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Overlapping resonances in nuclei coupling to the atomic shells
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The resonant process of nuclear excitation by electron transition (NEET) in highly charged ions is investigated.
In NEET, a bound electronic decay transition occurs with the simultaneous excitation of the nucleus, provided
that the energies of the atomic and nuclear transitions match. By varying the atomic charge state, the atomic
transition energy can be tuned to a better match of the nuclear transition energy. We propose a new way to create
the atomic hole in highly charged ions by dielectronic capture of a free electron. In order to derive the cross
section for the three-step process composed of dielectronic capture, nuclear excitation by electron transition,
and the subsequent nuclear decay, a Feshbach projection operator formalism is developed. With the help of this
formalism, the resonances in nuclei coupling to the atomic shell and the possible interference between several
direct and resonant electronic and nuclear processes such as radiative recombination, dielectronic recombination,
and nuclear excitation by electron capture are described.
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I. INTRODUCTION

The increasing precision in atomic physics experiments
ignited in the last decades the nuclear odyssey from the
simplified picture of a pointlike charge to its real size and
properties. Different nuclear masses, charge distributions, or
spins have an effect on the electronic transition energies,
and the small energy corrections or splittings observed in
experiments can in turn give information about the nucleus.
Atomic spectroscopy, at present at an unrivaled level of
precision, can thus be used to determine nuclear parameters
which are otherwise hardly accessible via nuclear physics
experiments [1].

On the other hand, the borderline between atomic and nu-
clear physics is also the scene for several nuclear processes that
directly involve atomic electrons. For instance, nucleus and
electron can interact via the electromagnetic field and undergo
transitions simultaneously. A nucleus in an excited state that
cannot decay radiatively transfers its energy via the radiation
field to one of the atomic electrons which leaves the atom in
the process of internal conversion (IC). The inverse process
of IC, which might occur in highly charged ions (HCIs), is
known as nuclear excitation by electron capture (NEEC) [2]. In
conjunction with HCI, atomic physics experiments involving
these processes at the borderline between atomic and nuclear
physics also open the possibility to explore properties of exotic
nuclei [1].

IC and NEEC also have more exotic siblings, the bound
internal conversion (BIC) and its inverse process NEET. Bound
IC is a resonant nuclear decay channel which may occur
if the nuclear excitation energy is not enough to ionize the
atomic electron, but can induce a transition between two
bound electronic states. NEET is the simultaneous excitation
of the nucleus during an atomic decay transition, provided the
energies of the two transitions match. There is only a limited
number of nuclei in which such a match of the atomic and
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nuclear transition energies exist; see, for instance, the list of
candidates for NEET in Ref. [3]. Although it is difficult to
find systems that fulfill the resonance condition, NEET has
already been observed experimentally [4], in the same year in
which direct evidence of BIC [5] has been reported. As nuclear
excitation mechanisms, both NEEC and NEET are expected
to allow the study of atomic vacancy effects on nuclear level
population and lifetimes.

The NEET nuclear excitation mechanism has been first
proposed by Morita back in 1973 [6] as means for 235U
separation. This first theoretical work was followed only
months later by a first claimed experimental observation [7] in
189Os. However, these early claims of success, as well as the
followup published experimental results [8–11] were riddled
with controversy. While theorists continued arguing about the
true magnitude of the NEET probability [12–14], apparently
overestimated in the original proposal [6], many studies
dedicated to NEET in 235U in plasma environments were
performed [15,16]. Other theoretical predictions confirming
the important role that nuclear excitation mechanisms such as
NEEC and NEET may have in dense astrophysical plasmas
were also more recently published [17,18].

The most recent and reliable experimental results on NEET
have been performed on 197Au [4,19], 189Os [20,21], and 235U
[22]. The NEET probability for the 77.351 keV 197Au nuclear
transition that corresponds to an atomic K → M transition in
neutral atoms was determined to be (5.0 ± 0.6) × 10−8 [4]. In
the case of the 69.5 keV nuclear transition in 189Os, only an
upper limit of 4.1 × 10−10 for the NEET probability could be
deduced from experiments [21], while for 235U the occurrence
of NEET could not be observed.

From the theoretical point of view, a number of some-
times contradictory studies have been considering the NEET
mechanism in the last decades, among which we mention
the nonrelativistic self-consistent description for x-ray, Auger
decay, and NEET [14], the relativistic analysis of NEET
[13] and a formalism developed for NEET in plasmas
at local thermodynamical equilibrium [16]. A comparison
between theoretical results seeking to clarify all anomalies
and discrepancies is presented in Ref. [23]. Furthermore, the
efficiency of NEET as a nuclear excitation mechanism for
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isomer depletion has been studied for a number of special
cases [24,25] and was also compared or considered along with
NEEC or photoexcitation [15,17,18,26].

The purpose of the present work is manifold. First, we
proceed by arguing on behalf of NEET experiments with HCI.
While atomic physics experiments with HCI have continu-
ously gained in precision, until now all the performed NEET
experiments envisaged neutral atoms irradiated by synchrotron
radiation to create the necessary inner-shell electronic hole.
Furthermore, although in the theoretical studies of NEET in
plasmas the general importance of the ionic charge state and
the environment has been already mentioned, we emphasize
here in particular the possibility that HCI offers to “tune” the
atomic transition energy. A number of elements that present a
mismatch on the order of 1 keV between the nuclear and atomic
transition energies (En and Ea , respectively) for neutral atoms
offer the possibility to reduce the energy difference (En − Ea)
by at least one order of magnitude for other charged states.
As it will be shown in this work, such an improved match of
the atomic and nuclear transition energies can determine an
increase of three orders of magnitude in the NEET probability.
Considering the small number of energy match cases that can
be found in nature, the partial tunability of the atomic energy
brings additional NEET candidate elements on the list and is
most welcome.

Next, starting from the premises of NEET in HCI, we
consider a new mechanism for production of the electronic
hole, namely, dielectronic capture (DC). In the resonant
process of DC, a free electron recombines into an HCI with
the simultaneous excitation of a bound electron, which leaves
a hole in the previously occupied bound shell. DC followed by
x-ray decay of the excited electrons is known as dielectronic
recombination (DR), an atomic physics process which is
used in high-precision experiments with HCI to measure
isotope shifts and provide complementary data to nuclear radii
obtained via other methods [27]. The hole created by DC can
be occupied via electronic decay that occurs simultaneously
with the excitation of the nucleus (i.e., NEET). This two-step
process is presented in Fig. 1.

By tuning the energy of the continuum electron one can
precisely control which hole is created and which electronic
transitions are driven. Furthermore, by using different types

FIG. 1. (Color online) (1) The dielectronic capture: a free electron
recombines with the simultaneous excitation of a bound electron.
(2) NEET: electronic and nuclear transitions occur simultaneously.
The nuclear levels are depicted in the yellow panels.

of DC, such as KLL-, KLM- or KLN -DC, (the notation
specifies the involved atomic shells) one can make use of
satellite electrons in higher-n shells to fine tune the atomic
transition energies. As a further advantage, depending on
the optimal charge state to minimize the energy mismatch
(En − Ea), one can envisage a situation like in Fig. 1 in which
the electronic hole can only be filled by an atomic transition
that has the right energy to couple to the nuclear excitation.
In contrast, a hole created by photoionization of an inner shell
in a neutral atom has many decay channels corresponding to
a multitude of electronic transitions. Furthermore, most of
the nuclear transitions that can couple to the atomic shell
are dipole-forbidden, and the one atomic transition which
corresponds to NEET ought to share this multipolarity. In this
case, the NEET atomic transition is strongly suppressed in
comparison with other electric dipole (E1) radiative or Auger
decay channels of the atomic hole. A substantial gain can thus
be achieved in a simple manner by using DC in HCI as first
step previous to NEET in a scenario like the one presented in
Fig. 1. This scenario may also be relevant for dense plasmas,
where DR is the dominant electron recombination mechanism.

We develop here a theoretical formalism that can treat
the complex three-step process consisting of DC, NEET,
and the subsequent decay of the excited nuclear state. In order
to derive the cross-section formula for this process we have
extended the Feshbach projector formalism developed and
used for DR [28] and NEEC [2] to account for the interaction
of electronic and nuclear degrees of freedom. The electric
and magnetic electron-nucleus interactions are considered
explicitly. The dynamics of electrons is governed by the Dirac
equation as required in the case of high-Z elements.

Our formalism allows us to also take into account inter-
ference processes that may occur in the sequence of resonant
processes. We present here a case study for 237Np for which
all possible interferences between radiative recombination
(RR), DR, NEEC followed by γ decay and the three-step
NEET process under consideration are taken into account.
The interference between the channels of RR and DR with
the sequence of DC, NEET, and radiative decay of the excited
nuclear state turns out to be rather weak, but it is still two to
three orders of magnitude larger in cross section than the NEET
process itself. Reasons for the small interference cross sections
are the very different time scales of the two processes, since
the nuclear excitation needs a long time to occur as compared
with the radiative recombination of a free electron into an HCI.
This is not the case when considering interference between DC
followed by NEET and NEEC, where both channels start from
the same initial state with an electron in the continuum and
have as final state an excited nucleus. However, depending on
the ionic configuration and on the recombination state for DC,
this interference channel may not always be present. We also
find that the magnitude of this interference term between the
two pathways involving nuclear excitation mechanisms is the
same as the ones involving the atomic processes RR and DR.
At the resonance energy, NEEC turns out to be the dominant
nuclear excitation mechanism and acts as an enhancement of
the nuclear excitation probability.

We would like to point out that, while for NEET the
atomic transition matching the nuclear excitation is unique,
NEEC has an additional degree of freedom for the electron
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capture into a bound shell as continuum electron energy and
capture orbital can be varied. From this respect a comparison
between the two processes needs to specify the particular
conditions; for instance, the ionization degree and the capture
orbital for NEEC. This excludes an overly general argument
or criterion for the comparison between NEEC and NEET.
In the framework of the process sequence that we consider—
dielectron capture in a HCI followed by NEET and γ decay—a
unique choice for the NEEC channel naturally arises when
investigating the processes that can interfere. Previous results
[17] considering the temperature-dependent NEEC and NEET
rates in dense plasmas have shown that, for lower ionization
degrees, NEET is more efficient than the possible NEEC
channels. This feature was attributed to the better overlap
between the bound electronic wave functions. Here, we show
that, for few-electron high-Z HCI, this is not the case and
NEEC may be the most significant contribution.

This paper is structured as follows: We start by developing
the Feshbach formalism to account for a three-step process
consisting of DR followed by NEET and subsequent nuclear
decay in Sec. II. The specific transition rates are identified in
the cross section and their expressions are reviewed in Sec. III,
followed by Sec. IV where the interference terms are deduced
and discussed. A numerical case study is presented in Sec. V.
The paper ends with a summary and outlook. Atomic units
have been used unless otherwise mentioned.

II. FESHBACH PROJECTION FORMALISM

In this section we derive the total-cross-section formula for
a three-step process consisting of DR, NEET, and the decay of
the excited nucleus. Without limiting too much the generality
of our argument, we will treat here the radiative decay of the
excited nuclear state, denoted in the following by γ decay.
The case of nuclear excitation followed by IC can be treated
in a similar manner, as was shown for NEEC in Ref. [29].
For simplicity we consider the case where the three relevant
transition energies (of the captured and bound electrons and
of the nucleus) are equal. This situation is also relevant for
investigating the interference between DR followed by NEET
and NEEC. Furthermore, we treat the case in which the decay
of the electronic hole occurs to the ground state, such that
no further electronic transitions are possible. The theory can
easily be extended to account for an arbitrary DC electronic
configuration.

A. Decomposition of Fock space by means of
projection operators

The initial state ψi of the system consisting of the
nucleus in its ground state, the free electron, the ground-state
configuration of the bound electrons, and the vacuum state of
the electromagnetic field is given by

|ψi〉 = |IgMg,αiJiMi �pms,0〉. (1)

Here, �p is the asymptotic momentum of the free electron and
ms is its spin projection. The nuclear ground state is denoted
by the total angular momentum Ig and its projection Mg .
The bound-electron ground state consisting of n electrons is
denoted here by the total angular momentum of the electronic

configuration Ji and its projection Mi and any other quantum
numbers αi .

In the first step, DC takes place and the new state, denoted
here as first intermediate state |ψd1〉, has the form∣∣ψd1

〉 = |IgMg,α1J1M1,0〉, (2)

where with J1 and M1 we have denoted the total electronic
angular momentum and its projection on the quantization
axis, respectively, of the new electronic configuration of n + 1
electrons, and α1 covers again any other quantum numbers of
this state. The nucleus is still in its ground state and no photon
has been emitted.

In the second step, NEET occurs and the system reaches
the second intermediate state ψd2 of the form∣∣ψd2

〉 = |IeMe,α2J2M2,0〉. (3)

The n + 1 electrons form now a different configuration with
total angular momentum J2 and corresponding projection M2,
and the nuclear excited state is described by the quantum
numbers Ie and Me. The excited state of the nucleus decays
radiatively back to the ground state and the final state ψf is
given by

|ψf 〉 = |IgMf ,α2J2M2,λkLM〉. (4)

The emitted photon has the wave number k, the total angular
momentum L, and projection M . Furthermore, λ stands for
electric (E) or magnetic (M) spherical waves. The photonic
state can be written as |λkLM〉 = a

†
λkLM |0〉, where a

†
λkLM is

the photon creation operator. The corresponding conjugate
annihilation operator is denoted by aλkLM .

We now separate the Hilbert space into four possible
subspaces:

(1) P denotes states with a continuum electron,
(2) Q1 denotes states with bound excited electrons and the

ground-state nucleus,
(3) Q2 denotes states with excited nuclei and ground-state

electrons (since we do not consider here the situation when
after NEET further deexcitations of the electronic shell may
occur),

(4) R denotes states with photons.
We subsequently introduce operators projecting onto indi-

vidual subspaces. Characterizing the state of the electron in
the positive part of the continuous spectrum by the energy ε

rather than the momentum of the free electron, we write the
projector P belonging to the first type of subspace as

P =
∫

dε
∑

β

|βε〉〈βε|. (5)

For brevity we introduce the multi-index β to stand for all
discrete quantum numbers of the total system. The projection
operator of the subspace spanned by intermediate states
belonging to of the type |ψd1〉 is written as

Q1 =
∑
q1

|q1〉〈q1|, (6)

with the cumulative index q1 introduced to summarize all
discrete quantum numbers describing the excited electron
and the ground-state nucleus. The projection operator of the
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subspace spanned by intermediate states of the type |ψd2〉 is
written as

Q2 =
∑
q2

|q2〉〈q2|, (7)

with the cumulative index q2 introduced again to summarize
all discrete quantum numbers describing the ground-state
electron and the excited nucleus. The subspace of the state
vectors containing one transverse photon is associated with
the projection operator

R =
∑

r

∑
λkLM

a
†
λkLM |r〉〈r|aλkLM, (8)

where with r we denote the quantum numbers describing the
nucleus in the final state and the bound electrons. Assuming
we can neglect the correction due to two or more photon states
and to the presence of the negative electronic continuum, we
postulate the completeness relation P + Q1 + Q2 + R = 1,
where 1 stands for the unity operator. Similar decomposi-
tions involving less subspaces for the Feshbach formalism
developed for two-step NEEC and NEET can be found in
Refs. [2,16].

B. Perturbation expansion of transition operator

The transition operator is defined as

T (z) = V + V G(z)V, (9)

where V is the interaction Hamiltonian discussed below and
G(z) is the Green operator of the system given by

G(z) = (z − H )−1. (10)

Here, z is a complex energy variable. The total Hamiltonian
of the system can be written as

H = He + Hn + Hr + Hen + Her + Hnr, (11)

where with Hr and Hn we denote the Hamiltonians describing
the radiation field and the nucleus as discussed in Refs. [2]. The
subscripts n, e, and r stand for the nucleus, the electrons, and
the radiation field, respectively. The electronic part is given
by [28]

He =
N∑

i=1

[c�αi · �pi + (βi − 1)mc2 + Vnucl(ri)] + 1

2

∑
i �=j

1

rij

,

(12)

where �α and β are the Dirac matrices, �pi is the momentum of
the ith electron, and Vnucl is the nuclear potential. Furthermore,
N is the number of bound electrons in the ion and rij = |�ri −
�rj |. We adopt the Coulomb gauge for the electron-nucleus
interaction because it allows the separation of the dominant
Coulomb attraction between the electronic and the nuclear
degrees of freedom [2],

Hen =
∫

d3rn

ρn(�rn)

|�re − �rn| . (13)

Here, ρn(�rn) is the nuclear charge density and the integration is
performed over the whole nuclear volume. As has been shown
in Ref. [2], this Hamiltonian term describes only the electron-
nucleus interaction in transitions of electric multipolarity. The

interaction of the electron with the transverse photon field
quantized in the volume of a sphere of radius R is given by

Her = −�α · �A = −
∑

λkLM

(a†
λkLM �α · �AλkLM (�r) + H.c.), (14)

with the vector potential of the quantized electromagnetic field
[30]

�A(�r) =
∑

λkLM

( �AλkLM (�r)a†
λkLM + �A∗

λkLM (�r)aλkLM ). (15)

Here, the two independent solutions of the wave equation for
the �AλkLM (�r) are

�A(M)kLM (�r) =
√

4πck

R
jL(kr) �YM

LL(θ,ϕ),
(16)

�A(E)kLM (�r) = i

k

√
4πck

R
�∇ × [

jL(kr) �YM
LL(θ,ϕ)

]
,

where the quantum number k is discretized by requiring
the proper boundary conditions at a perfectly conducting
sphere of radius R. The �YM

LL(θ,ϕ) denote the vector spherical
harmonics [31].

Similarly, the interaction of the nucleus with the electro-
magnetic field is given by the Hamiltonian

Hnr = −1

c

∑
λkLM

(
a
†
λkLM

∫
d3rn

�jn(�rn) · �AλkLM (�rn) + H.c.

)
,

(17)

where �jn(�rn) is the nuclear current.
With the help of the projector operators introduced in the

previous subsection, we can separate the perturbation part in
the Hamiltonian, H = H0 + V with

H0 = PHP + Q1HQ1 + Q2HQ2 + RHR, (18)

and

V = H − H0 = PV Q1 + Q1V P + PV Q2 + Q2V P

+PV R + RV P + Q1V Q2 + Q2V Q1

+Q1V R + RV Q1 + Q2V R + RV Q2. (19)

The interaction Hamiltonian V is the one responsible for the
possible transitions between the four subspaces described in
Sec. II A. While Hn and Hr only contribute to the unperturbed
Hamiltonian H0, and Hen, Hnr , and Her only contribute to
the interaction V , the electronic Hamiltonian He enters both
expressions. The terms PHeP and QiHeQi with i = 1,2
describe the continuum and the bound electrons, respectively.
In addition, the electron-electron interaction term in He is also
responsible for DC and Auger decay in the interaction terms
PHeQ1 and Q1HeP .

The cross section of the process can be expressed by the
transition operator as follows:

dσi→f

dk

(E) = 2π

Fi

lim
ε→0+

|〈ψf |T (E + iε)|ψi〉|2ρf , (20)

with ψf and ψi as final and initial eigenstates of H0,
respectively. This cross section is differential with respect to
the angle k of the photon emitted in the process. Furthermore,
Fi denotes the flux of the incoming electrons, and ρf the
density of the final photonic states.
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We use the Lippmann-Schwinger equation to write the
perturbation series for T (z) in powers of V with the Green
function G0(z) of the unperturbed Hamiltonian H0:

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + · · · . (21)

Since the initial state of the DC process is by definition
an eigenstate of P , and the final state after the γ decay is
an eigenstate of R, we consider the projection RT P of the
transition operator:

RT P = RV P + RV G0V P + RV G0V G0V P

+RV G0V G0V G0V P + · · · . (22)

Here and in the following we omit the argument z.
The first term in Eq. (22) accounts for RR and does
not contribute to the three-step process under considera-
tion. The second term RV G0V P = RHerQ1G0Q1HeeP +
RHnrQ2G0Q2HenP accounts for the first order of two
possible processes: DC followed by x-ray emission, which
is DR and proceeds without any participation of the nucleus,
and NEEC followed by radiative decay of the nucleus for the
case of electric multipole transitions [2]. Inserting the spectral
resolution (7) of Q2 in the second order in V for the NEEC
term we arrive at

〈ψf |RT P |ψi〉 =
∑
q2

〈ψf |Hnr |q2〉〈q2|Hen|ψi〉
z − E0

q

. (23)

The energy E0
q denotes the unperturbed eigenvalue of the

state |q〉.
The third-order term RV G0V G0V P can be decomposed

using the unity operator 1 as

RV 1G01V 1G01V P = RV PG0PV Q1G0Q1V P

+RV PG0PV Q2G0Q2V P

+RV PG0PV RG0RV P

+RV Q1G0Q1V Q2G0Q2V P

+RV Q1G0Q1V RG0RV P

+RV Q2G0Q2V Q1G0Q1V P

+RV Q2G0Q2V RG0RV P.

The sixth term

RV Q2G0Q2V Q1G0Q1V P

= RHnrQ2︸ ︷︷ ︸
γ

G0 Q2HenQ1︸ ︷︷ ︸
NEET(electric)

G0 Q1HeeP︸ ︷︷ ︸
DC

(24)

describes DC followed by NEET of electric transitions and
contributes to the cross section of the considered process.
Among the decomposition terms in the sum above we can
also find the one responsible for NEEC for magnetic nuclear
transitions [2]. For DC followed by NEET, the term responsible
for transitions of magnetic multipolarity will only emerge from
the decomposition of the fourth-order term in the perturbation
expansion and has the form

RHnrQ2︸ ︷︷ ︸
γ

G0 Q2HnrRG0RHerQ1︸ ︷︷ ︸
NEET(magnetic)

G0 Q1HeeP︸ ︷︷ ︸
DC

. (25)

We have used here the result

QHnrRG0RHerP = QHμP, (26)

with the Hamilton operator

Hμ = −1

c
�α

∫
d3rn

�jn(�rn)

|�r − �rn| = −�α · �A(�r) (27)

obtained in Ref. [2], which accounts for a bound electron that
decays by exchanging a virtual transverse photon with the
nucleus.

The fourth-order decomposition in the perturbation expan-
sion also contains the exchange of a virtual photon between a
bound and a continuum electron; that is, the Breit interaction
in the term

RHnrQ2︸ ︷︷ ︸
γ

G0 Q2HenQ1︸ ︷︷ ︸
NEET(electric)

G0 Q1HerRG0RHerP︸ ︷︷ ︸
DC(Breit)

. (28)

Together with the Coulomb electron-electron interaction term
in the interaction Hamiltonian, the Breit term contributes to
DC and Auger decay. Using results well known in the theory
of DR [28,32] we can write the Hamiltonian responsible for
DC and Auger decay as the sum of the Coulomb and the Breit
contributions:

Hee = 1

2

∑
i �=j

1

rij

−
∑
i �=j

�αi · �αj

cos(ωrij )

rij

+ (�αi · �∇i)(�αj · �∇j )
cos(ωrij ) − 1

ω2rij

, (29)

where ω is the frequency of the exchanged virtual photon.
Following the procedure described in Ref. [2] and adopting

the so-called isolated resonance approximation, we can con-
tinue with the next terms in the expansion up to infinite order.
In Ref. [2], the infinite perturbation expansion was shown
to introduce energy and width corrections into the energy
denominator of the lowest-order amplitude. The sum over
all orders could be performed with the help of a geometric
progression. In this case, since we have two projector operators
Q1 and Q2 corresponding to two types of intermediate states,
the infinite perturbation expansion can be reduced to summing
two geometrical progressions to obtain

〈ψf |RT (z)P |ψi〉

=
∑

d1d2
〈ψf |Hnr

∣∣ψd2

〉〈
ψd2

∣∣HN

∣∣ψd1

〉〈
ψd1

∣∣Hee|ψi

〉(
z − Ed2 + i

2�d2

)(
z − Ed1 + i

2�d1

) , (30)

with the notation HN = Hen + Hμ. The energies Ed1 and Ed2

of the electronic and nuclear transitions, respectively, include
the electron-electron interaction and the corresponding Breit
corrections and all the electronic and nuclear self-energy
contributions, as well as the nuclear polarization contribu-
tions for the studied nuclear transition, Edi

= E0
di

+ �ENP
di

+
�EBr

di
+ �ESE

di
+ �ENSE

di
[2]. Correspondingly, the widths �d2

(nuclear) and �d1 (atomic) include electronic radiative and
Auger widths for state d1 as well as nuclear radiative and IC
widths for state d2.

Finally, the total cross section for our three-step process,
after summing over all final states and averaging over all initial
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states will has form

σ (E) = 2π

Fi

1

2Ji + 1

∑
Mi

1

4π

∫
d �p

1

2

∑
ms

1

2Ig + 1

∑
Mg,M2,Mf

∑
L,M,λ

∣∣∣∣ ∑
d1,d2

〈ψf |Hnr

∣∣ψd2

〉〈
ψd2

∣∣HN

∣∣ψd1

〉〈
ψd1

∣∣Hee|ψi〉(
E − Ed1 + i

2�d1

)(
E − Ed2 + i

2�d2

) ∣∣∣∣2

ρf . (31)

C. Resonance strength for three-step process

The resonance strength (also known as integrated cross
section) is obtained by integrating the total cross section over
the whole energy spectrum. A simplification of its expression
can be obtained by studying the relation between the two
widths �d1 and �d2 that appear in the total cross section
denominator. For the considered case, the final electronic state
is the ground state. Since the nuclear excited-state width is
much smaller than the electronic excited-state width, �d1 is
approximately given by the electronic width of the initial
state and �d2 is the nuclear width, such that �d1 	 �d2 .
Neglecting the variation of the free electron momentum and
matrix elements on the energy interval of interest determined
by the two Lorentzian profiles and dominated by the very
narrow nuclear width, the integration resumes to∫

dE[
(E − Ed1 )2 + �2

d1
4

][(
E − Ed2

)2 + �2
d2
4

]
= 2π

�d2

[(
Ed1 − Ed2

)2 + �2
d1
4

] . (32)

The product between the flux of the incoming electrons Fi and
the density of the initial electronic states ρi does not depend
on the normalization of the continuum wave functions [32],

Fiρi = p2

(2π )3
. (33)

The resonance strength of the three-step process can be then
written as a product of three terms,∫

σ (E)dE = π2

p2

2J1 + 1

2Ji + 1

AAuAγPNEET

�d2

, (34)

where we have introduced the Auger decay rate

AAu = 2π

2J1+1

∑
M1,ms ,Mi

∫
d �p|〈α1J1M1|Hee|αiJiMi �pms〉|2ρi,

(35)

the NEET probability

PNEET = 1

(2Ig + 1)(2J1 + 1)

×
∑

M1,M2,Me,Mg

|〈IeMe,α2J2M2|HN |IgMg,α1J1M1〉|2(
Ed1 − Ed2

)2 + �2
d1
4

,

(36)

and finally the radiative decay rate of the nuclear excited state,

Aγ = 2π

2Ie + 1

∑
Me,Mf ,λkLM

|〈IgMf ,λkLM|Hnr |IeMe〉|2ρf .

(37)

Our formalism reproduces the results presented in Ref. [13,14]
for the NEET probability for the particular case when the
second intermediate state d2 is the electronic ground state.
Determining the total cross section of the studied process
requires the calculation of the transition rates AAu and Aγ ,
the NEET probability PNEET, and the initial- and final-state
energies. In the actual calculations we neglect the additional
nuclear polarization corrections �ENP

d to the bound electron
energies [33], since their values are smaller than the nuclear
transition energy uncertainties and not known with good
accuracy.

III. NEET PROBABILITY FOR ELECTRIC AND
MAGNETIC TRANSITIONS

The calculation of the NEET probability requires knowl-
edge of the atomic levels and widths and the evaluation of
the interaction matrix element in the numerator of Eq. (36).
In the following we sketch the calculation of the interaction
matrix element 〈IeMe,α2J2M2|HN |IgMg,α1J1M1〉 following
the approach used for the NEEC rates [2].

In order to calculate the NEET probability we consider
the matrix element of the electric and magnetic interactions
between the electron and the nucleus. We write the wave
function of the system as the product wave function of the
electronic and nuclear states. Unlike for NEEC, now we have
in both initial and final state only bound electrons. The elec-
tronic multiconfiguration wave functions |α1J1M1〉 are ob-
tained by Slater determinants constructed with relativistic
orbitals |nκm〉 in the framework of the multiconfiguration
Dirac-Fock method (MCDF). The relativistic orbitals are
eigenfunctions of the angular-momentum operators ĵ 2 and
ĵz and of the parity operator for each electron. The notation n

accounts for the principal quantum number, κ is the relativistic
angular quantum number κ = ±(j + 1/2) for l = j ± 1/2
such that j = |κ| − 1/2, and m is the projection of the angular
momentum operator j on the z axis.

The electron-nucleus interaction Hamiltonian describing
electric multipolarity transitions can be written using the
multipole expansion as

Hen =
∞∑

L=0

L∑
M=−L

Y ∗
LM (e)

∫
d3rn

rL
<

rL+1
>

YLM (n)ρn(�rn). (38)

The radius re (rn) denotes the electronic (nuclear) radial
coordinate and e (n) stands for the corresponding solid
angle, while the Ylml

(e) denote the spherical harmonics. We
make the simplifying assumption that the electron does not
enter the nucleus, such that re > rn. The Hamiltonian can then
be written as

Hen =
∞∑

L=0

L∑
M=−L

4π

2L + 1
Y ∗

LM (e)
1

rL+1
e

QLM, (39)
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with the help of electric multipole moments QLM =∫
d3rnr

L
n YLM (n)ρn(�rn). The nuclear part of the matrix el-

ement can then be structured in the reduced electric transition
probability

B↑(EL,Ig → Ie) = 1

2Ig + 1
|〈Ie||QL||Ig〉|2. (40)

Using the single-active-electron approximation and following
the calculation in Ref. [2], we obtain for the NEET probability
for electric transitions

P
(E)
NEET = 4π

(2L + 1)2

(2J2 + 1)

(2J1 + 1)
B↑(EL,Ig → Ie)

×C

(
J2 L J1;

1

2
0

1

2

)2
∣∣RE

L,J1,J2

∣∣2

(
Ed1 − Ed2

)2 + �2
d1
4

. (41)

Here, C(J2 L J1; 1
2 0 1

2 ) stands for the vector coupling

coefficients and the radial integral R
(E)
L,J1,J2

is given by

R
(E)
L,J1,J2

=
∫ ∞

0
drr−L+1[fn2κ2 (r)fn1κ1 (r) + gn2κ2 (r)gn1κ1 (r)],

(42)

where gnκ (r) and fnκ (r) are the large and small components of
the bound Dirac radial wave functions describing the orbitals
of the active electron

ψnκm(�r) =
(

gnκ (r)m
κ (e)

ifnκ (r)m
−κ (e)

)
,

and the indices 1 and 2 denote the two states ψd1 and ψd2 ,
respectively.

For magnetic multipole transitions, the magnetic
Hamiltonian in Eq. (27) can be written using the multipole
expansion as

Hμ = −�α · �A = −1

c

∑
LM

4π

2L + 1
�α · �YM

LL(e)

×
∫

d3rn

rL
<

rL+1
>

�jn(�rn) · �YM∗
LL (n). (43)

Using also in this case the approximation that the electron does
not enter the nucleus, we obtain

Hμ = −i
∑
LM

4π

2L + 1

√
L + 1

L
r−(L+1)
e MLM �α · �YM∗

LL (e),

(44)

where the magnetic multipole operator is given by [34]

MLM = − i

c

√
L

L + 1

∫
d3rrL �YM

LL(n) · �jn(�rn). (45)

Similar to the case of the electric transitions, all the nuclear in-
formation can be contained in the reduced magnetic transition
probability

B↑(ML,Ig → Ie) = 1

2Ig + 1
|〈Ie‖ML‖Ig〉|2, (46)

whose value can be taken from experimental data or from
theoretical calculations considering different nuclear models.
After some angular momentum algebra we obtain for PNEET:

P
(M)
NEET = 4π

L2(2L + 1)2

(2J2 + 1)

(2J1 + 1)
B↑(ML,Ii → Id )

× (κ1 + κ2)2C

(
J2 L J1;

1

2
0

1

2

)2∣∣R(M)
L,J1,J2

∣∣2

× 1(
Ed1 − Ed2

)2 + �2
d1
4

. (47)

In this case, the electronic radial integral is

R
(M)
L,J1,J2

=
∫ ∞

0
drr−L+1[gn2κ2 (re)fn1κ1 (r) + fn2κ2 (r)gn1κ1 (r)].

(48)

Given the different parity of the electric and magnetic
multipole moments, a transition of a given multipolarity L

is either electric or magnetic. We consider in the following
only the cases of transitions with a certain value of L which
do not present mixing ratios between electric and magnetic
multipoles of different multipolarities.

IV. INTERFERENCE TERMS

As already mentioned in the introduction, our three-step
process consisting of DR, NEET, and γ -ray emission has
a number of competing processes in each step that open
a number of interference channels. Interference can occur
whenever the initial and final states of two competing processes
are the same. For exemplification, we will discuss in the
following a suitable case in which interference between all
electron recombination and nuclear excitation mechanisms
may occur. This is the case for DC occurring in He-like
HCI—in our numerical case we have considered capture
of a free electron into He-like 237Np, which has a suitable
nuclear transition for NEET. The four interference pathways
are presented in Figs. 2 and 3: (1) RR, (2) DC + x-ray decay

FIG. 2. (Color online) Schematic of the two interference path-
ways involving purely atomic processes: the direct process of RR (1)
and DC + x-ray decay (2).
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FIG. 3. (Color online) Schematic of the two interference path-
ways that couple the atomic and nuclear degrees of freedom: the
two step process NEEC + γ decay (3) and the three-step process of
DC + NEET + γ decay (4).

(i.e., DR), (3) NEEC + γ , and (4) DC + NEET + γ . Here for
brevity we have replaced “followed” by the sign “+.”

In the common initial state ψi we have a He-like ion
in the electronic ground state 1s2 with its nucleus in the
ground state, and a free electron of energy E �p and angular
momentum quantum numbers of the partial wave |εκjm〉. The
final state consists of the ground-state Li-like ion, ground-
state nucleus, and an E1 photon of energy matching the
nuclear and atomic transitions. As long as the state 1s2s2p3/2

decays directly to the ground state (consistent with the
1s2s2p3/2 → 1s22p3/2 transition rate being several orders of
magnitude smaller than the 1s2s2p3/2 → 1s22s rate), the four
pathways cannot be discerned and thus quantum interference
occurs.

The Hamiltonian terms that describe the four interference
pathways can be found in the perturbation expansion of the
transition operator presented in Sec. II B. Except for the direct
process of RR, which is described by the term RV P , all
the other three combinations include resonant processes that
can only be accounted for in the perturbation expansion by
summing the corresponding terms up to infinite order. This
procedure, originally developed for the calculation of DR cross
sections, has been also adapted for NEEC [2,35] and for NEET
in this work. Thus, we can write the transition operator of the
four interference pathways that connect the initial and the final
states ψi and ψf as

〈ψf |RT (z)P |ψi〉
= 〈ψf |RHerP |ψi〉

+
∑
d ′

1d
′
2

〈ψf |Hnr

∣∣ψd ′
2

〉〈ψd ′
2

∣∣HN |ψd ′
1

〉〈
ψd ′

1
|Hee

∣∣ψi〉(
z − Ed ′

2
+ i

2�d ′
2

)(
z − Ed ′

1
+ i

2�d ′
1

)

+
∑
d2

〈ψf |Hnr

∣∣ψd2〉
〈
ψd2 |HN |ψi〉

z − Ed2 + i
2�d2

+
∑
d1

〈ψf |Her

∣∣ψd1

〉〈
ψd1

∣∣Hee|ψi〉
z − Ed1 + i

2�d1

. (49)

By introducing the expression above in the cross-section
formula in Eq. (20), we obtain a sum of ten terms, four of
them corresponding to the cross sections of the four considered
process pathways and the other six to the interference between
them. In the following we label the simple terms with σi and
the interference terms between pathways i and j as σij , with
i,j = 1,2,3,4. We are now interested in the three interference
terms that involve the process under consideration, labeled as
channel (4). Note that two of the other three interference terms,
σ12 and σ13, have been already investigated in Refs. [28,35].

In the following we will address the test case of 237Np
and sketch the calculation of the three interference terms.
The NEET nuclear transition occurs between the ground
state and the excited state at 102.959 keV. As will be shown
in the numerical results section, this energy is best matched
by the E1 atomic transitions between the 1s2s2p3/2 state and
the ground state 1s22s of the Li-like ion. The active electron
is undergoing a transition from the 2p3/2 to the 1s orbital. The
decay of the 2s electron to the K shell occurs much slower
and thus justifies the considered one-active-electron scenario.
The DC occurs in the ground state He-like ion, such that the
free electron is captured in the 2s orbital with the simultaneous
excitation of one of the 1s2 electrons to the 2p3/2 state. Since
this is an E1 transition, both RR and DR processes have large
cross sections, such that the corresponding interference term
in the cross section is expected to be relevant for the total cross
section. The numerical study in the next section shows to what
extend this is the case.

A. RR interference term

In order for interference between RR and pathway (4) to
occur, the continuum electron that recombines via RR or DC
has to have the same initial and final energies and quantum
numbers. In both cases, the recombination occurs into the 2s

orbital. In RR the final bound electronic ground state is reached
(the nucleus remains in the ground state all the time), while for
the three-step process (4) the recombination into the 2s orbital
leads to the excited state 1s2s2p3/2 that decays via NEET.

By introducing the expression of the transition operator
matrix element in Eq. (49) in the expression of the total cross
section, we obtain the interference cross-section term between
pathways (1) and (4):

σ14(E) = (2π )4

p2
ρiρf

∑
M,Mf ,M2

1

4π

∫
d �p

1

2

∑
ms

1

2Ji + 1

∑
Mi

1

2Ig + 1

×
∑
Mg

(
〈α2J2M2,(E)kLM|Her |αiJiMi �pms〉∗

∑
M ′

e

∑
α′

1J
′
1M

′
1

1(
E − Ed ′

1
+ i

2�d ′
1

)(
E − Ed2 + i

2�d2

)
×〈IgMf ,(E)kLM|Hnr |IeM

′
e〉〈IeM

′
e,α2J2M2|Hen|IgMg,α

′
1J

′
1M

′
1〉〈α′

1J
′
1M

′
1|Hee|αiJiMi �pms〉 + H.c.

)
. (50)
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Here we have assumed that NEET can occur only via a
specific nuclear level denoted by the total angular momentum
Ie (whereas its projection is not fixed and thus must be summed
over). Furthermore, for the sake of brevity, the nonparticipating
electronic or nuclear wave functions in the matrix elements of
γ decay or DC, respectively, were omitted in the notation. The
partial wave expansion of the continuum wave function reads

| �pms〉 =
∑
κmml

ilei�κ Y ∗
lml

(p)C

(
l

1

2
j ; ml ms m

)
|εκjm〉,

(51)

where ε is the energy of the continuum electron measured
from the ionization threshold, ε =

√
p2c2 + c4 − c2. The

orbital angular momentum of the partial wave is denoted
by l and the corresponding magnetic quantum number by
ml , while the partial wave phases �κ are chosen so that the
continuum wave function fulfills the boundary conditions of
an incoming plane wave and an outgoing spherical wave. The
total angular momentum quantum number of the partial wave
is j = |κ| − 1

2 . The expression of the RR matrix element (see,
for instance, Refs. [35,36]) is given by

〈α2J2M2,(E)kLM|Her |εκjm〉

= i(−1)j−L+ 1
2

√
4πck

R
C(j L J2; m M md )

√
2j + 1

4π

×
(

J2 j L

1
2 − 1

2 0

)
RRR

J2,j,L
. (52)

The Wigner 3j symbol used in the expression above is related
to the Clebsch-Gordan coefficients via

C(j1 j2 j ; m1 m2 m) = (−1)m+j1−j2
√

2j + 1

×
(

j1 j2 j

m1 m2 −m

)
. (53)

The expression RRR
J2,j,L

involving the radial integrals is in this
case given by

RRR
J2,j,L

=
{√

L + 1

L(2L + 1)
[LI−

L−1 − (κd − κ)I+
L−1]

+
√

L

(L + 1)(2L + 1)
[(L + 1)I−

L+1

+ (κd − κ)I+
L+1]

}
,

(54)

with the radial integrals

I±
L =

∫ ∞

0
drr2jL(kr)[gn2κ2 (r)fεκ (r) ± gεκ (r)fn2κ2 (r)] (55)

containing the spherical Bessel functions jL(kr) and the large
and small radial components of the relativistic continuum
electron partial wave function gεκ (r) and fεκ (r), respectively.

For the matrix element of the interaction Hamiltonian
between the nucleus and the radiation field Hnr , we make
the assumption that the wavelength of the radiation is large

compared to the nuclear radius, kR0 � 1, so that the Bessel
functions that appear in the expression of the field vector
potential (16) can be approximated to first order in kr as

jL(kr) � (kr)L

(2L + 1)!!
. (56)

In this case the electric solution of the wave equation can be
written as

�A(E)kLM (�r) = −
√

4πck

R

√
(L + 1)(2L + 1)

(2L + 1)!!

× (kr)L−1 �YM
LL−1(θ,ϕ). (57)

With the use of the continuity equation for the nuclear current
�jn we obtain for the matrix element

〈IgMf ,(E)kLM|Hnr |IeMe〉

= (−1)Ie−Me+1

√
4πck

R
C(Ig Ie L; Mg − Me M)

×
√

L + 1√
L(2L + 1)

ikL

(2L + 1)!!
〈Ig‖QL‖Ie〉. (58)

Finally, one can relate in a simple manner the DC matrix
element to the Auger rate for the case under consideration,
making the observation that, since the total angular momentum
of the bound Auger final state 1s2 is 0, there is only one
corresponding partial wave for the recombining continuum
electron with j = 1/2 (j = 3/2) and κ = 1 (κ = −2) for the
J1 = 1/2 (J1 = 3/2) intermediate state. We then have

〈α1J1M1|Hee|[αiJiMijm]J ′
1M

′
1
〉

= 〈
α1J1‖Hee‖[αiJij ]J ′

1

〉
δJ1J

′
1
δM1M

′
1
, (59)

and the Auger rate is given by

AAu = 2π |〈α1J1‖Hee‖[αiJij ]J1〉|2ρi. (60)

Combining the expressions above, we obtain for the interfer-
ence cross section the expression

σ14(E) = 16π3

p2
ρiB↑(E1,Ig → Ie)(2J2 + 1)(−1)3Ie+Ig

× kL+1

(2L + 1)!!

√
L + 1

L(2L + 1)3

(
J2 j L

1
2 − 1

2 0

)2

×R
(E)
L,J1,J2

RRR
J2,j,L

〈
α1J1‖Hee‖[αiJij ]J1

〉
× Re

(
1(

E − Ed1 + i
2�d1

)(
E − Ed2 + i

2�d2

))
.

(61)

B. DR interference term

DC is the first step for both pathways (2) and (4). By DC,
the doubly excited electronic state 1s2s2p3/2 is reached, which
can subsequently decay either by NEET or by x-ray emission.
NEET may occur only when the 2p electron decays to the 1s

hole, while the 2s electron acts as spectator. In principle, the
2s electron may also decay by x-ray emission to the K shell
and contribute to DR, but this process is much slower. We
therefore consider in the following the interference between
NEET followed by γ decay and E1 x-ray emission of the
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doubly excited electronic state reached via DC. We can write the interference term in the cross section as

σ24(E) = (2π )4

p2
ρiρf

∑
M,Mf ,M2

1

4π

∫
d �p

1

2

∑
ms

1

2Ji + 1

∑
Mi

1

2Ig + 1

∑
Mg

×
(∑

α1J1M1
〈α2J2M2,(E)kLM|Her |α1J1M1〉∗〈α1J1M1|Hee|αiJiMi �pms〉∗

E − Ed1 − i
2�d1

×
∑
M ′

e

∑
α′

1J
′
1M

′
1

1(
E − Ed ′

1
+ i

2�d ′
1

)(
E − Ed2 + i

2�d2

)

×〈IgMf ,(E)kLM|Hnr |IeM
′
e〉〈IeM

′
e,α2J2M2|Hen|IgMg,α

′
1J

′
1M

′
1〉〈α′

1J
′
1M

′
1|Hee|αiJiMi �pms〉 + H.c.

)
. (62)

Using the expressions of the four matrix elements given in Eqs. (41), (52), (58), and (59), and the summation properties of the
Clebsch-Gordan coefficients, we arrive to the interference cross-section term

σ24(E) = 16π3

p2
ρiB↑(E1,Ig → Ie)(2J2 + 1)(2j + 1)(−1)3Ie+Ig

kL+1

(2L + 1)!!

√
L + 1

L(2L + 1)3

(
J2 L j
1
2 0 − 1

2

)2

×R
(E)
L,J1,J2

R
x−ray
J2,J1,L

|〈α1J1‖Hee‖[αiJij ]J1〉|2Re

(
1(

E − Ed1 − i
2�d1

)(
E − Ed1 + i

2�d1

)(
E − Ed2 + i

2�d2

)
)

. (63)

The radial matrix element R
x−ray
J2,J1,L

corresponding to x-ray emission has the same expression as RRR
J2,j,L

in Eq. (54) with the
difference that both initial and final electronic states are bound. The continuum electron partial wave functions gεκ (r) and fεκ (r)
are therefore replaced by gn1κ1 (r) and fn1κ1 (r), respectively.

C. NEEC interference term

Finally, the last interference term of interest is the one that involves in both channels the excitation of the nucleus. Instead of DC,
the free electron can recombine into the bound shell with the simultaneous excitation of the nucleus in the process of NEEC. The
excited nuclear state decays in both channels radiatively. Thus, the interference occurs between DC followed by NEET on the
one hand and NEEC on the other hand.

The interference term in the cross section is given by

σ34(E) = (2π )4

p2
ρiρf

∑
M,Mf ,M2

1

4π

∫
d �p

1

2

∑
ms

1

2Ji + 1

∑
Mi

1

2Ig + 1

∑
Mg

×
( ∑

Me

〈IgMf ,(E)kLM|Hnr |IeMe〉∗〈IeMe,α2J2M2|Hen|IgMg,αiJiMi �pms〉∗
E − Ed2 − i

2�d2

×
∑
M ′

e

∑
α′

1J
′
1M

′
1

1(
E − Ed1 + i

2�d1

)(
E − Ed2 + i

2�d2

)

×〈IgMf ,(E)kLM|Hnr |IeM
′
e〉〈IeM

′
e,α2J2M2|Hen|IgMg,α

′
1J

′
1M

′
1〉〈α′

1J
′
1M

′
1|Hee|αiJiMi �pms〉 + H.c.

)
. (64)

NEEC and NEET are described by the same Hamiltonian Hen. However, the matrix element for NEEC denotes in the electronic
part a transition from a continuum state to a bound state (i.e., recombination), while for NEET we have a transition between
bound states. Using the continuum-electron wave-function expansion in partial waves and after performing the summations we
obtain

σ34(E) = 64π4

p2
ρiB↑(E1,Ig → Ie)B↓(E1,Ie → Ig)

k2L+1

[(2L + 1)!!]2
C

(
J2 L j ;

1

2
0

1

2

)2

R
(E)
L,j,J2

R
(E)
L,J1,J2

× L + 1

L(2L + 1)2

〈α1J1‖Hee‖[αiJij ]J1〉
(E − Ed2 )2 + �2

d2
4

(2J2 + 1)Re

(
1(

E − Ed1 + i
2�d1

))
. (65)
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V. NUMERICAL RESULTS

In the following we present in detail a numerical example
for the process of NEET in HCI. One of the interesting
candidates is 237Np with its 102.959 keV E1 nuclear transition
which comes close to the L3 → K atomic transition. The
mismatch between the atomic and nuclear transition energies
is listed in Ref. [3] as 1.89 keV for neutral atoms. This energy
difference enters the denominator of the NEET probability
in the second power, as showed in Eq. (36). Consequently, a
reduction of the mismatch can enhance substantially the NEET
probability, up to the maximum of �E = 0 in which case the
denominator in Eq. (36) will be determined by the width of
the first intermediate state �d1 (i.e., the width of the electronic
state).

The first step is therefore to identify the optimal electronic
configuration for NEET and to calculate the transition energies
between the 2p and 1s subshells for different charge states
and electronic configurations. For the calculation of bound-
electron-level energies and widths we have used the GRASP92

package [37]. The acronym GRASP stands for general-
purpose relativistic atomic structure program and is a suite
of FORTRAN codes for various calculations of relativistic
atomic structure. The MCDF approximation is used for the
calculation of atomic stationary states and transitions among
them [38]. GRASP92 is an improvement of the previous versions
and includes approximate QED corrections for the electronic
energy levels. The finite size of the nucleus (i.e., its radius R0),
is also considered in the GRASP92 wave functions and has a
sensitive effect on the energy levels of the bound inner-shell
electron. The accuracy of the GRASP92 bound electron energies
is expected to be on the level of less than 10 eV for few-electron
systems such as He-like and Li-like ions, well within the
experimental uncertainties. The calculated atomic transition
energies and widths are listed in Table I for a number of ion
configurations. We see that the energy mismatch is smallest
for the Li-like configurations.

Choosing the most advantageous configurations as the
[1s2s2p3/2]J set, we proceed to calculate the NEET proba-
bility and the resonance strength for the three-step process
of DC followed by NEET and γ -ray emission. The results,
including continuum electron energies, Auger rates, the NEET
probability, and the resonance strength are presented in
Table II. The Auger rates were obtained with a computer code

TABLE I. The electronic transition energy Ea , mismatch to the
nuclear transition energy �E = En − Ea , and excited electronic state
width �d1 for various ion configurations as initial state for NEET in
237Np.

Configuration Ea (keV) �E (keV) �d1 (eV)[
1s12s22p2

1/22p4
3/2

]
1/2+

101.664 1.295 70[
1s12s22p2

1/22p3
3/2

]
1−

101.701 1.258 76[
1s12s12p1

3/2

]
1/2−

102.879 0.080 30[
1s12s12p1

3/2

]
3/2−

102.999 −0.040 22[
1s12p1

3/2

]
1−

103.279 −0.320 29

extension of GRASP developed for DR calculations [39–41].
The radial wave functions that enter the integral in Eq. (42)
are obtained with the GRASP92 code. The nuclear radiative rate
was calculated according to the formula [30]

Aγ (E1) = 8π (L + 1)

L[(2L + 1)!!]2

E2L+1

c
B↓(λL,Ie → Ig), (66)

with L = 1. The two reduced transition probabilities for the
emission, respectively the absorption of a γ ray are related
through the formula

B↓(λL,Ie → Ig) = 2Ig + 1

2Ie + 1
B↑(λL,Ig → Ie). (67)

The width of the excited nuclear state is then

�d2 =
∑

ν

(
Aν

γ + Aν
IC

)
, (68)

where AIC is the IC rate for the decay of state d2 and ν is
the sum over all decay channels. In our case, due to the high
binding potential of the two K-shell electrons, only IC of the 2s

electron is possible. The internal conversion coefficient for this
state is small, 2.14 × 10−2 [42] for the 102.959 keV transition,
such that the nuclear width is determined by the radiative
decay of the nucleus. It should be noted that the 102.959 keV
nuclear state not only decays directly to the ground state, but
also via two intermediate states at E = 59.5409 keV and E =
33.196 keV, such that both radiative and IC decay rates sum
up three contributions ν. The most important contribution for
the nuclear width is given by the radiative and IC decays to
the 59.5409 keV state.

The calculated NEET probabilities are small, on the order
of 10−9. Compared to previous relativistic calculations that
considered NEET occurring in neutral atoms irradiated by
x-rays to generate an inner-shell hole [13], we see an enhance-
ment of more than three orders of magnitude of the NEET
probability. This is due to the very small energy mismatch
�E = En − Ea for the case of NEET in HCI. After taking
into account the different energy mismatch �E = En − Ea in
the denominator of PNEET considered in the previous works,
we find that our values for the NEET matrix element confirm
the results in Refs. [13,23] and are three orders of magnitude
smaller than the results in Ref. [14].

The cross section as a function of the free-electron energy
has the shape of a narrow Lorentzian profile, with the
width determined by the excited nuclear state width �d2 =
2.75 × 10−6 eV and the peak value at the nuclear transi-
tion energy E = 102.959 keV of σ = 1.8 × 10−4 b for the
[1s12s12p1

3/2]3/2 and σ = 6.2 × 10−5 b for [1s12s12p1
3/2]1/2

initial configurations, respectively.
After investigating the magnitude of the NEET cross

section, we turn now to the competing processes denoted
in Sec. IV as channels (1), (2), and (3) and the interference
terms between them. For 237Np, the nuclear transition is
electric-dipole allowed, such that the competing channels
of RR (direct recombination into the 2s orbital) and DR
(DC in the [1s12s12p1

3/2]J state followed by x-ray decay)
are strong. The total cross sections for channels (1) and
(3) were calculated following the approaches presented in
Refs. [2,35,36]. For the NEEC, RR, and x-ray rates we have
evaluated the radial integrals R

(E)
L,j,J2

, RRR
J2,j,L

, and R
x−ray
J2,J1,L
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TABLE II. NEET probabilities and total resonance strengths for the three-step process of DC into the [1s2s2p3/2]J doubly excited state
followed by NEET and γ decay of the nuclear excited state. The atomic transition energy Ea , continuum electron energy E �p , and intermediate
state widths are given, together with the Auger rate AAu.

J Ea (keV) E �p (keV) �d1 (eV) �d2 (eV) AAu (1/s) PNEET

∫
σ (E)dE (b eV)

1/2 102.879 69.353 30 2.75 × 10−6 3.36 × 1012 7.2 × 10−10 8.19 × 10−8

3/2 102.999 69.275 22 2.75 × 10−6 2.52 × 1012 2.8 × 10−9 2.36 × 10−7

that enter Eqs. (61), (63), and (65) numerically. Relativistic
Coulomb-Dirac wave functions for the continuum electron
and GRASP92 bound-electron wave functions were used.

Due to a rather small nuclear reduced transition probability
B(E1) [43], the NEEC resonance strength for electronic
capture into the 2s orbital with the simultaneous excita-
tion of the 102.959 keV nuclear state is not very high,
only S = 6.21 × 10−4 b eV. Just as for the case of RR,
in the calculation of the NEEC rate we have considered
only the recombination of the continuum electron with the
partial wave (κ = 1 for the configuration with J = 1/2 and
κ = −2 for the configuration with J = 3/2, respectively) that
contributes to the interference. The NEEC resonance strength
is still three to four orders of magnitude larger than the NEET
resonance strengths presented in Table II. This can be traced
back to the overlap between the bound and continuum radial
wave functions for Np91+. We have investigated and compared
the magnitude of the radial integrals R

(E)
L,j,J2

and R
(E)
L,J1,J2

for
several values of the continuum electron energies. It turns
out that for HCI, where the continuum electron recombines
into the strong field of the ion, the radial integrals involving
the continuum electron wave functions are larger than the
ones involving only bound electronic states. Among NEET
bound-bound radial integrals, we find that the overlap is largest
for 2s → 1s transitions.

The energy dependence of the cross sections for the four
recombination channels is decisive for the behavior of the
interference terms. Both channels (3) and (4), which involve
the excitation of the nucleus, present a very narrow Lorentzian
energy profile centered on the nuclear transition energy.
Although the resonance strength (i.e., the integrated total cross
section) is very small, the narrow width of the Lorentzian
profile (determined by the nuclear excited-state width) makes
the cross section at resonance comparatively large: 10−4 and
10−5 b for the three-step process involving NEET and 143 b
for the two-step process involving NEEC.

The atomic recombination processes, on the other hand,
do not present such narrow resonances. RR is a direct process
with no resonance profile and for the energy interval of interest
around the nuclear transition energy the cross section can be
approximated as constant at the value 27.6 b. For the total
RR cross section, two partial waves in the continuum electron
expansion contribute to the cross section. However, only one
of these partial waves can participate in the interference. The
contributions of the two partial waves in the total cross section
are 6.8 b for κ = 1 (capture into [1s12s12p1

3/2]1/2) and 20.8 b
for κ = −2 (capture into [1s12s12p1

3/2]3/2).
DR is a resonant process whose width of the Lorentzian pro-

file is determined by the width of the excited electronic state; on
the order of tens of eV. Consequently, the resonance cross

section is only 2.44 b and 2.38 b for the [1s12s12p1
3/2]3/2 and

[1s12s12p1
3/2]1/2 configurations, respectively, at the continuum

electron energy corresponding to the nuclear resonance, and
stays constant on the whole narrow energy region of interest.
Thus, although the total resonance strength of both RR and
DR is orders of magnitude larger than the ones of the
processes involving nuclear excitation, their values at the
nuclear resonance energies are not very large. For the case of
237Np, the RR and DR cross sections at the resonance energy
are orders of magnitude larger than the one of NEET, but
much smaller than the one for NEEC. The interference terms
σ14(E), σ24(E), and σ34(E) all inherit the very narrow width of
channel (4), and the magnitude of the interference cross section
is determined by the resonance cross sections of the individual
processes. The RR and DR contributions in the interference are
expected to be largest for electric-dipole-allowed transitions,
as is the case for 237Np. In Fig. 4 we plot the three interference
terms considering for DC the [1s12s12p1

3/2]3/2− configuration
as a function of the continuum electron energy on a very narrow
interval around the resonance energy. We see that both the
purely atomic processes as well as NEEC have interference
terms with similar peak values at the resonance energy; on the
order of 10−2 b. This value, although small, is two to three
orders of magnitude larger than the NEET cross-section value.
We note that this situation is qualitatively different than the
one presented in Ref. [35] for the interference between RR
and NEEC. In that case, compared to the large peak value of
the NEEC cross section, the interference term was orders of
magnitude smaller and therefore negligible.

The total cross section of process (4) with and without
including the interference terms and the competing processes

-0.03
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 0.02
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RR 
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FIG. 4. (Color online) Interference terms in the cross section σ14

(RR), σ24 (DR), and σ34 (NEEC) as a function of the continuum
electron energy for recombination into Np91+. See text for further
explanations.
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FIG. 5. (Color online) Total cross section and σ4(E) (NEET) for
the recombination of a free electron into Np91+ at the resonance
energy for DC and NEEC. See text for further explanations.

is presented in Fig. 5 for DC leading to the [1s12s12p1
3/2]3/2−

state. The cross-section plateau is determined by the RR and
DR cross sections, while the peak value at the resonance
energy is determined by NEEC. Surprisingly, although RR and
DR have much larger resonance strengths than the processes
involving nuclear transitions, it is NEEC that helps rise the
total cross section of the three-step NEET process at the
resonance energy. Due to the very large resonance cross section
of channel (3), we see that, among the interference terms, the
term σ34(E) is smaller but comparable with σ14(E) and σ24(E).
However, more than the interference cross-section term, it
is the NEEC term itself that is the relevant contribution for
nuclear excitation in the recombination process. We conclude
that, in HCI, the two nuclear excitation mechanisms NEET
and NEEC, when both possible, might deliver contributions of
similar importance and should be treated on equal footing.

VI. SUMMARY

In this work we have investigated a new aspect of
electron recombination into HCI involving the coupling of

the atomic shell to the nucleus in the process of NEET.
Our scenario involves the resonant process of DC into
HCI to create the electronic hole needed for NEET. HCI
presents the advantage that the atomic-level energies are very
sensitive to the ion charge state and offer the possibility to
optimize the match between atomic and nuclear transition
energies. The NEET probability can thus be enhanced by
several orders of magnitude compared to neutral atoms.
This can be of great advantage for experiments aiming at
investigating NEET. Furthermore, both HCI and DC are
predominant in dense astrophysical plasmas where NEET is
expected to play an important role for the population of nuclear
excited states.

We have developed a versatile formalism for describing
complex processes actively involving atomic electrons and
nuclei and derived total cross sections and resonance strengths
for the direct and resonant channels of electron recombination.
The total and interference cross-section terms for the processes
of RR, DR, and DC followed by NEET and γ decay and
NEEC followed by γ decay were deduced and their magnitude
investigated for a test case. Our results show that, for HCI,
NEEC may be the most important contribution to the total
recombination cross sections and that the interference terms,
although small, are still larger than the NEET cross section.
This is qualitatively different from case of the typical NEET
scenario investigated until now in experiments, where the
specific inner-shell vacancy is created in neutral gold 197Au
atoms [4] and NEEC cannot occur simultaneously with
NEET. The impact of our findings for nuclei of astrophysical
relevance in isomer depletion and nucleosynthesis is still to be
investigated. Calculations for such particular cases as well
as estimates about the feasibility of a new type of NEET
experiment with HCI are in progress.
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