
high-frequency approximation, our analytical results reveal
the effects of the external-field parameters and loss or gain
coefficient on the system’s stability and display that the loss
of stability leads to the transition of the Floquet quasienergy
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spectrum from real (exact phase) to complex (broken phase)
values [8] and the corresponding decay of particle’s occupied
probabilities [21,25]. Due to the competition and balance
between quantum coherence and loss or gain, quantum effects
are shown such as Floquet oscillations of quantum states with
real energies, coherent destruction of tunneling (CDT), quasi-
NOON-state population [26], one-particle partial tunneling,
Schrödinger-cat-like states, and decaying probabilities. The
numerical computations from the accurate model confirm
agreement with the analytical results. Based on the capacity
of the current setups [5,27,28], we expect that the quantum
motions of the open system can be experimentally tested by
adjusting the driving parameters.

II. GENERAL ANALYTICAL SOLUTION IN
HIGH-FREQUENCY APPROXIMATION

We consider a single particle held in an open double well,
whose quantum dynamics is dominated by the PT -symmetric
non-Hermitian Hamiltonian [8]

H (t) = ε1(t)a†
1a1 − ε2(t)a†

2a2 + ν(a†
1a2 + a

†
2a1),

(1)
εj (t) = α cos(ωt) − iβj , j = 1,2,

where aj (a†
j ) is the annihilation (creation) operator for the

atom in the j th well with j = 1, 2, ν is the coupling parameter
which presents the tunneling rate between the two wells, and
εj (t) contains the driving field with amplitude α and frequency
ω and the j th well’s loss coefficient for βj > 0 and/or gain
coefficient for βj < 0. To simplify, Eq. (1) has been treated
as a dimensionless equation in which the reference frequency
ω0 ∼ 102 Hz and h̄ = 1 are set such that the parameters α,
βj , and ν are in units of ω0 and time is normalized in units of
ω−1

0 . Obviously, when βj = 0 for j = 1, 2 are taken, system
(1) becomes the familiar Hermitian system of a single particle
in a double well [23,24]. In particular, when ω = 0, α = ε,
βi = 0, βj �= 0, i �= j or ω = 0, β1 = β2 = γ are selected,
we arrive at the non-Hermitian many-particle Hamiltonian
without interaction [19].
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Using the localized states |1〉 and |2〉 as the basis, the
quantum state |ψ〉 of system (1) can be expanded as [23,24]

|ψ〉 = C1(t)|1〉 + C2(t)|2〉, (2)

where Ci for i = 1, 2 denote the time-dependent probability
amplitudes in the two wells. Inserting Eqs. (1) and (2) into
the Schrödinger equation i

∂|ψ〉
∂t

= H |ψ〉 produces the coupled
equations

iĊ1(t) = ε1(t)C1(t) + νC2(t),
(3)

iĊ2(t) = −ε2(t)C2(t) + νC1(t),

of the probability amplitudes. Although Eq. (3) is very
simple, no analytical solution in a finite form exists, because
of the presence of the periodic functions εj (t). However,
for high-frequency driving with ω � ν, βj , we can get the
approximate analytical solution. To do this, we introduce
the slowly varying functions di(t) for i = 1, 2 and make the
function transformations [23,24]

C1(t) = exp

[
− i

α

ω
sin(ωt)

]
d1(t),

(4)

C2(t) = exp

[
i
α

ω
sin(ωt)

]
d2(t),

which transform Eq. (3) into the coupled equations between
the slowly varying functions,

iḋ1(t) = −iβ1d1(t) + ν exp

[
i
2α

ω
sin(ωt)

]
d2(t),

(5)

iḋ2(t) = iβ2d2(t) + ν exp

[
− i

2α

ω
sin(ωt)

]
d1(t).

In the high-frequency limit, the slowly varying functions di(t)
can be treated approximately as constant during a short period
2π/ω. Thus, the rapidly varying exponential functions of
Eq. (5) can be replaced by their time average [29] so that
Eq. (5) simplifies to [23]

iḋ1(t) = −iβ1d1(t) + Jd2(t),
(6)

iḋ2(t) = iβ2d2(t) + Jd1(t),

where J = νJ0(2α/ω) is the effective or renormalized tunnel-
ing rate with J0(2α/ω) being the zero-order Bessel function
of 2α/ω, which depends on the field parameters through the
ratio of driving strength and frequency. We here consider the
strong-field case [5] in which the ratio of field parameters
obeys 0.45 � α/ω < 2.6. This gives the field amplitude α to
be on the order of ω. In the high-frequency regime, such a
driving strength means that the driving field used is a strong
field. From the first of Eqs. (6), we arrive directly at

Jd2 = i[ḋ1(t) + β1d1(t)]. (7)

Combining Eq. (6) with Eq. (7), the former equation is
decoupled to the form

d̈1(t) + (β1 − β2)ḋ1(t) + (J 2 − β1β2)d1(t) = 0. (8)

Clearly, Eq. (8) is a second-order linear equation with two con-
stant coefficients; the smaller “damping factor” � = β1 − β2

and the lower “quadratic frequency” ω2
l = J 2 − β1β2 for the

slowly varying function d1(t). The physical bounded solutions
of Eq. (8) exist only under the boundedness conditions � � 0
and ω2

l � 0, where the equality means some balance between
driving and damping. The former condition is fixed by the
external environment, and the latter is controlled by the
effective tunneling rate. The constant ωl describes oscillation
frequency of the slowly varying functions di(t) and satisfies
the inequality ωl � ω.

The general solution of Eq. (8) is mathematically well
known:

d1 = F1 exp (λ1t) + F2 exp (λ2t), (9)

where λ1 and λ2 are the characteristic values associated with
the linear equations (6), F1 and F2 are undetermined constants
determined by the initial conditions and normalization. The
substitution of Eq. (9) into Eq. (7) gives another slowly varying
function:

d2 = i

J
[F1(λ1 + β1) exp (λ1t) + F2(λ2 + β1) exp (λ2t)].

(10)

Inserting Eqs. (9) and (10) into Eq. (6) and setting F1 = 0 or
F2 = 0, respectively, we obtain the characteristic values

λ1,2 = 1
2 [(β2 − β1) ±

√
(β1 − β2)2 − 4(J 2 − β1β2)], (11)

with λ1 and λ2 corresponding to the positive and negative signs,
respectively. Given the general solutions (9) and (10), we can
easily exhibit the time evolutions of probability Pi = |di |2 for
the particle localized in the ith well.

The stability analysis [30] on the linear equations (6) and (7)
reveals that the real parts of the characteristic values λ1 and λ2

are related to stability of the linear system. Writing λ1 and λ2 in
the form λ1 = Re(λ1) + iIm(λ1) and λ2 = Re(λ2) + iIm(λ2),
we know that two special situations of λ1 and λ2 are associated
with the particular properties of the solutions. First, if the
boundedness conditions � � 0 and ω2

l � 0 cannot be satisfied,
the characteristic values with Re(λn) > 0 (n = 1 and/or 2)
appear such that the probability of the particle being in the
j th well tends to infinity, limt→∞ |dj (t)|2 → ∞. This means
that the system loses its stability in the sense of Lyapunov
[30]. The instability causes the Floquet quasienergy to transit
from real to complex values. The corresponding solutions
of Eqs. (9) and (10) do not satisfy the requirement of the
probability interpretation in quantum mechanics and should
therefore be dropped. Second, when the real parts Re(λ1) and
Re(λ2) are equal to zero under the boundedness conditions,
the imaginary parts correspond to the Floquet quasienergies
[31,32] E1 = −Im(λ1) and E2 = −Im(λ2) for F1 = 0 and
F2 = 0, respectively. Inserting dj with F1 = 0 or F2 = 0 into
Eqs. (2) and (4) gives the corresponding Floquet state |ψ1〉
or |ψ2〉. Therefore, the quantum state in Eq. (2) with the
general solutions (9) and (10) may be a coherent superposition
of the two Floquet states, |ψ〉 = D1|ψ1〉 + D2|ψ2〉, with
D1,D2 being constants adjusted by the initial conditions
and normalization. The superposition states imply quantum
interferences and may cause the coherent enhancement or
suppression of tunneling, whose degree is described by the
value of the effective tunneling rate J .

Generally, for the appropriate environment with � � 0,
we can obtain the physically meaningful solutions of Eq. (2)
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from the general solutions (9) and (10) by adjusting the field
parameters to obey the boundedness conditions ω2

l � 0. We
divide the physical solutions into three cases as follows:

Case A: CDT and quasi-NOON-state populations under
dissipation balance. By the dissipation balance we mean that
the loss (gain) coefficients of the two wells take the same
values, β1 = β2. Such a balance could be established by
making the two wells in the same environment. For such a
case the adjustment to the field parameters or equivalent J in
Eq. (11) could lead to Re(λn) = 0, (n = 1 and 2) such that
the probability amplitudes dj (t) (j = 1 and 2) in Eqs. (9)
and (10) are the periodic functions [Im(λn) �= 0] or constants
[Im(λn) = 0]. The corresponding quantum states in Eq. (2)
become the Floquet states with a real quasienergy spectrum
or zero energy, which describe the particle’s quasistationary
states whose populations do not change and the same occupied
probability in any well is kept constant. Such quasistationary
states are called the atomic quasi-NOON states, compared to
the NOON state as a stationary state with the same probability
of occupation in each well [26]. The invariable populations
mean that CDT results in stable populations of particles in the
initially occupied states.

Case B: Stable populations without dissipation balance.
The unbalanced dissipation infers β1 �= β2 and the partial
loss of the stability, which will cause changes in the Floquet
quasienergy from real to complex values [8]. By adjusting
the effective tunneling rate J , we get Re(λn) < 0, λn′ =
0, (n �= n′) which is associated with the probabilities |dj (t)|2
for j = 1 and 2 decreasing and increasing, respectively, from
the initial values to the different final values. For any well
the probability difference between the initial and final states
indicates single-direction tunneling with different degrees. The
populations may tend to a stable Schrödinger-cat-like state
with a total probability of finding the particle in the double
well of less than unity. But a special ratio between the two loss
parameters could make the total probability tend to unity.

Case C: Instability and decaying probabilities. For the
unbalanced dissipations and under the boundedness condi-
tions, regulations to the field parameters can make Re(λn) < 0
for n = 1 and 2 so that the |dj |2 for j = 1 and 2 decrease
exponentially fast. The latter means loss of the specific stability
of quantum mechanics [33]. Thus the survival probability
[21,25] of the particle in an initial state and the total probability
of finding the particle in the double well decay rapidly to zero.

In the next section, we will show that some balance
conditions between the coherent enhancement or suppression
of tunneling and the loss or gain from the environment can
be realized by adjusting the field parameters, and such adjust-
ments can control the particle’s instability. Therefore, we can
arrive at the physical solutions in the three above-mentioned
cases and can manipulate the corresponding quantum motions
of the open system via the periodic field.

III. COHERENT CONTROL OF QUANTUM TUNNELING
VIA EXTERNAL FIELD

From Eqs. (9), (10), and (11), we know that the populations
of the particle in the open double well depend not only on
the effective tunneling rate J determined by the amplitude
α and frequency ω of the external field, but also on the loss

or gain coefficients from the environment, β1 and β2, respec-
tively. The “quadratic frequency” ω2

l = J 2 − β1β2 reflects the
competition between coherent enhancement or suppression
of tunneling and the loss or gain from the environment.
The condition ω2

l = 0 (J 2 = β1β2) means the corresponding
balance, which differs from the above-mentioned dissipation
balance. For a fixed environment with the given loss or gain
coefficient, the characteristic values λ1 and λ2 are adjusted
only by the effective tunneling rate J . Therefore, in order
to produce a required quantum state, we can select a higher
driving frequency ω and then regulate the driving strength α to
change the value of ω2

l and to control the competition. Because
the different states are associated with different atomic popula-
tions, the quantum state (2) with the analytical solutions (9) and
(10) are referable for experimentally researching the quantum
tunneling and localization of the particle in the open double
well. We will enter into details of the three above-mentioned
situations.

A. CDT and quasi-NOON-state populations under
dissipation balance

First, we consider the general situation of case A from
Sec. II: Re(λn) = 0 and Im(λn) �= 0. Because of dissipation
balance, we can set β1 = β2 = β and apply this to Eq. (11) to
yield

λ1,2 = ±
√

−(J 2 − β2). (12)

For a weak loss or gain with small β value, we can adjust
the field parameter 2α/ω to satisfy the competition condition
J 2 − β2 > 0 between J and β, such that Eq. (12) becomes

λ1,2 = ±i
√

J 2 − β2 = ±iωl, (13)

where ωl is the lower frequency of slowly varying function
dj (t). The high-frequency condition implies ωl � ω. Inserting
Eq. (13) into Eqs. (10) and (11) gives the periodic solutions

d1 = F1e
iωl t + F2e

−iωl t ,
(14)

d2 = i

J
[F1(iωl + β)eiωl t + F2(−iωl + β)e−iωl t ].

We already know that this solution pair is stable according to
the linear stability analysis of the previous section. Using the
normalization condition

|d|2 = |d1|2 + |d2|2

= 2(|F1|2+|F2|2)+4βF1F2

J 2
[β cos (2ωlt)−ωl sin (2ωlt)]

= 1, (15)

we establish the relationships between constants F1 and F2 as

2(|F1|2 + |F2|2) = 1, 4βF1F2 = 0. (16)

Given Eq. (16), we assert that, for a Hermitian system
without dissipation (β = 0), constants F1 and F2 are con-
strained only by the first equation of Eqs. (16), and the
corresponding solution pair (14) contains more selections for
the constants. The solutions without dissipation have been
discussed previously and will not be considered here. For our
non-Hermitian system, β �= 0, the second equation of Eqs. (16)
needs Fi = 0 for i = 1 or 2, and the first equation of Eqs. (16)
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gives Fi = 0, Fj = eiφ/
√

2 for i,j = 1,2 and i �= j with φ

being a constant. Neglecting the immaterial phase factor eiφ ,
we get two sets of solutions as follows: The first set of solutions
from Eq. (14) with F1 = 0 reads

d1 = 1√
2
e−iωl t , d2 = (ωl + iβ)√

2 J
e−iωl t , (17)

which periodically change in time with frequency ωl with
ωl � ω. Inserting Eqs. (17) into Eqs. (4) and (2) yields the
quantum state

|ψ1〉 = e−iωl t

√
2

[
e−i α

ω
sin (ωt)|1〉 + (iβ + ωl)

J
ei α

ω
sin (ωt)|2〉

]
. (18)

Similarly, the second set of solutions from Eq. (14) with F2 = 0
leads to the quantum state

|ψ2〉 = eiωl t

√
2

[
e−i α

ω
sin (ωt)|1〉 + (iβ − ωl)

J
ei α

ω
sin (ωt)|2〉

]
. (19)

Equations (18) and (19) denote a pair of the oscillating Floquet
states whose phases change periodically and the corresponding
Floquet quasienergies read E± = ±ωl , respectively. From
Eq. (13) we know J 2 = β2 + ω2

l . Making use of this in
Eqs. (17) produces the constant probabilities |dj |2 = 1/2 for
j = 1 and 2. They describe the quasi-NOON-state population
with the same probability of the particle occupying each
well [26]. The initially probabilities of occupation are kept
and no quantum tunneling happens; this just is the well-
known CDT. It is interesting to compare our CDT condition
J 2 = β2 + ω2

l with the CDT condition J = 0 for a Hermitian
double-well system [23,24]. The former condition means
quantum coherence and environment damping are balanced.

If the field parameter 2α/ω is regulated to reach the
balance condition J 2 − β2 = ω2

l = 0 (J = β), from Eq. (13)
we arrive at the special situation of case A, Re(λn) = 0 and
Im(λn) = ±ωl = 0. Inserting this into Eqs. (18) and (19) yields
the quasistationary state with zero Floquet quasienergy and
invariable population,

|ψ〉 = |ψ1〉 = |ψ2〉
= 1√

2
e−i α

ω
sin(ωt)

{
|1〉+ exp i

[
π/2+

(
2α

ω

)
sin(ωt)

]
|2〉

}
,

(20)

which describes the different quasi-NOON state.
The quasi-NOON states (18)–(20) with periodic phases are

the standard single-particle NOON states at any fixed time
[26]. They can be regarded as Schrödinger-cat-like states of
a single particle in two-mode entanglement, which offers a
new approach for investigating many-body entanglement and
single-particle cat states [26]. Our results reveal the existence
of the quasi-NOON state and provide a theoretical reference
for experimentally preparing a quasi-NOON state in an open
system.

B. Stable populations without dissipation balance

When the system is in case B of Sec. II, instability causes
the transition of the Floquet quasienergy from real to complex
values [8]. By setting the field parameters, from Eq. (11) we
can get Re(λn) < 0 and λn′ = 0 for n �= n′. Applying such

characteristic values to the general solutions (9) and (10), it is
expected that the particle evolves from a given initial state to a
stationary final state with a certain probability. Single-direction
tunneling and decaying can occur simultaneously, which leads
to the another kind of Schrödinger-cat-like state with total
probability of finding the particle in the double well being less
than unity. However, the special ratio β1/β2 = 3 could make
the total probability tend to unity. The tunneling of the particle
in the open double well depends on the competition between
the coherent enhancement or suppression of tunneling and
the loss or gain from the environment, so it is an interesting
phenomenon that differs from that of the corresponding
isolated system.

According Eq. (11), for the dissipation coefficients obeying
β1 − β2 > 0 (or β1/β2 > 1) we can take λ1 = 0 and λ2 =
β2 − β1 < 0 by adjusting the field parameter 2α/ω to get
the new balance between the quantum coherence and loss,
ω2

l = J 2 − β1β2 = 0. Thus, the general solutions (9) and (10)
become

d1 = F1 + F2 exp [(β2 − β1)t],
(21)

d2 = i

J
{F1β1 + F2β2 exp [(β2 − β1)t]}.

When the particle is initially located in the first well, we have
the initial conditions |d1(0)| = 1, |d2(0)| = 0. Inserting them
into Eq. (21) yields the undetermined constants F1 and F2 in
the forms

F1 = β2

β2 − β1
, F2 = β1

β2 − β1
. (22)

Combining Eqs. (22) with Eqs. (21) results in the total
probability finding the particle in the two wells:

P = |d|2 = |d1|2 + |d2|2

= (β1 + β2)[β2 + β1e
2(β2−β1)t ] − 4β1β2e

(β2−β1)t

(β2 − β1)2
. (23)

It is well known that the probability interpretation of quantum
mechanics requires the total probability to be less than or
equal to one. For an open system, the survival probability of
the particle may decay [21,25], and the initial normalized total
probability may decrease with time. Therefore, it is necessary
to confine the maximal value of P to Pmax � 1.

From dP/dt |t=tj = 0 we find that the total probability
given in Eq. (23) has the three extrema in time t1 = 0, t2 =

1
β2−β1

ln ( 2β2

β1+β2
), t3 = ∞. At t1 = 0, Eq. (23) gives Pmax(0) =

|d(0)|2 = 1, which agrees with the initial condition. When
t = t2 is reached, the total probability satisfies Pmax(t2) =

β2

β1+β2
< 1. As time increasing to t → ∞, Eq. (23) denotes

the total probability of the final state, Pmax(t3) = |d(∞)|2 =
β2(β1+β2)
(β1−β2)2 . The physical requirement Pmax(t3) � 1 means that

the corresponding parameter range, β1/β2 � 3, which agrees
with the previous confining condition β1/β2 > 1 for Eqs. (21).
When β1/β2 = 3 is set, the biggest final-state probability reads
|d(∞)|2 = 1. If βj are limited in the range β1/β2 > 3, the total
probability of finding the particle is less than unity, but the
particle still can be confined in the double well with a certain
probability. As the value of β1/β2, is increased, Eq. (23) shows
that the total probability |P (∞)| of the final state will decrease.

013410-4



COHERENT CONTROL OF QUANTUM TUNNELING IN AN . . . PHYSICAL REVIEW A 85, 013410 (2012)

P1

P2

Pa

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

P P

P2

P1

b

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

P P2

P P1

c

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

t

P

FIG. 1. (Color online) Time-evolution curves of probabilities Pj = |dj (t)|2 for the particle in the j th well and total probability P = P1 + P2,
under the balance condition J 2 − β1β2 = 0. The circular points give the analytical solutions and the curves represent the numerical results for
the high frequency ω = 80 and the parameters (a) β1 = 0.3, β2 = 0.1, ν = 1, α/ω = 2.506 69, and β1/β2 = 3; (b) β1 = 0.4, β2 = 0.1, ν = 1,
α/ω = 2.465 37, and β1/β2 = 4; (c) β1 = 0.9, β2 = 0.1, ν = 1, α/ω = 2.292 42, and β1/β2 = 9. The probabilities are dimensionless and time
is in units of ω−1

0 = 0.01 s.

Now let us numerically illustrate the above results. We take
three sets of the parameters (ω, 2α/ω, ν, β1, β2) to satisfy
J 2 − β1β2 = 0 and β1/β2 = 3, 4, 9, respectively, and from
Eqs. (21), (22), and (23) we plot the time-evolution figures
of the probabilities Pj = |dj (t)|2 for the particle in the j th
well and the total probability P = |d(t)|2, as labeled by the
circular points in Figs. 1(a), 1(b), and 1(c). With the same
parameter conditions and based on the accurate model (3), we
numerically make the time-evolution figures of Pj = |dj (t)|2
and P = |d(t)|2, as shown by the curves in Figs. 1(a), 1(b), and
1(c). Obviously, in the high-frequency regime, the analytical
and numerical solutions are in good agreement. Hereafter, an
immaterial difference between both is that for the considered
driving frequency ω = 80(ω0) = 8 × 103 Hz; the numerical
solutions oscillate around the analytical solutions with high-
frequency and small amplitude.

In Fig. 1(a) with the special ratio β1/β2 = 3, we can see
that, after a transient decay, the total probability monotonically
tends to the biggest value |P (∞)| = 1, and the particle
will be stably confined in the double well. The probability
P1 = |d1(t)|2 of the initially occupied state decays quickly
for a short time, then increases slowly to approach the final
value 0.3. The probability P2 = |d2(t)|2 of the particle in the
second well monotonically increases and will approach 0.7
for a sufficiently large time. This means that the particle
will tunnel partly from the first well to the second well
with probability 0.7. For the parameter ratio β1/β2 = 4, the
comparison between Figs. 1(b) and 1(a) displays that the final
value of any one of the probabilities Pj and P has decreased
a little. The final total probability is less than unity, and the
tunneling probability from the first well to the second well is
less than 0.5. If β1/β2 = 9 is set, in Fig. 1(c) we show that the
probabilities for every well and the total probability are further
reduced. The probability P1 in the initial state is finally close
to zero, and the probability to tunnel to the second well tends
to 0.2, which approximately equates with the total probability.

Similarly, if the particle is initially localized in the second
well, |d1(0)| = 0, |d2(0)| = 1, the total probability is

P = (β1 + β2)[β1 + β2e
2(β2−β1)t ] − 4β1β2e

(β2−β1)t

(β2 − β1)2
. (24)

It is easy to prove that, under the match condition β1/β2 > 1 of
Eqs. (21), the total probability in Eq. (24) may be greater than
unity, which is physically unallowable and must be dropped.
Therefore, for the field parameters satisfying J 2 − β1β2 = 0,
the particle initially occupying well 2 cannot be stably trapped
in the double well.

It is worth noting that, under the balance condition J 2 =
β1β2, the change of βj from β1 > β2 to β1 < β2 will lead to the
nonphysical case in which one of the Re(λn) is greater than
0 and the two dj tend to infinity. The physical requirement
β1 > β2 implies that the external damping of the left well 2
is weaker, compared to that of the right well 1. Note that the
direction of the external field is toward the right.

C. Instability and decaying probabilities

When the system is in case C of Sec. II, Re(λi) < 0, (i = 1
and 2), the total probability of finding the particle in the double
well will exponentially decay to zero. Thus the system loses the
special stability of quantum mechanics, which is an important
case for an open system [33].

The above case corresponds to the loss or gain coefficient
obeying β1 − β2 > 0 and the field parameter 2α/ω obeying the
new competition condition 4(J 2 − β1β2) > (β1 − β2)2 such
that, from Eq. (11), we have

λ1,2 = 1
2 [(β2 − β1) ± i� ], (25)

with � =
√

4J 2 − (β1 + β2)2. For such a case, Eq. (25) gives
the real part of λj to be always less than zero. According to the
stability analysis, we know that, for any initial conditions,
the system will lose its quantum mechanical stability and
the total probability of finding the particle in the system
will tend to zero. To simplify, we take the initial conditions
|d1(0)| = 0, |d2(0)| = 1 as an example. Inserting the initial
conditions into Eqs. (9) and (10) and using the normalization
conditions produces the undetermined constants

F1 = ± J

�
, F2 = −F1. (26)
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FIG. 2. (Color online) Time-evolution curves showing the decay-
ing probabilities of the particle in the double well. The circular points
describe the analytical results from Eq. (27) and the curves indicate
the numerical solutions based on Eq. (3). The system parameters and
the initial conditions are the same for the analytical and numerical
solutions. The probabilities are dimensionless and time is in units of
ω−1

0 = 0.01 s.

Then, applying the F1 and F2 to Eqs. (9) and (10) yields the
probabilities of the particle to be in the two wells:

|d1|2 = e−(β1−β2)t

{
2J 2[1 − cos (�t)]

� 2

}
,

(27)

|d2|2=e−(β1−β2)t

[
� cos

(
1
2�t

)+(β1+β2) sin
(

1
2�t

)
�

]2

.

As an example, we take the parameter set (ω, 2α/ω, ν,
β1, β2) to match the condition 4(J 2 − β1β2) > (β1 − β2)2.
Adopting such parameters, we illustrate the time evolution
of the probabilities Pj = |dj (t)|2 and P = P1 + P2 from
Eq. (27), as labeled by the circular points in Fig. 2. In the
same conditions, we numerically solve the exact model (3),
which is shown by the different curves of Fig. 2. Obviously,
the analytical and numerical solutions are in good agreement.
From Fig. 2 we can see that, after some transitory oscillations,
the probability of the particle in any well and the total
probability finally tend to zero. So in this case, the particle
cannot exist in the double well for a long time.

In order to conveniently describe the above behavior, people
employ the conception of survival probability in an initial
state [21,25] to investigate how particles populate an open
system. The survival probability of a particle in the initial state
|ψ(0)〉 is defined as [21,25]

Psurv(t) = |〈ψ(0)|ψ(t)〉|2. (28)

In the initial conditions |d1(0)|2 = 0, |d2(0)|2 = 1, combin-
ing Eqs. (2) and (4) with Eq. (27), from Eq. (28) we
obtain Psurv(t) = |〈d2(0)|d2(t)〉|2 = P2, which is exhibited in
Fig. 2. Clearly, after a transitory oscillation the survival
probability of initial state |ψ(0)〉 = |2〉 decays and tends to
zero.

IV. CONCLUSION AND DISCUSSION

We have considered a single particle held in an open
and high-frequency-driven double well. The coherent-control
method of quantum tunneling for the Hermitian system [23,24]
is applied to the non-Hermitian system, which leads to the an-
alytical solutions and their boundedness conditions under the
high-frequency limit. By using the analytical results we show
the effects of the field parameters and loss or gain coefficient
on the system’s stability and exhibit how to manipulate the
stable quantum motions. We have revealed that the loss of
stability leads to the transition of the Floquet quasispectrum
from real to complex values [8] and the corresponding
decay of particle’s probabilities of occupation [21,25]. The
competition and balance between the coherent enhancement or
suppression of tunneling and the loss (dissipation) or gain from
the environment are found, and quantum effects are shown
such as the Floquet oscillations of the quantum states with
real quasienergies, coherent destruction of tunneling for the
new balance conditions, quasi-NOON-state population [26],
partial one-particle tunneling, Schrödinger-cat-like states, and
the decay of occupation probabilities. By comparing the
analytical solutions with the numerical computations from
an accurate model, we find good agreement between them,
which emphasizes the correctness of the conclusions from the
different methods and the suitability of the high-frequency ap-
proximation method for the open system. Based on the capacity
of the current setups [5,27,28], we expect to experimentally test
the quantum motions of the open system via a high-frequency
driving field.
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