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Binding energy of the positronium negative ion via dimensional scaling
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We determine the binding energy of a negative positronium ion in the limits of one spatial dimension and
of infinitely many dimensions. The numerical result for the one-dimensional ground-state energy seems to be
a rational number, suggesting the existence of an analytical solution for the wave function. We construct a
perturbation expansion around the infinitely dimensional limit to compute an accurate estimate for the physical
three-dimensional case. That result for the energy agrees to five significant figures with variational studies.
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I. INTRODUCTION

The negative positronium ion Ps− is a bound state of two
electrons and a positron. It is the simplest bound three-body
system from a theoretical point of view, since it does not
contain a hadronic nucleus. It provides an important testing
ground for quantum electrodynamics (QED), which should be
able to describe this purely leptonic bound state with a high
precision.

Because of the e+e− annihilation, Ps− is unstable, with a
lifetime about four times that of para-positronium. It decays
predominantly into two or three photons, with one-photon
decay possible but extremely rare. It is weakly bound and has
no excited states in the discrete spectrum [1,2] (for a discussion
of resonances, see [3] and [4]).

Following its prediction by Wheeler in 1946 [5] and
experimental observation by Mills in 1981 [6], the positronium
ion has been the subject of much theoretical study. Its
nonrelativistic bound-state energy, its decay rate, the branching
ratios of various decay channels, and its polarizabilities have
been computed accurately using variational methods [7–14].

Recently, intense positronium sources have become avail-
able, opening new possibilities for experimental studies of
Ps− [15]. The measured decay rate [16,17] agrees with the
theoretical prediction. Improved measurements of the decay
rate, the three-photon branching ratio, and the binding energy
have been proposed [18].

A challenge in the theoretical study of this three-body
system is that its wave function is not known analytically,
even if only the Coulomb interaction is considered. Since all
particle masses and magnitudes of their charges are equal, it is
not possible to use the Born-Oppenheimer approximation. So
far all precise theoretical predictions of Ps− properties have
relied on variational calculations.

In the present paper we explore a different approach to
computing the wave function and the binding energy of Ps−.
We use the dimensional scaling (DS) method, in which the
dimensionality of space D is a variable. We focus on the
limits D → 1 and D → ∞. A precise result for D = 3 may
be obtained by interpolating between the two limits using
perturbation theory in 1/D. The advantage of DS is that the two
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limits of the Schrödinger equation often have relatively simple
solutions. Full interparticle correlation effects are included
at every order in the perturbation expansion in 1/D. More
information about DS and further references can be found
in [19–24].

It is important to note that the dimensional limits considered
here are not physical in the sense that the form of the potential
energy is taken to be 1/r , regardless of the dimension. A
physical limit of a system would use an appropriate Coulomb
potential that is the solution of a D-dimensional Poisson
equation. For example, for D = 1 it is linear, is logarithmic for
D = 2, and depends on the charge separation as r−(D−2) for
D > 2. Since we are ultimately interested in D = 3 physics,
it is useful to fix the potential to be the D = 3 Coulomb
interaction. The D → 1 limit used here offers the additional
simplification that, after coordinate and energy rescaling, the
potential takes the form (D − 1)/r , which can be formally
replaced by a Dirac δ function [25].

We find that the DS provides a useful complement to
the variational method. In the future, it can be employed to
independently check matrix elements of operators needed in
precise studies of Ps−.

This paper is organized as follows. In Sec. II we consider
the D = 1 limit of the Ps− system. We solve the Schrödinger
equation numerically to find an eigenvalue that approaches a
simple rational number, possibly hinting at the existence of an
analytical solution.

In Sec. III we consider the D → ∞ limit and describe the
resulting 1/D expansion. We sum up the perturbation series
for the ground-state energy and evaluate it at D = 3. The
binding energy we find agrees with variational studies to five
significant figures. We conclude in Sec. IV.

II. D = 1 LIMIT OF Ps−

In the one-dimensional limit, the Coulomb potential is
represented by the Dirac δ function [25]. The δ function models
have also been used extensively in condensed matter physics.
A simple analytical wave function exists for any number of
identical particles interacting via attractive potentials [26].
The case of all repulsive potentials with periodic boundary
conditions has been treated by Lieb and Liniger [27] and
Yang [28]. More recent works have studied one-dimensional
systems with both attractive and repulsive δ interactions. Craig
et al. considered the dependence of the energy on the number
of particles in a system of equal numbers of positively and
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negatively charged bosons [29]. Li and Ma studied a system of
N identical particles with an impurity with periodic boundary
conditions [30].

The D = 1 limit of the Ps− quantum problem is a δ function
model with two attractive and one repulsive δ functions with
nonperiodic boundary conditions, which, to the best of our
knowledge, has not yet been solved. We present a derivation
of a one-dimensional integral equation for the solution to this
problem, analogous to the helium case treated by Rosenthal
[31].

The time-independent Schrödinger equation for the relative
motion of Ps− takes the dimensionless form(

− 1

2

[∇2
1 + ∇2

2+
→
∇1 ·

→
∇2

] − 1

r1
− 1

r2
+ 1

r

)
ψ = εψ, (1)

where r1 and r2 are the electron-positron distances, r is the
interelectron distance [in units of 2(mα)−1 with h̄ = c = 1],
and ε determines the energy eigenvalue, E = εmα2/2. This
choice of units helps us to compare intermediate results with
Rosenthal’s δ function model of helium [31].

In the limit D → 1, we let �r1 → x and �r2 → y, where
−∞ < x, y < ∞; the gradients become partial derivatives and
the Coulomb potentials are replaced by Dirac δ functions (this
limit is described in detail in [32]). Equation (1) is replaced by[
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2

(
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∂x2
+ ∂2

∂y2
+ ∂2
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)

− δ(x) − δ(y) + δ(x − y)

]
ψ = εψ. (2)

Using Fourier transformation, we rewrite this Schrödinger
equation as a one-dimensional integral equation,

G(k1,k2) = F (k1) + F (k2) − H (k1 + k2)
1
2

(
k2

1 + k2
2 + k1k2 + p2

) , (3)

where the Fourier transforms of the wave function ψ(x,y) are

G(k1,k2) =
∫∫

e−ik1x−ik2yψ(x,y)dxdy, (4)

F (k) =
∫

e−ikxψ(x,0)dx, (5)

H (k) =
∫

e−ikxψ(x,x)dx, (6)

and p2/2 = −ε. We now invert transformation (4) and use the
resulting ψ in Eqs. (5) and (6) to obtain a system of two integral
equations for F (k) and H (k). These are easily decoupled and
yield

F (k) = 2F (k)√
3k2 + 4p2

+ 1

π

∫
F (k′)dk′

k2 + k′2 + kk′ + p2

− 2

π2

∫ √
3k′2 + 4p2

2 +
√

3k′2 + 4p2

1

k2 + k′2 − kk′ + p2

×
(∫

F (k′′)dk′′

k′2 + k′′2 − k′k′′ + p2

)
dk′ (7)

and

H (k) = 2

π

√
3k2 + 4p2

2 +
√

3k2 + 4p2

∫
F (k′)dk′

k2 + k′2 − kk′ + p2
. (8)

TABLE I. Binding energy of the one-dimensional model of the
positronium ion, in units of mα2/2. For N � 100 the eigenvalue
appears to converge to −2/3. For these large quadrature sizes the
uncertainty in the energy is in the last digit due to the finite precision
used in the calculation.

Quadrature size N ε

10 −0.6666657902370426
20 −0.6666666661283767
50 −0.6666666666666257
100 −0.6666666666666660

Once F (k) is found, one can compute H (k). The two-
dimensional eigenvalue problem is thus reduced to a one-
dimensional integral equation (7), which we solve numerically.
The integral equation is discretized using the Gauss-Legendre
quadrature, casting it into a system of homogeneous linear
equations for F (ki), where ki are the abscissas. The system has
a nontrivial solution when the determinant of the discretized
integral kernel vanishes. This condition fixes the value of p

and thus the D = 1 binding energy.
The wave function is then determined by solving the linear

system for F (ki). One finds that F (ki) spans the null space of
the discretized kernel and can be computed using its singular
value decomposition. We used cubic spline interpolation on
the set {F (ki)} to interpolate between the quadrature points
and generate an approximation for F (k).

Once F (k) is known, the functions H (k) and G(k1,k2) are
constructed using Eqs. (8) and (3). Finally, the wave function
ψ(x,y) is obtained by the inverse Fourier transformation of
G(k1,k2).

We performed this procedure for various quadrature sizes
N , with the results summarized in Table I.

We see that as N increases, ε approaches −2/3. For
N = 100 the 16-decimal-place precision limit of the double
data type used in the calculation is almost reached. This
simple numerical result suggests that the one-dimensional
Schrödinger equation has an analytical solution. The wave
function and its Fourier transform are plotted in Figs. 1 and
2. We observe that the wave function has ridges at x = 0,
y = 0, and x = y as expected from the δ function potential
in Eq. (2). A simple numerical comparison of H (k) with

ψ
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FIG. 1. (Color online) The unnormalized wave function ψ(x,y)
satisfying Eq. (2). Distances are in units of 2/(mα).
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FIG. 2. (Color online) Fourier transform G(k1,k2) of the ground-
state position-space wave function ψ(x,y) of Eq. (2) computed
numerically. Fourier space coordinates have units of mα/2.

the Fourier transform of exp(−a|x|) indicates that the wave
function falloff in the x = y direction is nearly exponential.

The result ε = −2/3 translates into the energy eigenvalue
E = −1/3 a.u. of energy (1 a.u. = mα2) or −9.07 eV. This
is in qualitative agreement with the actual value, which is
about −0.26 a.u., just below −1/4 a.u. (this fraction is the
binding energy of a positronium atom in the nonrelativistic
approximation).

We note that the eigenvalue that can be obtained for the
two-body problem (the positronium or the hydrogen atom)
in the one-dimensional δ model coincides precisely with the
physical value. This is the case because the wave function in
the δ model has the same cusp at the origin as the radial wave
function in the physical space. Thus the δ model reproduces
that radial wave function exactly. For the three-body problem
the agreement is only rough.

It would be interesting to determine the one-dimensional
wave function analytically. We remark that the Schrödinger
equation of the three-body problem, (2), can be rewritten, with
a simple change of variables x,y, in the form of a one-particle
motion in the external potential consisting of two attractive
and one repulsive δ function ridges.

In the following section we focus on the opposite limit of
very many dimensions. We find that an expansion around that
limit can be constructed, giving a very accurate determination
of the binding energy of Ps−. Interestingly, the D = 1 method
will again be useful: it will provide an important subtraction
term that we use to accelerate the convergence of a perturbative
expansion.

III. D → ∞ AND DIMENSIONAL
PERTURBATION THEORY

The first step in taking the D → ∞ limit is to generalize the
Ps− Schrödinger equation to D dimensions. We are interested
in the ground state, which is completely described by the
three interparticle distances ρij = |�ri − �rj |. The Schrödinger
equation takes the form

Hφ ≡ (T + U + V )φ = Eφ, (9)

where E is the energy in atomic units mα2 (note that it differs
by a factor of 1/2 from the ε used in D = 1 in the previous
section) and

T = −1

2

∑
i �=j

(
∂2

∂ρ2
ij

+
∑
k �=i,j

ρ2
ij + ρ2

ik − ρ2
jk

2ρijρik

∂2

∂ρij ∂ρik

)
,

U = (D − 1)(D − 5)

8ϒ2

(
ρ2

13 + ρ2
23 + ρ2

12

)
, (10)

V = 1

ρ12
− 1

ρ13
− 1

ρ23
,

and φ = ϒ (D−1)/2ψ is the rescaled wave function with

ϒ = 2
√

s(s − ρ12)(s − ρ13)(s − ρ23), (11)

s = 1
2 (ρ12 + ρ13 + ρ23). (12)

Note that the characteristic D2 dimensional dependence is
confined to U . (The U term in the effective potential is the
usual centrifugal contribution from the kinetic energy found
by expressing the Laplacian in terms of ρij .) In order to obtain
a finite limit the coordinates and the energy must be rescaled,
ρij = D2rij and E = ε/D2. This introduces a factor of 1/D2

in front of the kinetic energy term, Eq. (10), so in the limit
D → ∞ it is suppressed. In terms of the rescaled quantities,
the Schrödinger equation is written as

(δ2T + δ2U + V )φ = εφ, (13)

where δ = 1/D.

In the limit δ → 0, terms containing derivatives vanish
in Eq. (13). Since the ground-state energy is the smallest
eigenvalue of the Hamiltonian, we seek to minimize the
effective potential

Veff = δ2U + V (14)

at δ = 0, under the constraint that rij define a triangle.
Unfortunately, in D → ∞, the Ps− system described by the
potential in Eq. (10) is unbound (even if the positron were very
heavy, its charge would have to be larger than 1.228 for a bound
state to exist [23]; see also [33,34]). The qualitative explanation
of this is that even though we have increased the number
of spatial dimensions, we have retained the 1/r behavior of
the Coulomb potential. Thus it is relatively stronger at large
distances than in three dimensions and the electron-electron
repulsion plays a more important role even if the electrons are
on the opposite sides of the positron.

However, the strict δ = 0 regime is unphysical. We are
interested in the δ = 1/3 case, so we are free to modify the
potential as long as it reduces to the correct form at δ = 1/3.
This can be done by reducing the strength of the electron-
electron repulsion, as done for H− [23],

V = λ0 + 3(1 − λ0)δ

r12
− 1

r13
− 1

r23
, (15)

where λ0 is a free numerical parameter. Note that at δ = 1/3,
Eq. (15) reduces to Eq. (10), as required. We have used
λ0 = 0.5 throughout our computations since this value gave
the best results for the H− system, but other values of λ0 may
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TABLE II. Results of summation of the 1/D expansion using
Padé summation with first- and second-order poles removed. The
first 21 nonzero terms were used in the summation.

Known energy (1 a.u. = mα2) 1/D expansion

He −2.9037243770341196 [37] −2.90374(1)
Ps− −0.2620050702329801 [11] −0.262005(2)

result in better convergence of the perturbation series for Ps−.
The effective potential, Eq. (14), is minimized at

r̄12 = 0.773603828324(1),

r̄13 = r̄23 = 0.5866862922582(4), (16)

with the minimum value of V0 = −1.381325607963162(1).
The errors are estimated by performing the calculation again
with a higher precision and lower tolerances. Convergence
is ensured by restarting the minimization from a slightly
perturbed location. We note that this result corresponds to the
energies rescaled by δ2. Thus, to compare with the physical
value, we have to divide this result by 32 = 9, obtaining the first
estimate of the binding energy, 	−0.15 a.u., to be compared
with the known value (see Table II) of about −0.26 a.u.

The static δ = 0 limit is the zeroth order in 1/D expansion,
but without the kinetic energy, it does not allow us to generate
further orders in the perturbation expansion. In order to
construct such an expansion, we consider the next simplest
case, the harmonic approximation to the potential. This will
yield a complete set of states that can be used to generate
an expansion. The natural expansion parameter for Eq. (13)
is δ1/2. This follows from the dominant balance argument
applied to the Schrödinger equation. One finds that, for δ1/2,
the harmonic terms in the expansion of the potential are of
the same order as the constant coefficient terms in the kinetic
energy expansion.

Details of the procedure used to construct the expansion are
described in the Appendix. The summation of the resulting se-
ries in powers of δ = 1/D is complicated by the fact that the ex-
pansion is divergent at high orders due to a singularity at δ = 0
[35], so we expect the convergence of the naive summation,

E(δ) = δ2
∞∑

k=0

Ekδ
k, (17)

to be slow. In the above expression, E0 = V0 and Ek = ε2k−2

for k > 0, where εk are expansion coefficients of the rescaled
energy that appears in Eq. (13). There are also poles at D = 1
that slow down the asymptotic convergence of the expansion
at low values of D. A better estimate for E can be obtained
by subtracting these poles from the expansion. To this end,
the residues of the poles must be determined. Following [23]
and [35], we define

E(δ) = δ2

[
a−2

(1 − δ)2
+ a−1

1 − δ
+

∞∑
k=0

E′
kδ

k

]
, (18)

where

E′
k = Ek − (k + 1)a−2 − a−1. (19)

The residue of the second order pole, a−2, corresponds to
the ground-state energy in the D = 1 limit (more precisely,
a−2 = 4ED=1). We have computed it again employing the
method described in Sec. II, this time with the rescaled charges
of electrons and the positron so as to satisfy Eq. (15). We find

a−2 = −1.102499999999999(1), (20)

which again (see Table I) resembles a rational number,
indicating that there are likely analytical solutions of the
D = 1 model even for an arbitrary charge of the positron
(not necessarily equal in magnitude to that of the electron). As
in Table I, the uncertainty in this converged residue is due to
finite precision, as checked by using larger quadrature sizes.

To find the residue of the single pole, a−1, we subtract the
double pole from both sides of Eq. (18) and multiply by 1 − δ.
We get the condition

a−1 = lim
δ→1

∞∑
k=0

(Ek − Ek−1 − a−2)δk, (21)

where E−1 = 0. In practice, we only have a finite number of
terms in the sums in Eqs. (18) and (21). Padé approximants
have been shown to work well for summing up 1/D expansions
[22,23]. Using this method to compute the limit in Eq. (21),
we get, for Ps−,

a−1 = 0.427(2). (22)

This result was obtained with the first 21 terms in the sum
in Eq. (21). The uncertainty in the computed value was
estimated by varying the order of the Padé approximant for
a−1 as [N/M] → [(N − 1)/(M + 1)] [36]. If the result has
converged, the order of the approximant should not matter
(barring the introduction of spurious poles in the denominator
of the approximant). We use this method to estimate the error
for all quantities computed using Padé approximants. In our
calculations we use the full unrounded result for a−1, which
gives a slightly worse result for the bound-state energy than
Eq. (22). As noted in Ref. [22], this way of determining a−1

is not very accurate. An exact value for a−1 (in principle,
obtainable from expansions about D = 1) would improve
the convergence of the 1/D expansion. For He we used
a−2 = −3.15546 [31] to get a−1 = 0.313(1) using an identical
calculation with 21 energy expansion coefficients. We then
evaluated Eq. (18) (with the summation truncated again at
21 terms) at δ = 1/3. For helium, this yields a ground-state
energy that agrees with the variational calculation of [37] to
five digits, which is consistent with the result of [21] for this
summation method and perturbation expansion cutoff. The
same calculation for the positronium ion yields a five-digit
agreement with the results in [10,11], and [13]. These results
are summarized in Table II.

Figure 3 shows the improvements to the energy that are
obtained by summing more terms. Higher orders yield a better
accuracy despite the poor behavior of the 1/D expansion
coefficients (see Table III). In fact, the pole subtraction and
Padé resummation described above are necessary to get a
sensible answer.

Aside from computing higher orders in perturbation theory,
the precision of the result may be improved by using a
different summation method. For example, Ref. [21] found that
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FIG. 3. (Color online) Number of accurate digits in the ground-
state energy, defined as − log10[(E − Eexact)/Eexact] as a function of
the number of terms in the summation of Eq. (18).

Padé-Borel summation gives better results for helium than
Padé summation.

IV. CONCLUSIONS

We have investigated the viability of DS for making accu-
rate predictions for the positronium ion system. Equal masses
and correlation strengths make Ps− a good candidate for the
DS treatment. We considered the D = 1 limit and found that
the Schrödinger equation can be reduced to a one-dimensional
integral equation. The numerical solution for the energy
eigenvalue approaches a simple rational number, suggesting
the possibility of a completely analytical solution. While this
energy is not physically relevant by itself, it can be used to
accelerate the convergence of the 1/D perturbation series.

We constructed such a perturbative series by expanding the
solution of the full Schrödinger equation about the D → ∞
limit. Each coefficient was computed exactly in the harmonic
basis. To obtain an accuracy of five significant figures required
expanding up to order 41 in perturbation theory. While the
accuracy of the energy expansion at this order is not yet
competitive with variational calculations, the present method
provides a valuable alternative approach to few-body systems.
It can be used to check a variety of matrix elements that have
previously been computed only variationally.

In the future, higher orders in the 1/D perturbation series
can be determined without sacrificing speed if the analytical
expansions can be replaced with numerical evaluations of
series coefficients through finite differencing. It would also
be very valuable to establish how the convergence of this
expansion depends on the value of the parameter λ0 introduced
in Eq. (15). Finally, the accuracy of the obtained wave function
should be determined by evaluating matrix elements of various
operators and comparing them with the variational approach.
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APPENDIX: PERTURBATIVE EXPANSION IN 1/D

In this Appendix we describe how the coefficients of the
1/D expansion were determined. Our procedure follows the
matrix method in Ref. [20]. In terms of the displacement
coordinates xi defined by

r12 = r̄12 + δ1/2x1,

r13 = r̄13 + δ1/2x2, (A1)

r23 = r̄23 + δ1/2x3

[r̄ij are the coordinates of the minimum of the effective
potential, Eq. (16)], the Schrödinger equation takes the form

(δT + Veff)φ = εφ. (A2)

The Hamiltonian is expanded in powers of δ1/2 such that

T =
∞∑
i=0

Tiδ
i/2, (A3)

Veff =
∞∑
i=0

Viδ
i/2. (A4)

Since the expansion is about the minimum of Veff , there is
no linear term in its expansion and V1 = 0. Also, the kinetic
energy T starts contributing only in the second order in δ1/2,
so the energy ε has the form

ε = V0 + δ

∞∑
i=0

εiδ
i/2. (A5)

For second order in δ1/2 in Eq. (A2), we have

T0 = −1

2

∑
i+j+k=2

tijk

(
∂

∂x1

)i(
∂

∂x2

)j(
∂

∂x3

)k

,

(A6)
V2 = v000 +

∑
i+j+k=2

vijkx
i
1x

j

2 xk
3 ,

where tijk and vijk are expansion coefficients that are functions
of r̄ij . This order in perturbation theory corresponds to
three coupled harmonic oscillators. To solve the Schrödinger
equation, they need to be decoupled. This procedure yields
normal mode frequencies ωi and the corresponding normal
coordinates qi , related to xi by a linear transformation S,

qi =
3∑

j=1

(S−1)ij xj . (A7)

In terms of coordinates qi ,

T0 = −1

2

3∑
i=1

∂2

∂q2
i

, (A8)

V2 = v000 + 1

2

3∑
i=1

ω2
i q

2
i . (A9)
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Defining

Hi = Ti + Vi+2, (A10)

the Hamiltonian can be written as

H = δT + Veff = V0 + δ

∞∑
i=0

Hiδ
i/2. (A11)

Next we consider the wave function expansion

φ =
∞∑
i=0

φiδ
i/2. (A12)

Without loss of generality, φi can be normalized as

〈φ0|φj 〉 = δ0,j . (A13)

Collecting like powers of δ
1
2 in Eq. (A2) yields

p∑
i=0

(Hi − εi)φp−i = 0. (A14)

The p = 0 order equation is a system of three independent
harmonic oscillators with the solution

φ0 = hν1 (q1)hν2 (q2)hν3 (q3), (A15)

ε0 = v000 +
3∑

i=1

(
νi + 1

2

)
ωi, (A16)

with

hν(qi) = 4

√
ωi

π

1√
2νν!

Hν(
√

ωiqi)e
−ωiq

2
i /2, (A17)

where Hν is the νth Hermite polynomial. For the ground state,
νi = 0.

To compute further orders in the perturbation expansion,
φj from Eq. (A12) are projected onto the harmonic oscillator
basis,

φj =
∑

i1,i2,i3

j a
i1i2i3hi1 (q1)hi2 (q2)hi3 (q3). (A18)

Here j a
i1i2i3 are the expansion coefficients. The advantage of

using the Hermite function basis is that only a finite basis
at every order of perturbation theory is needed, since the
perturbations are polynomials in qi . Thus the perturbation
expansion coefficients can be computed exactly. We note that
0a

i1i2i3 = δ0,i1δ0,i2δ0,i3 . Equation (A13) then implies that, for
any p > 0,

pa000 = 0. (A19)

The matrix elements of the operators Hj defined in Eq. (A10)
are computed by noting that each Hj is a sum of terms of the
form

q
i1
1 q

i2
2 q

i3
3

(
∂

∂q1

)α1
(

∂

∂q2

)α2
(

∂

∂q3

)α3

, (A20)

where α1 + α2 + α3 = 2 for the kinetic terms and αi = 0 for
terms coming from Veff . The matrix elements of qi and ∂

∂qi
are

derived from the recurrence relations of the Hermite functions
[20],

qi = 1√
2ωi

⎛
⎜⎜⎜⎜⎜⎝

0
√

1 0 0√
1 0

√
2 0

0
√

2 0
√

3 · · ·
0 0

√
3 0

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ , (A21)

∂

∂qi

=
√

ωi

2

⎛
⎜⎜⎜⎜⎜⎝

0
√

1 0 0
−√

1 0
√

2 0
0 −√

2 0
√

3 · · ·
0 0 −√

3 0
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ , (A22)

so Hj is a linear combination of direct products of such
matrices. We denote the matrix representation of Hj by Hj , and
the tensor with elements j a

i1i2i3 by aj in the harmonic basis.
Finally, we derive the recursion relations for computation of
the energy and wave-function expansion coefficients. First, we
rewrite Eq. (A14) in the harmonic basis

p∑
i=0

(Hi − εi)ap−i = 0, (A23)

and then contract with a0 and solve for εp, which yields

εp = a0

p∑
i=1

Hiap−i . (A24)

To compute the wave-function expansion coefficients we
need the pseudoinverse K of the operator H0 − ε0, defined
component-wise as

Kk1k2k3
i1i2i3

=
{

0 iα = kα = 0∀α;( ∑3
j=1 ωj ij

)−1
δ

k1k2k3
i1i2i3

otherwise.
(A25)

The operator K is defined such that K(H0 − ε0) = 1 ev-
erywhere except for the subspace spanned by the harmonic
ground-state wave function φ0, where the inverse of H0 − ε0

would be undefined and it is convenient to choose K = 0.
Contracting K with Eq. (A23) gives

ap = K
p∑

i=1

(εi − Hi)ap−i . (A26)

Together Eqs. (A24) and (A26) allow us to compute the
ground-state energy and wave function to any order.

We implemented the steps required to compute the 1/D

expansion to arbitrary order in MATHEMATICA [38] and in C++.
The determination of the Taylor expansion coefficients of the
Hamiltonian is done with MATHEMATICA. The computation of
the perturbation series Eqs. (A24) and (A26) is done in C++,
for its speed of operations with large arrays (corresponding to
the various tensor contractions in these equations). We have
computed 20 1/D expansion coefficients (which required ex-
panding up to order 41 in perturbation theory). The results are
presented in Table III. Also in this table are the corresponding
coefficients for helium (from an identical calculation), which

012522-6



BINDING ENERGY OF THE POSITRONIUM NEGATIVE . . . PHYSICAL REVIEW A 85, 012522 (2012)

TABLE III. 1/D energy expansion coefficients in Eq. (A5), in
units of mα2. Terms with odd p vanish. Numbers in square brackets
indicate the power of 10 multiplying the entry. The uncertainty in each
coefficient (given in round brackets) was estimated using a similar
calculation with 20 digits of precision as described in the text.

p εp for Ps− εp for He

0 −1.185438078904337(1) [0] −2.423036748379509(1) [1]
2 −2.78770519314798(1) [0] −3.544873487874171(2) [1]
4 −7.2695509791874(1) [0] −5.56025516084019(2) [1]
6 6.7347904088005(2) [1] −2.174685942637(1) [1]
8 −2.1412953632562(1) [3] −3.30958097736(1) [2]
10 7.8884951280128(7) [4] 5.2508188805(2) [2]
12 −3.519438146299(1) [6] 4.0504015254(2) [4]
14 1.842029153744(1) [8] −1.7333557830(1) [6]
16 −1.107117203726(1) [10] 5.6857880174(1) [7]
18 7.51651405108(1) [11] −1.77525788344(2) [9]
20 −5.69017274005(1) [13] 5.528541546(1) [10]
22 4.75290730575(1) [15] −1.732045588(2) [12]
24 −4.34262756760(1) [17] 5.409411228(4) [13]
26 4.30867078063(3) [19] −1.638399579(2) [15]
28 −4.6135902290(1) [21] 4.4914966(2) [16]
30 5.3029755999(1) [23] −8.6523653(2) [17]
32 −6.512769125044(1) [25] −1.289717(2) [19]
34 8.5114570184(2) [27] 3.152243(3) [21]
36 −1.17941098599(2) [30] −2.796124(6) [23]
38 1.7272349225(1) [32] 2.031490(1) [25]
40 −3.253630209(1) [34] −1.705787919969(3) [33]

agree to at least five significant figures with Table I of [21]
(after accounting for a difference in units, which amounts to
diving by Z2 = 4) and serve as a check of our calculations.
Note that the coefficients in Table III become large at high
orders. This is due to the essential singularity at δ = 0. The
nature of this singularity was investigated in Ref. [21].

Due to the large number of algebraic operations required
to generate the 1/D expansion, we need to check for roundoff
error in our coefficients; one way to do this is to repeat the
C++ computation at a higher precision (there should be no
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FIG. 4. (Color online) Fractional error in 1/D expansion coeffi-
cients defined as |(E(16)

n − E(20)
n )/E(20)

n | as a function of the order n.
Coefficients E(16)

n were obtained using the standard double-precision
arithmetic (≈16 digits of precision), while E(20)

n were obtained using
the ARPREC arbitrary-precision library (with 20 digits of precision).

need to redo the MATHEMATICA part, since MATHEMATICA does
arbitrary-precision computations by default, as long as one
does not invoke numerical solvers). We have implemented a
version of the C++ code using the arbitrary precision arithmetic
package ARPREC [39].

The relative effect of roundoff error is shown in Fig. 4. We
see that the error introduced by finite-precision arithmetic is
much smaller than the accuracy of the final ground-state energy
obtained by resumming the 1/D expansion. Higher order
calculations will require better precision when the fractional
error becomes of the same order as the accuracy required.
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