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Numerical continuation of bound and resonant states of the two-channel Schrödinger equation
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Resonant solutions of the quantum Schrödinger equation occur at complex energies where the S matrix
becomes singular. Knowledge of such resonances is important in the study of the underlying physical system.
Often the Schrödinger equation depends on some parameter and one is interested in following the path of the
resonances in the complex energy plane as the parameter changes. This is particularly true in coupled-channel
systems where the resonant behavior is highly influenced by the strength of the channel coupling, the energy
separation of the channels, and other factors. In previous work it was shown that numerical continuation, a
technique familiar in the study of dynamical systems, can be brought to bear on the problem of following
the resonance path in one-dimensional problems [J. Broeckhove, P. Klosiewicz, and W. Vanroose, J. Comput.
Appl. Math. 234, 1238 (2010).] and multichannel problems without energy separation between the channels
[P. Kłosiewicz, J. Broeckhove, and W. Vanroose, Commun. Comput. Phys.11, 435 (2012).]. A regularization can
be defined that eliminates coalescing poles and zeros that appear in the S matrix at the origin due to symmetries.
Following the zeros of this regularized function then traces the resonance path. In this work we show that this
approach can be extended to channels with energy separation, albeit limited to two channels. The issue here is
that the energy separation introduces branch cuts in the complex energy domain that need to be eliminated with
a so-called uniformization. We demonstrate that the resulting approach is suitable for investigating resonances
in two-channel systems and provide an extensive example.
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I. INTRODUCTION

The presence of resonances can drastically increase the
yield of many quantum mechanical reactions [1]. A resonance
is an intermediate state that is formed when reagents collide
with an appropriate energy and form an excited complex
that decays into reactants or products. In molecular reactions
these intermediate states are often electronic excited states.
In the Born-Oppenheimer picture the molecular dynamics
temporarily follows the electronic potential energy surface
formed by the resonant state.

This picture forms the basis of state-of-the-art ab initio cal-
culations where, first, the position and lifetime of the resonance
is determined using electronic scattering calculations with the
nuclei fixed in space. This calculation needs to be repeated for
every possible configuration of the nuclear positions probed by
the chemical reactions and this results in the resonant potential
energy surface. In the second step, the nuclear dynamics is
simulated on the resonant potential energy surface that leads
to the reactants. This approach has been successfully used
to calculate the yields of processes that are mediated by a
resonant state such as dissociative electron attachment to the
water molecule [2–4] and vibrational excitation of carbon
dioxide [5,6].

This work focuses on the first step outlined above, where
the potential curves are calculated as a function of the nuclear
degrees of freedom. We will study a model consisting of a
coupled Schrödinger equation and construct, in an automatic
way, the potential curve of a resonance that becomes bound as
the parameters in the equation are varied. The method tracks
the resonances accurately, even in parameter ranges where the
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resonance is too broad to be followed with traditional methods
such as complex scaling [7].

In this article a resonance energy is defined as the complex
energy at which the S matrix has a pole, a common definition in
the literature [8,9]. The real part of the pole position defines the
physical resonance energy and the imaginary part defines the
resonance decay width (or inverse lifetime). The advantage
of this approach is that a bound state energy is also a pole
of the S matrix, albeit with zero decay width, that is, infinite
lifetime. As such, bound states and resonances are both treated
in the same way which makes it more convenient to trace states
when a problem parameter changes and resonant states become
bound or vice versa. The poles of the S matrix will be found
by a Newton iteration applied to a function that is proportional
to the Jost function.

We aim to trace these states with numerical continuation. It
is a technique that has found widespread application especially
in the dynamical systems community. Assume one is given a
solution (u0,λ0) of a set of n nonlinear equations F (u,λ) = 0,
where F : Rn+1 → Rn. A second solution (u1,λ1) is then
constructed numerically by applying a predictor-corrector
scheme. Repeated application constructs an approximation of
the implicitly defined solution set u(λ) of F . One of the well-
known numerical continuation techniques is pseudo-arclength
continuation proposed by Keller [10]. It has been implemented
in computer programs, for example, AUTO [11,12], LOCA

[13], and other numerical continuation libraries. Because
the corrector step in these methods is based on Newton
iterations the derivatives of the function F should be Lipschitz
continuous to guarantee fast convergence.

A traditional method to find the resonance position and
width is complex scaling [7]. In this method, one applies
a complex scaling transformation r → riθ to the reaction
coordinate. This turns the resonance wave function into
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a square integrable function. After the transformation the
resonant state is then part of the discrete spectrum of the
Hamiltonian. The method and its exterior variant (ECS),
which has the advantage that it leaves the interactions in
the inner region unchanged, have been successfully applied
to find resonances in molecular systems such as HCO [14],
NeICL [15], and in many other examples in atomic, molecular,
and nuclear physics.

Complex scaling, however, has its limitations. First, in
numerical calculations the resonance position depends slightly
on the choice of the rotation angle θ . This is documented for
example in [7]. A second limitation is that only resonant states
in a limited region in the complex energy plane can be found,
in particular a pie slice between the continuum spectrum,
which is rotated 2θ downward from the real axis, and the
real axis. Virtual states for example, have a purely imaginary
wave number and lie outside this region. As such they are hard
to find with this method.

Since a resonance often transforms, as the parameters of
the system change, very shortly, into a virtual state before it
becomes a bound state, it is necessary to have a mathematical
description that can handle these virtual states. Such a method
will make it possible to understand how resonances and bound
states are connected.

This paper investigates the application of numerical
continuation to trace resonant states in a coupled-channel
Schrödinger equation as the parameters of the problem change.
Unfortunately, the application of numerical continuation to
trace resonant states is not without challenges. For Newton’s
method to work efficiently it requires a function whose
derivatives are Lipschitz continuous [16]. The S matrix does
not satisfy these smoothness conditions. In particular when a
resonance makes the transition to a bound state, a pole and a
zero of the S matrix meet and straightforward application of
numerical continuation fails to trace the zero of 1/S.

In [17] it was found for one-dimensional quantum systems
that it is possible to apply the continuation to a regularized
function derived from the S matrix because that function does
satisfy the necessary smoothness conditions. For several real-
istic potentials the resonances were tracked as parameters in
the system were varied. The method was validated against well
known benchmark problems such as the classic Nussenzveig
model [18].

In [19] the method has been extended to many-channel
problems where all channels have the same asymptotic energy
threshold. Applications have demonstrated the viability of
the approach in tracing the parameter dependence of the
resonance in the system. Again the method was validated
against academic model problems. However, as it stands,
the method does not apply to systems where the channels
have unequal energy thresholds. In this case, branch cuts
occur in the complex energy plane making the method
invalid.

This is a significant restriction for certain application areas,
for example, most problems in molecular dynamics have such
unequal energy thresholds. In this paper we will investigate
this difficulty and show that in the two-channel case it can
be overcome by introducing an appropriate uniformization of
the complex plane. In addition, we demonstrate the numerical
practice of the method using an extensive example.
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(a) With unequal thresholds,
branch cuts at (−∞, ξi].

(b) Even in the k1 or
k2-plane there is a branch

cut at [−b, b]

FIG. 1. Branch cuts of S in E and k representation for a two
channel system.

The main result of the paper is the extension of the
applicability of numerical continuation to track resonant
states in coupled-channel problems with unequal thresholds.
Another result is the comparison with ECS that highlights the
advantages of our approach. Although in this paper the method
is applied to a rather academic problem, we believe it is an
important step in the development of a robust technique that
can automatically generate potential curves for real molecules.

We proceed as follows: In Sec. II we formulate the
equations of interest in the context of quantum mechani-
cal systems. Section III describes the so-called scattering
matrix or S matrix, its relation to resonances and bound
states, as well as the complex geometries that occur in the
S matrix of coupled-channel systems. Section IV gives a brief
overview of the background and applications of numerical
continuation techniques. Section V outlines the details of our
implementation of the methods described in the preceding
sections. In Sec. VI we present an excerpt of the results we have
obtained and compare with the ECS method and in Sec. VII we
give an outlook for possible applications and future studies.

II. COUPLED-CHANNEL SCHRÖDINGER EQUATION

The time-independent Schrödinger equation for N coupled
channels with a spherically symmetric potential reads[

− 1

2μ

d2

dr2
I + L(L + I)

2μr2
+ V(r,λ) + �

]
�(r; E,λ)

= E�(r; E,λ), (1)

where (r ∈ R+) is the radial coordinate, I is the N × N identity
matrix, � is the diagonal matrix of channel thresholds ξi , L is
the diagonal matrix of channel angular momenta li , V(r,λ) is
the matrix of channel and coupling potentials Vij (r,λ), which
depend on a problem parameter λ ∈ R, and finally �(r) is the
matrix of channel wave functions. Depending on the properties
of the potential matrix V(r,λ) at infinity the behavior of the
solutions �(r) will differ significantly. We assume so called
short range interactions: Vij (r) vanishes faster than r−3 as
r → ∞ and is less singular than r−2 in the origin r = 0, see
also [9].

Given homogeneous Dirichlet boundary conditions at r =
0 and an incoming plane wave, the asymptotic (r → ∞)
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solutions behave as

�(r; E,λ) = i

2
[ĥ−

L (Kr) − ĥ+
L (Kr)K− 1

2 S(E,λ)K
1
2 ], (2)

where K = √
2μ(EI − �) is the matrix of channel momenta

ki = √
2μ(E − ξi) and

ĥ±
L (Kr) =

⎛
⎜⎜⎝

ĥ±
l1

(k1r)

. . .

ĥ±
lN

(kNr)

⎞
⎟⎟⎠ (3)

is the matrix of spherical Riccati-Hankel functions associated
with the various channels. The first term in (2) is the partial
wave expansion of the incoming plane wave, the second
term represents, for each incoming partial wave, the outgoing
wave in all the channels. The matrix S(E,λ) is the so-called
scattering or S matrix.

Our main object of interest is S(E,λ) because it contains
all the information about the scattering process. It can be
obtained from the coupled-channel wave functions � through
the expression

S(E,λ) = K− 1
2 W[ĥ−

L (Kr0),�(r0; E,λ)]

×W[ĥ+
L (Kr0),�(r0; E,λ)]

−1
K

1
2 , (4)

where theW stands for the Wronskian of two functions, whose
usual definition

W [f (x),g(x)] = f (x)
dg(x)

dx
− df (x)

dx
g(x) (5)

is extended to matrices of functions as in [20]:

W [A(x),B(x)] = AT (x)
dB(x)

dx
− dAT (x)

dx
B(x), (6)

where T is the transpose of a matrix, which vanishes in the
specific case of expression (4).

The Wronskians in Eq. (4) are evaluated at a point r0

outside the range of the potentials, usually near the edge of the
computational domain. Therefore, given a numerical method
for solving the Schrödinger equation (1), the S matrix can
be obtained numerically by evaluating matrix expression (4)
which also involves the derivative of the wave functions. The
details of our numerical implementation are given in Sec. V.

III. EXTRACTING THE RESONANT AND BOUND STATES
FROM THE S MATRIX

We are interested in solutions of Eq. (1) that correspond
to the bound states and the resonances of the system.
Many characterizations of these special solutions exist, yet
the theoretically fundamental definition describes both bound
and resonant states as an eigenstate of Eq. (1) with purely
outgoing wave functions at infinity as the second boundary
condition [8,9].

A consistent alternative definition for multichannel sys-
tems interprets these states as having energies E for which
det[S(E,λ)] exhibits a pole. This is consistent with the first
definition, as is easy to see when one looks at the expression
for the asymptotic wave function (2). If det[S(E,λ)] has a pole,
then in at least one eigenchannel [i.e., the channels defined
by linear transformation to diagonalize the S(E,λ) matrix]

Re(u)

Im(u)

0−1 1

−i

i

(+, +)(+,−)(−,−) (−, +)

Cont.2

Cont.1

BS

FIG. 2. (Color online) Uniformization of the four-sheeted Rie-
mann surface of S(E) using the transformation (10) unravels
the sheets onto four different regions of the complex u plane.
The blue (gray) region (+,+) corresponds to the physical sheet
|u| > 1,Re(u) > 0. Bound states E ∈ (−∞,ξ1] lie on u ∈ [1, + ∞).
Scattering states E ∈ [ξ1,ξ2] map to u = eiθ ,θ ∈ [− π

2 ,0]. Scattering
states E ∈ [ξ2, + ∞) map to u ∈ [−i, − i∞).

a resonant solution proportional to a purely outgoing wave
occurs. A more formal approach relies on the introduction of
Jost functions, for which we refer to the literature [8,9].

From the definition of the bound and the resonant states as
a pole of det[S(E,λ)] it is now possible to study the evolution
of these states in terms of a changing system parameter λ ∈ R.
As λ traverses the parameter space, the bound and resonant
states change position and lifetime. It is of interest for many
applications to know the explicit dependence on the parameter
of choice because it leads to the resonant and bound state
potential surface.

It would be straightforward to define resonance trajectories
as curves in the complex E plane parametrized by λ,that
is, {(E,λ) ∈ C × R | det[S(E,λ)]−1 = 0}. Although this is
theoretically correct, it is not feasible numerically because of
two reasons. First, in the general case, the coupled-channel
S matrix is a multivalued complex function of the energy and
“lives” on a multisheeted Riemann surface with branch cuts
for every threshold value. Second, near threshold parameter
values where bound and resonant states meet, multiple poles
and zeros of the S matrix coalesce, thereby destroying local
smoothness properties. This is a consequence of well known
symmetry properties of the S matrix [8,9].

The presence of branch cuts and the coalescence of zeros
and poles have a strong negative impact on the convergence of
the Newton iteration used in solving det[S(E,λ)]−1 = 0 when
calculating the resonance trajectory. A study of specific cases
will give us insight in how these issues can be addressed.

A. The case of N channels, equal thresholds

This case has been investigated in [19] and we briefly review
the results. In Eq. (1) the matrix of channel thresholds � is zero
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FIG. 3. Schematic representation of pseudo-arclength continuation.

(i.e., we take the threshold energy to be zero in all channels).
Consequently, the matrix of channel momenta K becomes kI
with k = √

2μE. This simplifies expression (2) to

�(r; E,λ) = i

2
[ĥ−

L (kr) − ĥ+
L (kr)S(E,λ)], (7)

such that (4) becomes

S(E,λ) = W[ĥ−
L (kr0),�(r0; E,λ)]

×W[ĥ+
L (kr0),�(r0; E,λ)]

−1
. (8)

Because k = √
2μE, the function S(E,λ) is defined on a

two-sheet Riemann surface with a branch cut on the negative
real axis E ∈ R−. This destroys continuity of the S matrix
near the branch cut and makes numerical continuation difficult.
Fortunately, in this case one can express the S matrix in terms
of k by introducing S(k,λ), a single-valued function of k.
Afterward, the results can be easily translated back to the
complex E plane with E = k2

2μ
. In mathematical terms such

a procedure of reparametrization of a multivalued complex
function to a single-valued function is referred to as a
uniformization.

Another issue that has to be dealt with is the coalescence
of poles and zeros near the k = 0 threshold value. This can be
circumvented by effecting the numerical continuation on the
function

F (k,λ) = det{K [S(k,λ) − I]−1}

=
(∏

k2li+1
) /

det[S(k,λ) − I], (9)

instead of directly on the S matrix where (K)ii = k2li+1. In
[19] it is shown that this procedure does not introduce false
solutions, that is, the zeros of F are precisely the poles of S,
and that it eliminates any singularities at k = 0. This is an
extension of a similar result for the one-dimensional, single-
channel systems case [17,21].

B. The case of two channels, unequal thresholds

To highlight the difficulties that arise in the case of unequal
thresholds, we focus on a two channel model. Each threshold
ξi introduces a separate branch cut (−∞,ξi], see Fig. 1(a).

Reparametrization of S in terms of either of the channel
momenta ki does not provide a viable uniformization. In
each of the k1 or k2 planes there is a branch cut at [−b,b]
where b = √

2μ(ξ2 − ξ1) (without loss of generality we take
ξ1 < ξ2), as illustrated in Fig. 1(b). The cut disappears only
when the thresholds coincide.

For two channel systems a uniformization exists, given
in [8] and modified slightly in [20]. One introduces u ∈ C
such that

E(u) = ξ1 + ξ2

2
−

∣∣∣∣ξ2 − ξ1

2

∣∣∣∣ 1 + u4

2u2
. (10)

The corresponding expressions for channel momenta k1 and
k2 are

k1(u) = i

√
μ

ξ2 − ξ1

2

u2 − 1

u
, (11)

k2(u) = i

√
μ

ξ2 − ξ1

2

u2 + 1

u
, (12)

and the 2 × 2 S matrix is now explicitly written as

S(u,λ) =
(

k1(u) 0

0 k2(u)

)− 1
2

W−(u,λ)

× [W+(u,λ)]−1

(
k1(u) 0

0 k2(u)

) 1
2

, (13)

where

W±(u,λ) =
(

ĥ±
l1

(k1(u)r0) 0

0 ĥ±
l2

(k2(u)r0)

)

×
(

d
dr

ψ11(r0; E(u),λ) d
dr

ψ12(r0; E(u),λ)
d
dr

ψ21(r0; E(u),λ) d
dr

ψ22(r0; E(u),λ)

)

−
(

d
dr

ĥ±
l1

(k1(u)r0) 0

0 d
dr

ĥ±
l2

(k2(u)r0)

)

×
(

ψ11(r0; E(u),λ) ψ12(r0; E(u),λ)

ψ21(r0; E(u),λ) ψ22(r0; E(u),λ)

)
, (14)

where ψij (r0; E(u),λ) stands for the (i,j )th element of the
matrix wave function � calculated for a specific parameter λ

and evaluated at a point r0.
The effect of this uniformization can be visualized by

looking at the different parts of the u plane and how they
map on the E plane as illustrated in Fig. 2. Four regions (±,±)
in the u plane can be distinguished. They are separated by
the imaginary axis and the unit circle and correspond to the
four different sheets of S(E,λ) in the E plane. The region
labeled as (+,+) bounded by |u| > 1 and Re(u) > 0 is mapped
to the physical sheet. Physical bound states E ∈ (−∞,ξ1]
are located on u ∈ [1, + ∞). The physical continuum E ∈
[ξ1,ξ2] maps to the quarter unit circle in the fourth quadrant
u = eiθ ,θ ∈ [−π

2 ,0]; whereas the physical continuum E ∈
[ξ2, + ∞) is mapped to u ∈ [−i, − i∞). A more detailed
description of the different regions in the u plane can be found
in [8,20].

Continuation paths can traverse different regions in the u

plane, and as such, different sheets in the complex energy
plane. The focus of this work is concentrated on finding these
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FIG. 4. (Color online) Continuation paths of bound states of the example system in terms of increasing channel coupling strength λc

projected on three different planes. As the coupling strength increases, slight repulsion of the states in both channels can be observed. Circled
values indicate starting points used for continuation in channel strengths λi . The values of these points are given in Table I. In (c) the dashed
line represents the unit circle.

trajectories, independently of their precise physical meaning.
The results we obtain are presented in the u plane. However,
they can be translated to the complex energy plane if one is
interested in physically observable quantities.

Note that this uniformization is strictly limited to a two
channel case. A similar procedure for three channel systems is
much more involved, as indicated in [8]. To the knowledge
of the authors there is no generalization for N channels.
For a thorough discussion of the analytical properties of the
S matrix and related functions in many-channel problems we
refer to [8,9].

Having established a feasible way of extracting the S matrix
for a specific u ∈ C, we are still faced with the problem of
coalescing poles and zeros as discussed in the previous case
of equal thresholds. Fortunately a straightforward extension of
the regularization procedure (9) can be applied. Similarly, we
create the function

F (u,λ) = det{K(u)[S(u,λ) − I]−1}

=
[

N∏
i=1

k
2li+1
i (u)

]/
det[S(u,λ) − I], (15)

which in our case reduces to

F (u,λ) = k
2l1+1
1 (u) k

2l2+1
2 (u)

det[S(u,λ) − I2]
. (16)

This is the function whose solution set will be approximated

through numerical continuation to obtain the trajectories of the
resonant S-matrix poles.

IV. NUMERICAL CONTINUATION OF RESONANCES

In the previous section we have identified a resonance
trajectory starting at (E0,λ0) as the implicitly defined curve
E = E(λ) with

F (E(λ),λ) = 0, E(λ0) = E0, (17)

where the function F is defined in Eq. (16). We are now
interested in constructing such trajectories automatically and
robustly.

In dynamical systems similar equations arise in the study of
steady states of parametrized ODEs and efficient methods have
been developed to find the solution curves in terms of varying
parameter values. In this context one is interested in finding the
solution of an under determined system of nonlinear equations

F : Rn+1 −→ Rn : x = (u,λ) �−→ F (x), (18)

connected to an initial point x0 = (u0,λ0).
Many of these problems are computationally intensive

and efficiency is a key concern in the numerical studies.
In particular, the number of evaluations of the function F

should be kept to a minimum. In addition, the solution
components often have complex geometries with intersections
and bifurcations. The study of bifurcations generally involves
rigorous stability analysis of the underlying solutions and is
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c2n0c2ñ0 c2n1

c2ñ1
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c1n0

c1n1 c2n0

c2n1

c2ñ1
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FIG. 5. (Color online) Different projections of the continuation curves (λc = 0.5). The four branch points are highlighted and labeled
accordingly. Their numerical values are summarized in Table II. The connectivity graph in Fig. 6 gives a clearer overview of the associated
connections.

a complicated subject on its own. In this work only the so
called “simple” bifurcation points can occur. These manifest
themselves as two intersecting solution branches and are
characterized by the dimension of the null space of the
Jacobian Fx(xt ) being 2 in a point xt , which is called a “branch
point.” In many problems, however, the bifurcations are much
more involved and a thorough treatise on bifurcations and
stability of solutions can be found in [10,22–24].

Numerical continuation is the process of solving Eq. (18)
by constructing successive approximate solutions on the path
starting at the known solution x0. A good overview of these
techniques can be found in [24]. There are essentially two
different approaches to tracing such paths viz. piecewise linear
methods and predictor-corrector methods. We will use one of
the latter methods. Typically, one first makes a predictor step
(Euler prediction is commonly used) that estimates the next
point by following the tangent ti to the curve at the current
point xi for a certain small distance 	s as in xp

i+1 = xi + 	s ti .

Next, a corrector step is applied to converge to a solution
xp

i+1 −→ xi+1. Quite often Newton iterations are used as a
corrector.

One such predictor-corrector method, the one we will use in
this paper, is the pseudo-arclength continuation. Its corrector
step consists of Newton iterations on the system F (x) = 0
augmented with an additional equation that constrains the
iterations to a hyper plane through xp

i+1 and perpendicular to
the tangent ti thereby giving the next point xi+1 on the solution
curve (see Fig. 3).

A robust implementation of numerical continuation that
can detect branch points and continue branching solution
curves is provided by AUTO [11,12], which we have used in
this work. Other well-known implementations of numerical
continuation algorithms include LOCA [13] which is a
part of the Trilinos framework [25], MATCONT [26] (a
MATLAB implementation), and MULTIFARIO [27] which allows
multiparameter continuation.
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TABLE I. Numerical values of the states in the u and E planes. Different states with coupling values (top to bottom) λc = 0, λc = 0.2,
λc = 0.3, and λc = 0.5 are shown. The labels are used in the figures to make a clear distinction between states and their trajectories.

λc Channel State Label Re(u) Im(u) Re(E) Im(E)

0 1 n0 c1ñ0 −2.298 397 5 × 10−1 0 −2.122 848 4 0
c1n0 4.350 857 5 0 −2.122 848 4 0

n1 c1ñ1 −4.519 983 7 × 10−1 0 −3.873 755 8 × 10−1 0
c1n1 2.212 397 4 0 −3.873 755 8 × 10−1 0

2 n0 c2ñ0 2.589 271 2 × 10−1 0 −1.622 848 4 0
c2n0 3.862 090 6 0 −1.622 848 4 0

n1 c2ñ1 8.801 995 0 × 10−1 4.746 038 8 × 10−1 1.126 244 2 × 10−1 0
c2n1 8.801 995 0 × 10−1 −4.746 038 8 × 10−1 1.126 244 2 × 10−1 0

0.2 1 n0 c1ñ0 −2.292 369 1 × 10−1 0 −2.135 275 6 0
c1n0 4.362 308 3 0 −2.135 285 4 0

n1 c1ñ1 −4.517 996 7 × 10−1 0 −3.878 914 0 × 10−1 0
c1n1 2.214 194 5 0 −3.883 285 5 × 10−1 0

2 n0 c2ñ0 2.596 374 4 × 10−1 0 −1.612 706 8 0
c2n0 3.851 788 3 0 −1.612 959 4 0

n1 c2ñ1 8.775 763 3 × 10−1 4.7363933 × 10−1 1.127 882 3 × 10−1 1.157 954 2 × 10−3

c2n1 8.775 763 3 × 10−1 −4.736 393 3 × 10−1 1.127 882 3 × 10−1 −1.157 954 2 × 10−3

0.3 1 n0 c1ñ0 −2.285 208 3 × 10−1 0 −2.150 165 4 0
c1n0 4.375 986 5 0 −2.150 184 9 0

n1 c1ñ1 −4.515 516 1 × 10−1 0 −3.885 364 1 × 10−1 0
c1n1 2.216 431 5 0 −3.895 160 0 × 10−1 0

2 n0 c2ñ0 2.604 864 2 × 10−1 0 −1.600 694 7 0
c2n0 3.839 547 2 0 −1.601 244 4 0

n1 c2ñ1 8.742 878 5 × 10−1 4.724 172 0 × 10−1 1.129 842 3 × 10−1 2.618 371 2 × 10−3

c2n1 8.742 878 5 × 10−1 −4.724 172 0 × 10−1 1.129 842 3 × 10−1 −2.618 371 2 × 10−3

0.5 1 n0 c1ñ0 −2.264 517 1 × 10−1 0 −2.193 989 7 0
c1n0 4.415 987 9 0 −2.194 028 6 0

n1 c1ñ1 −4.507 601 0 × 10−1 0 −3.906 019 9 × 10−1 0
c1n1 2.223 520 0 0 −3.932 881 1 × 10−1 0

2 n0 c2ñ0 2.629 732 2 × 10−1 0 −1.566 180 3 0
c2n0 3.804 155 7 0 −1.567 587 6 0

n1 c2ñ1 8.636 887 9 × 10−1 4.683 787 3 × 10−1 1.135 431 4 × 10−1 7.393 331 6 × 10−3

c2n1 8.636 887 9 × 10−1 −4.683 787 3 × 10−1 1.135 431 4 × 10−1 −7.393 331 6 × 10−3

V. NUMERICAL IMPLEMENTATION

Due to its ability to automatically find and follow bifurcat-
ing branches, we have opted to use AUTO for numerical contin-
uation. Therefore the main component that has to be provided
to implement methods described in previous sections is the
actual code that calculates the numerical values of the function
F (u,λ), see Eq. (16) for a given u ∈ C ∼= R2 and λ ∈ R.

We have solved Eq. (1) with a O(h5) renormalized Numerov
method detailed in [28,29]. We also need the derivative of
the numerical wave function at the end of the computational
domain for a specified energy E(u) in order to calculate
the Wronskians in (13). We compute this derivative using
a technique also described in [29] and which is of order
O(h4). Finally, we need to calculate the function F given
by expression (16).

We emphasize that the numerical continuation results
are independent of the underlying numerical solver of the
Schrödinger equation. However, we have found that higher
order methods for both the wave function and its derivative
lead to significantly more robust continuation curves and allow
for wider energy ranges. For this reason we selected the higher

order renormalized Numerov method to generate results of
Sec. VI.

This approach has been implemented in C++ and is used as
a driver routine by the AUTO program.

VI. EXAMPLES AND RESULTS

As an example of the complicated geometries this method
is able to cope with, we consider a coupled-channel s-wave
(l1 = l2 = 0) system with Gaussian potential wells both as
the channel potentials and the coupling. The 2 × 2 potential
matrix has the elements

Vii(r,λi) = −λie
− r2

4 , (19)

Vi �=j (r,λc) = λce
−r2

, (20)

where λ1, λ2, and λc denote the potential strength of the
first, second, and coupling channels, respectively. The channel
thresholds are chosen ξ1 = 0 and ξ2 = 1

2 and the mass is μ = 1.
Equation (1) was solved using the previously mentioned
renormalized Numerov method on the domain r ∈ [0,4.8] with
4096 grid points. All of λ1, λ2, and λc will be used as variable
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FIG. 6. (Color online) The connectivity diagram of the different
continuation curves. Curves only intersect at the four points bpi .
Dashed red (dark) and green (light) lines in the center connect two
states from different channels through bp2. See Fig. 9 for a more
detailed view of the connections. The end points of the curves do not
play a major role and their labels are omitted in other figures as well.

system parameters. We will indicate clearly which of those are
fixed and which are used as continuation parameters.

In the uncoupled case (λc = 0), setting λi = 4 gives a
system with two bound states in each channel whose values
can be found in the upper part of Table I. Using these
values as starting points we carry out the continuation in
terms of increasing channel coupling λc while keeping λi = 4
fixed. The results in the u plane are shown in Fig. 4.
Points corresponding to coupling values 0, 0.2, 0.3, and 0.5
are highlighted in the figure. Their corresponding numerical
values in the u and E planes are summarized in Table I. Notice
that for λc = 0 every value of E is associated with two different
points in the u plane which are located on different sheets.
Following the paths of two such values eventually gives rise
to different values in the E plane. Therefore one needs to keep
track of all of them. We give appropriate labels, see Table I, to
distinguish different points in the u plane.

While continuing in λc, only slight variations in the state’s
energy occur, yet the seemingly minor coupling has profound
effects on the evolution of these states in terms of potential
strengths λ1 and λ2 while keeping the coupling strength
constant.

To illustrate this behavior we fix the coupling strength and
use the corresponding u values of the states as starting points
for a continuation in terms of variations of both potential
strengths λ1 and λ2 simultaneously. As λi decreases, we expect

FIG. 7. (Color online) An overview of the continuation curves
(λc = 0.5) shown in the full Re(u) × Im(u) × λi space. Both start
points (circles) and end points (triangles) of the curves are highlighted
in respective colors. The four branch points are indicated with big
black dots.

these bound states to move into the resonant regime and
influence each other due to the coupling.

Although we have performed numerical continuation start-
ing from all states for all subsequent coupling strengths from
Table I, we focus on the case λc = 0.5 as a highlighted
example.

The resulting continuation curves are shown in Fig. 5
as projections on the planes Re(u) × λi , Im(u) × λi , and
Re(u) × Im(u). Complex geometries and intersections are
constructed automatically by the continuation method. An
attempt to present those schematically is shown in Fig. 6
as a connectivity graph. In the range λi ∈ [0,4] four branch
points can be distinguished with values detailed in Table II.
A three-dimensional overview of the continuation curves is
shown in Fig. 7.

We have carried out the same procedure for four different
values of the coupling strength using starting values summa-
rized in Table I. As the coupling between the two channels
increases, resonant trajectories undergo major qualitative
changes. See Fig. 8 for a short comparison of the continuation
paths projected on Re(u) × λi . The interpretation of those is
beyond the scope of this paper although an important effect
can be observed. In Fig. 9 a close-up view of two resonant
trajectories is shown. In the uncoupled case [Fig. 9(a)] two
independent trajectories of c2n0 (and c2ñ0) and c1n1 are shown.

TABLE II. Numerical values of the branch points of the resonant
trajectories shown in Fig. 5. The coupling strength is λc = 0.5.

Label λ1 = λ2 u E

bp1 2.085 230 3 −1.444 352 4 −7.068 810 0 × 10−2

bp2 1.957 156 2 6.663 656 8 × 10−1 −8.700 953 0 × 10−2

bp3 1.543 678 5 8.870 970 1 × 10−1 −7.210 528 6 × 10−3

bp4 4.000 906 0 × 10−3−8.679 652 3 × 10−1 −1.009 298 3 × 10−2
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(a) λc = 0 (b) λc = 0.2

(c) λc = 0.3 (d) λc = 0.5

FIG. 8. (Color online) Re(u) × λi projections of the continuation curves for different coupling strengths λc. Starting values are taken from
Table I.

Although the green (light) and red (dark) curves intersect
they do not share a branch point. The addition of a nonzero
coupling in Fig. 9(b) changes this situation drastically: two
more bifurcation points appear and the red and green curves
are now fully connected (dashed green and red lines). As
the coupling strength increases in Fig.9(c) the two additional
branch points collide and disappear. For an even higher
coupling [Fig. 9(d)] one can clearly see how the curves have
rearranged their connections. The c1n1 state is now connected
with c2ñ0 through the dashed green and red lines, whereas
c2n0 shows a connection with the end point of c1n1 from the
uncoupled case.

This short example highlights the ability of continuation
methods to deal with subtle and complex connections.

A. Comparison with exterior complex scaling

To highlight the advantages of the numerical continuation
method applied to the function F (u,λ), we compare its results
with those of a calculation with exterior complex scaling
(ECS) [7]. This is done for various choices of the parameter λi .
First, we translate the curves that were obtained by numerical
continuation in the u plane back to the E plane. These are
shown as the green (light) and blue (dark) curves in Fig. 10.
For clarity, the colors are identical to those in the figures
depicting the u plane. Note that two different blue curves

map to the same region in the E plane. The vertical axis is
the strength λi of the channel potentials, while the bottom
plane shows the complex energy of the resonant state. The real
part is the proper resonance energy and the imaginary part is
the inverse lifetime of the resonance. We have found both the
exponentially decaying and exponentially growing states with
a negative, respectively, positive imaginary energy.

A first bound state is formed as λi increases and the potential
becomes stronger. It starts out as a virtual state on the negative
real energy axis and, with increasing λi , its real part increases,
goes through zero and becomes negative again. This curve is
shown in blue in Fig. 10.

For potential strength λi between 0.33538 and 1.54368 we
also have a resonant state with the real part of the energy
between the values of the two thresholds. This state is a
Feshbach resonance related to the second channel that decays
through coupling with the first channel, which is open. This
state also originates as a virtual state on the negative real axis at
small potential strengths, similar to the state discussed above.
However, it is now shifted up by 0.5, the threshold of the
second channel. Furthermore, because of the coupling to the
open channel this virtual state has a finite lifetime as soon
as it lies above the threshold of the open channel. When we
increase the potential strength above 1.55204 this resonance
becomes a second bound state, but before it becomes bound
there is a bifurcation with a virtual state at parameter strength
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(a) λc = 0 (b) λc = 0.2

(c) λc = 0.3 (d) λc = 0.5

FIG. 9. (Color online) Closeup view of the continuation curves of c2n0 green (light), c2ñ0 green (light), and c1n1 red (dark) obtained
for different values of the coupling strength λc. As the coupling strength increases an interesting effect of reordering of the connections can
be observed. Initially the red (dark) and green (light) trajectories do not interact. With slight coupling, two additional branch points appear
connecting both curves (dashed lines). As the coupling increases, the branch points collide and disappear disconnecting the reordered curves.

λi = 1.54368. At this bifurcation point the state has negative
real energy. As we further increase the strength, one of these
states becomes a true bound state after passing through zero at
potential strength λi = 1.55204. The other point that emerges
from the bifurcation is a true virtual state that moves down the
negative real axis as a function of λi .

When the resonances are calculated by ECS (shown as red
dots in Fig. 10), we do not resolve all these details. Especially
the connections through the virtual states are missing from

the picture. We discretize the two channel Hamiltonian on a
finite difference grid with grid distance 0.03 and we use an
exterior complex scaling transformation that starts at r = 12
and a rotation angle of π/8. The exterior domain extends to
Re(r) = 15.6.

As expected, at zero potential strength the eigenvalues
of the exterior complex scaled Hamiltonian are the discrete
eigenvalues of the kinetic energy operator. These are related to
standing waves on the exterior complex scaled domain. These
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(a) Re(E) × Im(E) projection (b) Re(E) × Im(E) × λi space

FIG. 10. (Color online) A comparison of the results of numerical continuation with the results of exterior complex scaling. The vertical axis
shows the potential strength of the model problem while the real and imaginary parts of the energy are shown on the other axes. The blue (dark)
and the green (light) curves are the translation of the same curves in the u plane from Figs. 5 and 7. The red (dark) dots are the relevant ECS
eigenvalues calculated for a range of λi values. The results of the two methods differ significantly in the regions where a resonance becomes a
bound state. Also for small potential strengths we see significant deviations since ECS cannot resolve the virtual states.

discrete continuum states will be rotated over twice the ECS
rotation angle. Therefore, for each threshold we have a series
of rotated eigenvalues.

As the potential strength increases, these continuum states
are attracted by the potential and become bound. The first
bound state is formed from the smoothest continuum state
associated with the first threshold. It becomes bound at λi ≈
0.5. This is in contrast to the numerical continuation results
where this bound state originates from a virtual state. The
difference between the numerical continuation and ECS is
most prominent at small potential strengths.

The second bound state in ECS is formed at potential
strength λi ≈ 1.57. Although this state should find its origin
at zero potential strength in the smoothest continuum state
of the second threshold, an avoided crossing appears instead.
The curve originates from the second smoothest state of the
first threshold and passes through an avoided crossing with the
trajectory of the state that starts from the smoothest state of the
second threshold. The former curve partly represents the bound
state, whereas the latter curve partly follows the trajectory
of the Feshbach resonance between potential strengths
0.46 � λi � 1.45. However, as the curves are disconnected,
this calculation misses the bifurcation at λi = 1.54368 and
the subsequent transition through a virtual state. Note that
these issues occur near the line of ECS eigenvalues, starting
from the first threshold going twice the ECS angle downward
the complex plane. Similarly, the deviation of the trajectory
around λi = 0.46, as the Feshbach resonance turns into a
virtual state, starts near an analogous line originating from the
second threshold. These lines are drawn dashed in Fig. 10.

VII. CONCLUSIONS AND OUTLOOK

An automatic, robust and inherently efficient method
for tracking parameter dependent resonant solutions of the
Schrödinger equation is desirable since they play an important
role in many quantum mechanical systems. Numerical contin-
uation based on pseudo-arclength continuation has a proven
track record in being reliable and has been used in the study
of various dynamical systems.

We have shown earlier that numerical continuation can be
applied to track bound and resonance states in a single and
coupled-channel Schrödinger equation with equal thresholds.
However, when the thresholds are different additional branch
cuts appear. This leads to numerical difficulties.

In this article we have shown that these numerical dif-
ficulties can be avoided when a suitable uniformization is
applied. The channel momenta (i.e., the wave numbers) are
then written as a function of a complex valued parameter. The
numerical continuation is applied to this parameter combined
with the variable parameters of the problem. Unfortunately this
approach cannot be extended easily to systems with more than
two channels because the uniformization procedure becomes
too complex.

We have applied the method to a two channel problem
with Gaussian potentials and continued in the strength
of the potential for various choices of coupling strength.
Several branch points were detected and the continuation
automatically identified the other branches emerging from
these points. Transitions between bound and resonant states
are easily taken by this method. In a similar way we could
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have continued in the threshold values or any other parameters
starting from any solution point.

The comparison of the results with an exterior complex
scaling calculation shows significant differences in parameter
ranges where the resonance transitions to a bound state.
The numerical continuation results predict that this transition
happens through a virtual state for the model problem. ECS
however cannot resolve these virtual states and the resonance
transitions directly to a bound state.

In our calculations we have detected several branch points
where different states meet. All the branch points we have

identified, however, are bifurcations on the negative real
energy axis where two virtual states meet. This occurs when a
resonance becomes bound through a scenario that was already
discussed by Nussenzveig [18].

In the future we will extend the method to higher dimen-
sional problems with multiple reaction coordinates.

Another possible future direction of research is to use
two parameter continuation and automatically identify the
exceptional points [30–32] where two resonances coalesce at
a complex valued energy that does not necessarily lie on the
real axis.
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