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Repulsive long-range forces between anisotropic atoms and dielectrics
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We investigate long-range forces between atoms with anisotropic electric polarizability interacting with
dielectrics having anisotropic permittivity in the weak-coupling approximation. Unstable configurations in which
the force between the objects is repulsive are constructed. Such configurations exist for three anisotropic atoms
as well as for an anisotropic atom above a dielectric plate with a hole whose permittivity is anisotropic. Apart
from the absolute magnitude of the force, the dependence on the configuration is qualitatively the same as
for metallic objects for which the anisotropy is a purely geometric effect. In the weak limit, closed analytic
expressions for rather complicated configurations are obtained. The nonmonotonic dependence of the interaction
energy on separation is related to the fact that the electromagnetic Green’s dyadic is not positive definite.
The analysis in the weak limit is found to also semiquantitatively explain the dependence of Casimir forces
on the orientation of anisotropic dielectrics observed experimentally. Contrary to the scalar case, irreducible
electromagnetic three-body energies can change sign. We trace this to the fact that the electromagnetic Green’s
dyadic is not positive definite.
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I. INTRODUCTION

Fifty-seven years after the postulation of attractive long-
range van der Waals forces between neutral atoms [1], London
[2–4] described them as a purely quantum mechanical effect.
Later, Axilrod and Teller [5] and Muto [6] independently
found that the three-body contribution of three atoms to the
van der Waals–London interaction energy can change sign
and contribute repulsively depending on their configuration.
Repulsive long-range forces have so far been established in
at least two situations:1 for two dielectric objects with a
suitable dielectric between them [8,9], and for a dielectric
object and a magnetic material [10,11]. The latter repulsive
effect has not yet been observed. Although it was known
that the interaction between anisotropic atoms could have
repulsive components [12,13], it came as a surprise that the
force on a vertically oriented metallic needle above a hole in
a metallic plate can be repulsive as well [14]. The explanation
of this effect relied on symmetry arguments and numerical
calculations. An analytic solution, in the unretarded regime, for
a polarizable particle above a plate with a hole was obtained in
Ref. [15] with similar repulsive effects. By summing two-body
contributions in the multiple scattering formalism, the effect
could also be verified in the retarded regime [16]. The origin of
such repulsive effects nevertheless does not seem to have been
sufficiently well understood to make reliable predictions for
more general situations. For instance, although very interesting
repulsive configurations were found in Ref. [17], one of
the conclusions was that “there is no repulsion possible
in the weak-coupling regime.” For anisotropic atoms and
dielectrics, this is not the case. This has been acknowledged in
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1We do not include here the repulsive pressure on a sphere found

by Boyer [7] because it does not involve two objects.

Ref. [18], which also obtains most of the results of Sec. II of this
paper.

The interaction between anisotropic atoms has been studied
extensively (see [19] and references therein). In the following,
we identify configurations with repulsive long-range forces
between atoms and dielectric materials with anisotropic
polarizabilities and permittivities. For weak polarizability and
susceptibility, we obtain exact analytic expressions for a wide
range of geometries. The force on an atom sufficiently close to
a dielectric plate with a hole is found to be repulsive for certain
relative orientations of the polarizability and permeability of
the atom and the dielectric material. It is always attractive at
large separations. The cause for Casimir repulsion is traced to
anisotropies in the polarizability of the objects and to the fact
that the electromagnetic Green’s dyadic is not positive definite.
For ideal metals, the anisotropy is geometrical and exact results
for dilute dielectrics should qualitatively extend to metals.

We begin by examining long-range forces between
anisotropic atoms and dielectrics. As for scalar Casimir
energies [20–23], we can show that the two-body contribution
to the electromagnetic Casimir interaction is always negative,
independent of the relative orientation of polarizability and
permittivity tensors. However, contrary to the scalar case, the
electromagnetic Casimir interaction energy in general is not a
monotonic function of separation and some force components
can change sign. Remarkably, torque-free points at which the
interaction energy does not depend on the orientation of the
atom appear to exist for some configurations of dielectrics.
We then examine the three-body correction to the interaction
of isotropic atoms [5,24] and find that it never dominates
two-body contributions to the Casimir energy. Contrary to
the scalar case, irreducible three-body contributions to the
electromagnetic Casimir energy can change sign, because the
electromagnetic Green’s dyadic is not positive definite.

II. ANISOTROPIC POLARIZABLE ATOMS

Long-range interactions of polarizable atoms are described
by the van der Waals–London forces [2,3] in the unretarded
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regime and by Casimir-Polder forces [25] in the retarded
regime. In the multiple scattering formalism, the interaction
energy for two polarizable atoms is

E12 = 1

2

∫ ∞

−∞

dζ

2π
Tr ln[1 − �0 · T1 · �0 · T2], (1)

an expression already obtained for atoms in Ref. [26]. The free
Green’s dyadic �0 in Eq. (1) is

�0(r; iζ ) = e−|ζ |r

4πr3
[−u(|ζ |r)1 + v(|ζ |r)r̂ r̂], (2)

with u(x) = 1 + x + x2 and v(x) = 3 + 3x + x2. Neglecting
quadruple and higher moments, the scattering matrix Ti for
the ith atom with atomic dipole polarizability αi(iζ ) is

Ti(x,x′; iζ ) = 4παi(iζ )δ(3)(x − xi)δ
(3)(x′ − xi), (3)

where xi specifies the position of the atom. The δ functions
in Eq. (3) permit a trivial evaluation of the spatial integrals
of the trace in Eq. (1). For separations rij satisfying r6

ij �
|αi(0)αj (0)|, the logarithm in Eq. (1) may be expanded.2 The
weak approximation consists of retaining only the leading term
of this expansion and we have

EW
12 = − 1

2πr6

∫ ∞

0
dζ e−2ζ r [u2(ζ r)Tr{α1(iζ ) · α2(iζ )}

− 2u(ζ r)v(ζ r){r̂ · α1(iζ ) · α2(iζ ) · r̂}
+ v2(ζ r){r̂ · α1(iζ ) · r̂}{r̂ · α2(iζ ) · r̂}], (4)

which is the interaction obtained in Refs. [12,13]. We used the
property that polarizability is a symmetric tensor, of the form
αi = ∑

n αn
i ên

i ên
i , where the ên

i , n = 1,2,3, are the orthogonal
principal axes satisfying êm

i · ên
i = δmn and êm

i × ên
i = εmnl êl

i .
For stable atoms, the corresponding principal polarizabilities
αn

i necessarily are non-negative. A simple model for the
frequency dependence of the atomic polarizability is

αi(iζ ) = αi(0)
ω2

i

ω2
i + ζ 2

, (5)

where ωi is the excitation energy of the (two-level) atom and
αi(0) is its static polarizability. One of the ways to calculate
atomic polarizability is by Dalgarno’s method [27].

The exponential dependence on the separation distance
in Eq. (2) implies that the frequency dependence of the
polarizability αi(iζ ) in Eq. (5) is negligible for α

1
3 < c/ωi �

r . In this asymptotic retarded (Casimir-Polder) regime, the
polarizabilities can be approximated by their static values and
the ζ integration in Eq. (4) performed to yield [12,13]

ECP
12 (α1,α2; r) = − 1

8πr7
[13 Tr{α1(0) · α2(0)}

− 56{r̂ · α1(0) · α2(0) · r̂}
+ 63{r̂ · α1(0) · r̂}{r̂ · α2(0) · r̂}]. (6)

2Approximating atoms as pointlike objects in Eq. (3) is not justified
for r6

ij � |αi(0)αj (0)|.

For atoms with isotropic polarizabilities, α1 = α11 and α2 =
α21, Eq. (6) reproduces the Casimir-Polder interaction [25]:

ECP
12 (α11,α21; r) = −α1(0)α2(0)

r7

23

4π
. (7)

In the unretarded (London) regime (α
1
3 < r � c/ωi), the

frequency dependence in Eq. (2) may be neglected and the
free dyadic in Eq. (4) approximated by the static dipole-dipole
interaction �0(r; 0) to yield [12,13]

ELon
12 (α1,α2; r) = − 1

2πr6

∫ ∞

0
dζ [Tr{α1(iζ ) · α2(iζ )}

− 6{r̂ · α1(iζ ) · α2(iζ ) · r̂}
+ 9{r̂ · α1(iζ ) · r̂}{r̂ · α2(iζ ) · r̂}]. (8)

For atoms with isotropic polarizabilities, this reproduces
London’s expression for the van der Waals interaction,

ELon
12 (α11,α21; r) = − 3

πr6

∫ ∞

0
dζ α1(iζ )α2(iζ ), (9)

which is inversely proportional to the sixth power in the sepa-
ration r . To evaluate the coefficient, the frequency dependence
of the polarizabilities has to be known or modeled. For the
simple model in Eq. (5) (letting ω1 = ω2 = ω0), one has

ELon
12 (α11,α21; r) = −α1(0)α2(0)

r6

3ω0

4
. (10)

With modern computing power it is only slightly more
complicated to perform the complete frequency integral in
Eq. (4) numerically.

To illustrate the orientation dependence of the Casimir-
Polder interaction, consider the special case where one of
the atoms is isotropic and the other a linear molecule that
essentially can only be polarized along its axis with a
polarizability given by α1 = α1 ê ê. With ê · r̂ = cos θ , Eq. (6)
then becomes

ECP
12 (α1,α21; r) = −α1(0)α2(0)

8πr7
[13 + 7 cos2 θ ]. (11)

The minimum energy configuration is at θ = 0 or θ = π ,
corresponding to the alignment of the axis ê of the molecule
with r . Note that the interaction energy of Eq. (11) is negative
for any orientation.

Consider next two atoms with general static anisotropic
polarizability tensors αi = ∑

n αn
i ên

i ên
i (see Fig. 1). Inserting

these in Eq. (6), the interaction energy in the retarded regime
is of the form

ECP
12 (α1,α2; r) = − 1

8πr7

3∑
m,n=1

αm
1 (0)αn

2 (0)Cmn
12 , (12)

with

Cmn
12 = 1

13

∣∣13
(
êm

1 · ên
2

) − (28 + i
√

35)
(
êm

1 · r̂
)(

ên
2 · r̂

)∣∣2
. (13)

The potential energy surface of the interaction given in
Eq. (12) is rich, with (local) extrema of individual Cmn

12 at
Cmn

12 = 20,13,5/9, and 0. These extremums are summarized
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FIG. 1. (Color online) Two atoms with anisotropic polarizabilities.

in Table I. The Cmn
12 ’s are non-negative and vanish only

if êm
1 · ên

1 = 0 and (êm
1 · r̂)(ên

2 · r̂) = 0. Since the eigenvalues
of the polarization tensor are non-negative, the two-body
interaction between two anisotropic atoms therefore is always
negative. The maximum value of Cmn

12 = 20 corresponds to the
energetically most favorable orientation, êm

1 = ±r̂, ên
2 = ±r̂,

where both atoms are aligned with r. The potential energy
surface has a saddle point when (êm

1 · r̂)(ên
2 · r̂) = 0 and êm

1 ·
ên

1 = ±1 that corresponds to Cmn
12 = 13. Interesting extremum

for (êm
1 · r̂) = ±2/3 = (ên

2 · r̂) and êm
1 · ên

1 = ±1 correspond to
Cmn

12 = 5/9. Note that (êm
1 · r̂) = ±2/3 represents an angle of

about 48.2◦ between the polarizabilities and r̂. The interaction
energy in Eq. (12) gives rise to a noncentral force between
anisotropic atoms,

F = − 1

2πr8

3∑
m,n=1

αm
1 (0)αn

2 (0)
[
7r̂Cmn

12 − r∇Cmn
12

]
. (14)

The second term in Eq. (14) is a torque that vanishes for the
extremal configurations of Table I.

III. CASIMIR REPULSION

Since the Casimir-Polder energy can vanish for particular
orientations of anisotropic atoms and is always negative, it
is clear from the foregoing discussion that, in general, it is
not a monotonic function of the distance between the atoms
and that for fixed orientation of the atoms components of
the force between them can be repulsive. To see this more
explicitly, consider two linear atoms with polarizabilities that

−0.05

−0.10

h̃ = h
a

ECP
12

E0
h̃0

∼ 0.4
7

â

ĥ

θ

a

hr

α1

α2

FIG. 2. (Color online) Dimensionless energy, with E0 =
63α1(0)α2(0)/8π a7, for two atoms with orthogonal polarizabilities
in Eq. (15), sketched in the inset, plotted with respect to h/a.

are orthogonal to each other: α1 = α1â â, α2 = α2ĥ ĥ, with
â · ĥ = 0. Let â · r̂ = cos θ , ĥ · r̂ = sin θ , and r2 = a2 + h2.
(See inset in Fig. 2.) Equation (6) gives the interaction energy
for this configuration as

ECP
12 (α1,α2; r) = −α1(0)α2(0)

a7

63

8π

h̃2

(1 + h̃2)
11
2

. (15)

For fixed horizontal separation a, the dimensionless interaction
energy of Eq. (15) is shown in Fig. 2. It vanishes for h = 0
and h → ∞ and is negative otherwise. The minimum at h̃ =
h/a = √

2/3 ∼ 0.47 implies that the vertical component of
the force on atom 2 along h changes sign when 3h = √

2a.
Regimes with repulsive components of the noncentral force
between anisotropic atoms exist for all values of â · ĥ. For
|â · ĥ| sufficiently close to unity, the repulsive regime splits into
two or more disjoint regions in h̃. In particular, for |â · ĥ| = 1,
the two repulsive regimes are disjoint, symmetrical, and above
and below the plate.

In the previous example, the horizontal component of the
force between the two atoms was always attractive. However,
this component of the force on atom 2 may be compensated by
placing a third atom with polarization tensor α3 = ±α1â â
in the symmetric point with the three atoms forming an
isosceles triangle. Of course, real atoms would not maintain
these orientations and positions unless they are part of a

TABLE I. (Color online) Configurations with extremal energies for two linearly polarizable
molecules. In the rows corresponding to Cmn

12 = 20, and 5/9, the signs in the first two columns
should concur.

(êm
1 · ên

1 ) (êm
1 · r̂)(ên

2 · r̂) −Cm n
12 Comments Example

±1 ±1 −20 Minima

±1 0 −13 Saddle

±1 ± 4
9 − 5

9 Saddle

0 0 0 Maxima
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FIG. 3. (Color online) The energy of Eq. (18) in units of E0 = αλ/320πa5 (left) and the force of Eq. (19) in units of F0 = αλ/64πa5

(right) as functions of h/a for an anisotropic atom at a height h above the center of a dielectric plate with a hole of radius a as sketched in the
insets. The curves correspond to different orientation θ of the atomic polarizability.

material. These considerations bring us to the analog of the
geometry of a metallic needle above a metallic plate [14].
We therefore consider an atom with anisotropic polarizability
centered above a dilute dielectric material with a hole as
sketched in the insets of Fig. 3. In the weak limit, the scattering
matrix of dilute dielectric objects can be approximated by their
dielectric permittivity with Ti(x,y) ∼ V i(x)δ(3)(x − y) and
V i(x) = [ε(x) − 1] ∼ 4παini(x), where ni(x) is the number
density of the atoms the dielectric is composed of and αi is
their polarizability. In this weak limit, Eq. (1) in the retarded
regime takes the form

ECP
12 = − 1

128π3

∫
d3x

∫
d3x ′ 1

|x − x′|7 [13 Tr{V1(x) · V2(x′)}
− 56r̂ · V1(x) · V2(x′) · r̂

+ 63{r̂ · V1(x) · r̂}{r̂ · V2(x′) · r̂}]. (16)

Equation (16) generalizes the corresponding expression for
isotropic dielectric functions in Ref. [28] to the anisotropic
case.

Using Eq. (16), we now can study the analog of the
configuration proposed in Ref. [14] for dilute anisotropic
dielectrics and atoms. In a Cartesian coordinate system with
axes in the x̂, ŷ, and ẑ directions, we consider a dielectric
plate in the xy plane with a hole of radius a centered at
the origin and an anisotropic (linear) atom at the height h

on the z axis. The scattering potential of the anisotropic
atom is modeled by V1(x) = 4παδ(x)δ(y)δ(z − h) with the
anisotropic static polarizability α = α ê ê and ê · ẑ = cos θ .
The scattering potential of the dielectric plate of thickness d

with a hole of radius a is described by

V2(x) = (ε − 1)θ (ρ − a)[θ (z + d) − θ (z)] ∼ λθ (ρ − a)δ(z),

(17)

with ρ2 = x2 + y2. To simplify the calculation, we consider
a thin plate and define λ ∼ (ε − 1)d ∼ 4πασ , with σ = nd

the planar density of atoms. We furthermore assume that the
dielectric material is polarizable in the plane of the dielectric
only and therefore demand that λ · ẑ = 0. If λ is isotropic in
the xy plane, we can insert λ = λ (x̂ x̂ + ŷ ŷ) in Eq. (16) to
obtain

ECP
12 (a,h,θ ) = − αλ

320πa5

1

(1 + h̃2)
9
2

[(36h̃4 + 97h̃2 + 26)

+ (4h̃4 + 83h̃2 − 26) cos 2θ ] (18)

for the interaction energy in the retarded regime. Figure 3
shows the dependence of Eq. (18) on the dimensionless height
h̃ = h/a for different orientations θ of the anisotropic atom.
At the intersection of all the curves in Fig. 3, the interaction
energy does not depend on the orientation θ of the atom
and the anisotropic atom is torsion free. This is the case
when the coefficient of cos 2θ in Eq. (18) vanishes, that
is for 4h̃4 + 83h̃2 − 26 = 0, giving h̃ ∼ 0.56. The torsion-
free point coincides with the highest (unstable) equilibrium
point, attained for θ = 0. For heights above the torsion-free
point, the energy is minimized for vertical orientation of
the polarizability and below it the energy is minimized
for horizontal orientations. The transition from vertical to
horizontal orientation is sudden and happens at the torsion-free
point without expense in energy. The net force on the atom in
z direction is

F CP
12 (a,h,θ ) = − αλ

64πa5

h̃

(1 + h̃2)
11
2

[(36h̃4 + 107h̃2 + 8)

+ (4h̃4 + 113h̃2 − 80) cos 2θ ], (19)

and is shown in Fig. 3 as a function of h̃ for several
orientations θ of the atom. The orientation-independent value
for the vertical force occurs when 4h̃4 + 113h̃2 − 80 = 0 and
corresponds to h̃ ∼ 0.83. The force on the atom given by
Eq. (19) is repulsive when

h̃2 = h2

a2
<

−(107 + 113 cos 2θ ) +
√

(107 + 113 cos 2θ )2 − 128(9 + cos 2θ )(1 − 10 cos 2θ )

8(9 + cos 2θ )
, (20)
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which has real solutions for

0 < θ < 1
2 cos−1

(
1

10

)
and π − 1

2 cos−1
(

1
10

)
< θ < π.

(21)

The critical value for the orientation angle, θc = 0.5 cos−1(0.1)
∼ 42.1◦, is the angle beyond which no repulsive regime
exists.

To emphasize how weakly interacting configurations could
lead to a semiquantitative understanding of their strongly
interacting counterparts, we next consider the configuration
in Ref. [29], where the Casimir force between gold and
the anisotropic cuprate superconductor Bi2Sr2CaCu2O8+δ

(BSCCO) was found to decrease in magnitude by as much
as 10%–20% when the BSCCO planes were oriented parallel
to the gold plate rather than perpendicular to it. Let us replace
the gold plate by a semi-infinite dielectric slab with isotropic
permittivity described by V1(x) = [ε1 − 1]θ (−z) with (ε1 −
1) = (ε1 − 1)1, and replace the BSCCO by a semi-infinite
dielectric slab with V2(x) = [ε2 − 1]θ (z − a) and (ε2 − 1) =
(ε2 − 1)⊥(x̂ x̂ + ŷ ŷ) + (ε2 − 1)||ẑ ẑ when the BSCCO planes
are parallel to the xy plane (perpendicular cleave in Ref. [29])
and (ε2 − 1) = (ε2 − 1)||x̂ x̂ + (ε2 − 1)⊥(ŷ ŷ + ẑ ẑ) if they are
oriented parallel to the xz plane (parallel cleave in Ref. [29]).
Using Eq. (16), one obtains for the ratio of the Casimir force
in the two orientations

F|| cleave

F⊥ cleave
= 1 + 2[(ε2 − 1)⊥ − (ε2 − 1)||]

[14(ε2 − 1)⊥ + 9(ε2 − 1)||]
. (22)

If we assume (ε2 − 1)|| � (ε2 − 1)⊥, which is a good approx-
imation for BSCCO, the magnitude of the Casimir force in the
retarded regime changes by 1/7 ∼ 14%, in semiquantitative
agreement with [29].

IV. THREE-ATOM CASIMIR ENERGIES

Irreducible many-body Casimir energies were proven to
remain finite in Refs. [20,23] when some, but not all, objects
overlap. For a massless scalar quantum field with local
potential interactions, the sign of the N -body Casimir energy
was found to be simply (−1)N+1. These theorems were
verified in all examples studied in Refs. [20–23], where closed
expressions for irreducible many-body Casimir energies were
derived in the framework of the multiple scattering expansion.
The proof of the sign of irreducible many-body contributions
in the scalar case relied on the positivity of the free scalar
Green’s function. The electromagnetic free Green’s dyadic of
Eq. (2) is not a positive definite operator. The eigenvalues of
this matrix, corresponding to eigenvectors parallel to r and
orthogonal to it, are proportional to (u(x) − v(x),u(x),u(x)),
where u(x) and v(x) were defined after Eq. (2). Here we
investigate consequences of this for the sign of the irreducible
three-body contribution to the Casimir energy between three
isotropic atoms [5,24].

Inserting the free Green’s dyadic of Eq. (2) into the
expression for the irreducible three-body contribution to the
Casimir energy in Ref. [21], and using scattering matrices

for isotropic atoms given by Eq. (3) with αi = αi(iζ )1, one
obtains

EW
123 = 1

π

1

r3
12r

3
23r

3
31

∫ ∞

0
dζ e−ζ (r12+r23+r31)α1(iζ )α2(iζ )α3(iζ )

×Q123(r12,r23), (23)

where the displacements rij are the sides of the triangle
formed by the three atoms and satisfy r12 + r23 + r31 = 0.
The function Q123 in Eq. (23) is

Q123(r12,r23) = 3u12u23u31 − u12u23v31 − u12v23u31

− v12u23u31 + u12v23v31 cos2 θ3

+ v12u23v31 cos2 θ1 + v12v23u31 cos2 θ2

+ v12v23v31 cos θ1 cos θ2 cos θ3, (24)

with uij = u(|ζ |rij ), vij = v(|ζ |rij ); the θi’s (i = 1,2,3) de-
note the internal angles of the triangle. In the unretarded limit,
Eq. (23) simplifies to the expression obtained in Ref. [5],

ELon
123 = (1 + 3 cos θ1 cos θ2 cos θ3)

r3
12r

3
23r

3
31

× 3

π

∫ ∞

0
dζ α1(iζ )α2(iζ )α3(iζ ). (25)

Using the simple model in Eq. (5) for three identical isotropic
atoms with ω1 = ω2 = ω3 = ω0, the integral in Eq. (25) is
readily performed to yield [30]

ELon
123 = α1(0)α2(0)α3(0)

a10
ω0aCLon

123 (θ1,θ2), (26)

where the angular dependence is given by [24]

CLon
123 (θ1,θ2) = 9

16

sin6 θ3(1 + 3 cos θ1 cos θ2 cos θ3)

sin3 θ1 sin3 θ2
, (27)

with the three sides and angles of the triangle related by the
law of sines. It was noted in Ref. [5] that the three-body
contribution in the unretarded regime is negative when the
atoms form an acute triangle and positive when it is (very)
obtuse. For isosceles triangles, this behavior is seen in Fig. 4.
References [30–32] attempted to explain the crystal structures
of rare gases by three-body contributions to the total energy.
Although this turned out not to be possible, three-body effects
typically contribute between 10% and 20% to the total energy.

The ζ integral in Eq. (23) can be performed analytically
in the retarded limit, but the result is not very illuminating
and too lengthy to be presented here. In the special case when
the atoms are arranged to form an isosceles triangle with side
lengths r12 = a, r23 = r31 = r , and θ1 = θ2 = θ (see inset in
Fig. 4), the retarded interaction is [24]

ECP
123(a,θ ) = α1(0)α2(0)α3(0)

a10
CCP

123(cos θ ), (28)
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FIG. 4. (Color online) Angular dependence of three-body contri-
butions to the long-range forces in the retarded (CP) and unretarded
(Lon) regime for three atoms forming an isosceles triangle.

with

CCP
123(x) = 1

4π

[
2x

1 + x

]7

[7 + 49x + 611x2 + 1533x3 + 868x4

− 1372x5 − 1672x6 − 672x7 − 96x8]. (29)

For an equilateral triangle, it yields ECP
123(a,π/3) =

α1(0)α2(0)α3(0)1264/243πa10 in agreement with [24]. As in
the unretarded limit, the angular dependence in the retarded
limit also leads to configurations in which the three-body
force contributes repulsively. Figure 4, in fact, shows that
the irreducible three-body contribution to the potential is
less attractive in the retarded regime. However, for isotropic
atoms, the three-body contribution never dominates over
two-body contributions in the regime α < r3, where a pointlike
description of the atoms is justified. Evidently, the analysis of
atomic many-body interaction is only a little more involved
for anisotropic atoms and molecules.

V. CONCLUSION

We have shown that the force between atoms with
anisotropic polarizabilities and dilute dielectrics with
anisotropic permeabilities can have repulsive components.
The weakly interacting configurations we considered give
a semiquantitative understanding of the analogous strongly
interacting case. That the two-body Casimir energy is not
always monotonic in the separation is associated with the ten-
sorial structure of the polarizabilities and the electromagnetic
Green’s dyadic. The analysis of an anisotropic atom above
a dilute dielectric plate with a hole provides considerable
insight into the analogous configuration involving perfect
metals considered in Ref. [14]. A closed analytic solution
for this configuration reveals torque-free points at which the
interaction energy is independent of the orientation of the
atomic polarizability. Although a single hole in a dielectric
plate does not lead to stable points, multiple holes are expected
to introduce stable points in the potential energy surface of an
oriented atom.

Unlike the scalar case, for which the irreducible three-body
contribution to Casimir energy is always positive [20–23],
we find the electromagnetic three-body Casimir energy can
change sign. The three-body contributions to the energy
are found to never dominate the two-body contributions for
isotropic atoms.
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