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Strong-field adiabatic passage in the continuum: Electromagnetically induced transparency
and stimulated Raman adiabatic passage
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We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses
interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations
to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in
electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations,
for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and
the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence
of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.
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I. INTRODUCTION

In the past four decades a number of striking, interference-
based phenomena, such as coherent population trapping
(CPT) [1], electromagnetically induced transparency (EIT)
[2,3], and stimulated Raman adiabatic passage (STIRAP) [4],
have been extensively discussed in the literature. Although
continuum states of, e.g., (spontaneously emitted) photons
and/or atoms and molecules are invariably present, a com-
prehensive quantum-mechanical analysis of the involvement
of such continuum states in adiabatic passage dynamics has
only recently been presented [5]. Even that treatment was
confined to the action of pulses in the weak-field regime. The
propagation of strong laser pulses through media capable of
exhibiting the above interference phenomena in the presence
of a continuum has not been fully investigated.

According to the conventional view, the above phenomena
are a result of interference between excitation pathways
associated with a few atomic or molecular bound states
[2,3,6–8], creating the so-called dark state (DS) [1,9], with
the continuum’s main role being that of endowing the bound
states with “widths.” In contrast, in the related field of laser-
induced continuum structure (LICS), where a laser field creates
structures in a continuum by mixing it with bound states, one
treats the continuum explicitly [5,10,11].

In addition to the creation of a transparency window, EIT
is also accompanied by the slowing down [12] and eventual
stoppage and storage [13] of light via the STIRAP process
[4]. The usual explanation of the slowing-down phenomenon
is based on the the macroscopic Kramers-Kronig dispersion
relations [14], which relate the steepness and slope of the
dispersion curve to the light’s group velocity. In this paper we
strive to provide a “mechanistic” quantum-optical explanation
of the effect.

A major issue associated with the slowing down of light
is how to optimize the desired spectral width of the EIT
transparency window relative to the spectral width of the
probe pulse. Understanding this relation will help decrease the
absorption losses [15–18]. It will also help decide whether it is
possible to slow down and ultimately stop light in the absence
of any absorption. We know that when the transparency
window is wide (due to the application of a strong-“coupling”

field), though the probe field experiences less absorption, there
is essentially no slowing-down effect. In contrast, when the
transparency window is narrow (e.g., for a weak-coupling
field), though the probe field experiences more absorption, a
significant slowing down of light occurs. Additional topics
of interest deal with the relation between the adiabaticity
of the coupling field and the efficiency of the light storage
process [19,20].

In this paper we address many of these questions by
developing a uniform theory of the above phenomena. We
consider the situation depicted in Fig. 1 in which two
(“probe” and “coupling”) propagating laser pulses of arbi-
trary strengths act on three �-configuration material states.
These states are coupled to a radiative (or nonradiative)
(quasi)continuum. In the present case the (quasi)continuum is
the (spontaneously emitted) one-photon states of the radiative
modes in a cavity. By representing the continuum as a dense
set of discrete levels we are able to formulate a complete
description of EIT, including the dynamics of (“virtual”)
photons during propagation, the slowing down of light, and
the eventual stopping and “storage” of light via the STIRAP
process.

This paper is organized as follows: in Sec. II we explain how
the continuum is incorporated into the equations describing the
population and propagation dynamics. In Sec. III A we present
time-dependent results for the response of the material system
to the combined effect of a strong probe and a strong-coupling
pulse. In Sec. III B we study propagation effects in the light
storage-retrieval process. Concluding remarks are made in
Sec. IV.

II. THEORY

We consider the action of two (probe and coupling)
laser pulses of electric fields εi(t),i = p,c, on the sys-
tem depicted in Fig. 1, composed of three bound states
|j 〉,j = 1,2,3 (of energies E1 < E2 < E3), and a continuum
of |k〉 states (of energies Ek = h̄ck). In this scheme the
probe’s center frequency ωp, defined via the relation εp(t) ≡
ReEp(t) exp[−i(ωpt − kpx + φp)] is in near resonance with
the |1〉 ↔ |3〉 transition, i.e., ωp ≈ (E3 − E1)/h̄, whereas the
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FIG. 1. (Color online) A schematic description of a three-level �

system plus a continuum. State |1〉 (|2〉) is coupled radiatively via the
Vp (Vc) term to the higher |3〉 state, which in turn is coupled via the
WE terms to the (quasi)continuum states |k〉.

coupling-laser center frequency ωc is in near resonance with
the |2〉 ↔ |3〉 transition, ωc ≈ (E3 − E2)/h̄.

The Hamiltonian entering the time-dependent Schrödinger
equation,

ih̄
∂

∂t
|�〉 = H |�〉, (1)

is written as

H = H0 + |1〉Vp〈3| + |2〉Vc〈3| +
∑

k

|3〉Wk〈k| + H.c., (2)

where H0 is the nonradiative part and

Vi(t) = μiEi(t)/2h̄,i = p,c, (3)

are two (Rabi frequencies) terms that radiatively couple level 1
to level 3 and level 2 to level 3. Wk are the terms coupling level
3 to the continuum. The system wave function � is expanded
as a superposition of three material discrete states and a set of
N ≈ 600 (quasi)continuum states.

|�〉 =
3∑

i=1

ai |i〉 +
N∑

k=1

bk|k〉. (4)

The quasicontinuum states represent any (ionization, sponta-
neous emission, dissociation) continuum to which the system
is coupled. This number of the quasicontinuum states in
addition to the coupling Wk and the energy spacing �k

represents ideally any kind of continuum and remains in a
convergence test compared to a higher number of states. In
the present application the continuum is mainly perceived as
corresponding to the population by a single spontaneously
emitted photon of all the radiative modes available to the
system.

Substituting Eq. (4) in Eq. (1), we obtain in the rotating-
wave approximation (RWA):

ih̄
d

dt
a1 = −�pa1 + Vp

∗a3 − iγ1a1,

ih̄
d

dt
a2 = −�ca2 + Vc

∗a3 − iγ2a2,

ih̄
d

dt
a3 = Vpa1 + Vca2 +

∑
k

Wk
∗bk,

ih̄
d

dt
bk = �kbk + Wka3,k = 1, . . . ,N,

where we have added two small decay terms γj to simulate
the collisional relaxations of the j = 1,2 lower states. In
the above �k = (Ek − E3)/h̄, while �p = ωp − (E3 − E1)/h̄
and �c = ωc − (E3 − E2)/h̄ are the detunings from one pho-
ton resonance of the two fields. For simplicity we normalize all
the time and frequency components by 
′ = 100γ , where γ1 =
γ2 = γ . We define t = t
′, E = E/h̄
′, and Vj = Vj/
′. The
populations in the discrete states are given as |ai(t)|2, with
the coherences between discrete states being given as ai

∗aj .
Energy conservation dictates that the asymptotic population of
the continuum states, given as |bk(t → ∞)|2, is equal to the
total photoabsorption experienced by the external (probe and
coupling) pulses. We therefore call |bk(t → ∞)|2 resulting
from placing the probe-pulse center frequency at the center of
the EIT transparency window the “absorption spectrum.”

III. RESULTS

A. Time-dependent results

In the first application of the above formulation we solve
the time-dependent material equations (using a straightforward
propagation code) for a probe laser whose pulse width is
much larger than the transparency window and a coupling
laser described by a monochromatic (cw) field. In Fig. 2 we
display the total absorption spectrum, i.e., the probability of
ending up at asymptotic times (t → ∞) in the |k〉 continuum
states. The curves appear identical to the usual weak-field EIT
absorption spectrum, obtained by scanning a probe pulse of
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FIG. 2. (Color online) The pulse absorption, given as |bk(∞)|2,
the population of the spontaneously emitted one-photon continuum
with k = E/(h̄c), for a broadband pulse (FWHM = 2
′) whose
center frequency coincides with the center of the EIT transparency
window for several coupling field strengths. Black asterisks, Vc =
0.6
′; blue crosses, Vc = 0.9
′; red dots, Vc = 1.2
′; gray dashed
line, Vc = 1.5
′. Wk = 0.05
′, �k = 0.01
′, and E − E3 is in units
of h̄
′.
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FIG. 3. (Color online) The total absorption spectrum, given as
the |bk(∞)|2 continuum coefficients, for a pulse whose spectral
bandwidth is comparable to that of the EIT transparency window
(FWHM ≈ 0.6
′) for several amplitudes of the coupling field:
Vc = 0.6
′ (black asterisks), 0.9
′ (blue crosses), 1.2
′ (red dots),
and 1.5
′ (gray dashed line). The energy units are defined in Fig. 2.

infinitesimal width across E. We see a transparency window
in the absorption spectrum whose width, given by the Autler-
Townes (AT) splitting of the excited state, gets larger and larger
as we increase the coupling-laser field strength.

When these calculations are repeated for a probe pulse
whose width is comparable to the EIT transparency window,
the results are not identical to the previous case, as shown
in Fig. 3. Though as before the height of the two peaks is
reduced as we increase the coupling-laser strength, here the
separation between the two peaks remains roughly the same.
This reduction in the area under the peaks means that fewer
and fewer probe photons are absorbed as the coupling-laser
intensity increases.

This result can be understood analytically using a recent
derivation of the probe-pulse absorption spectrum [5], accord-
ing to which

Pabs(E) = 2π
|μpεp(ωE,1)|2[(E − E3)2][
(E − E3)2 − V 2

c

]2 + [(E − E3)
/2]2
. (5)

The limited bandwidth of the probe pulse [expressed in the
above formula as εp(ωE,1)] curbs the separation between the
two AT components as the intensity of the coupling laser (i.e.,
Vc) is increased.

We next present a set of computations of the transient
behavior of the population of state |1〉. First, we present the
transient behavior of the population of state |1〉 in Fig. 4 for
Vc = 1
′ and Vp = 0.1
′. Contrary to common belief, even
in EIT, a strong probe pulse can cause a certain amount of
transient absorption of the |1〉 state. If, however, the pulse is
centered at the transparency window, the |1〉 state gets almost
completely repopulated as the pulse wanes. Some population
does get lost at long times due to the overlap of the tails of the
probe pulse with the region outside the transparency window.

One of the main results of this paper is displayed in
Figs. 5 and 6, where we plot the energetic distribution of
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FIG. 4. (Color online) The |1〉 population as a function of
normalized time for a probe pulse whose center frequency and width
(FWHM = 0.6
′) coincide with those of the transparency window.
We see a transient loss (of about 2.5%) of the |1〉 population at the
peak of the pulse. This loss is almost entirely regained (except for
a permanent loss of about 0.5% due to absorption at the tails of the
pulse) at the end of the pulse.

the continuum, given by |bk(t)|2,during the interaction of the
probe pulse with the � system.

Quite clearly and in contradistinction to theories that do
not treat the continuum dynamically, absorption at the EIT
transparency dip occurs during the pulse. This absorption is
transient because, as shown in Figs. 5 and 6, at the center of the
EIT dip the continuum coefficients get completely depopulated
as the probe pulse wanes, giving rise to the familiar complete
transmission.

The behavior displayed in Figs. 5 and 6 gives a full
mechanistic understanding of the slowing down of light,
which is also discussed in the next section. We see that,
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FIG. 5. (Color online) The time-dependent |bk(t)|2 continuum
coefficients during the interaction of a probe pulse and a strong
(Vc = 1
′) coupling field with the three-level system. The black line
shows the on-resonance component, which, although, as expected,
is unpopulated after the pulse, gets populated during the pulse. The
energy units are defined in Fig. 2.
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FIG. 6. (Color online) The same as in Fig. 5 for a weak (VC =
0.25
′) coupling field.

as in all dispersion-type phenomena, light gets “detained”
by being absorbed and (coherently) reemitted in a transient
way, thereby slowing down its propagation. The slowing
down is so dramatic in EIT because, contrary to ordinary
dispersion, here the transient light absorption occurs near
resonance with the material transition at Ek = E3 − E1. In
contrast, in ordinary dispersion of transparent materials, the
transient absorption and reemission occur at way off-resonance
frequencies (relative to the material transition frequencies). As
a result, the slowing-down effect is not nearly as dramatic.

Comparing Figs. 5 and 6, we see that, as the coupling laser
becomes weaker, the whole structure becomes, as expected,
narrower. What is entirely different, and of equal significance,
is that, for the weaker-coupling pulse, the on-resonance
continuum transient (the black line in Figs. 5 and 6) rises
higher and lasts almost three times longer compared to
the strong-coupling case. Thus a larger fraction of the probe
photons suffer absorption and reemission, and the whole
process lasts longer for weak pulses, detaining the probe
light further and further, i.e., slowing the light more and
more, as the coupling laser gets weaker and weaker. An
additional interesting effect associated with the lengthening
of the transients is the extra oscillations in the off-resonance
components before they finally settle down to their familiar
EIT absorption spectrum. We also notice that the spectral
width of the spontaneously emitted one-photon transients is
significantly larger than the final EIT line shape. This means
that the probe pulse is accompanied by a transient “halo” of
spontaneously emitted off-resonance photons, part of which is
being reabsorbed as the pulse departs the three-level system.

B. Temporal and propagation effects during light
storage and retrieval

We now examine the propagation of pulses through the
medium, the slowing down of light, and the storage and
retrieval of light. In order to do so, we solve the Maxwell-Bloch
equations for field propagations,

(
∂

∂z
+ 1

c

∂

∂t

)
Vij = iαai

∗aj ,
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FIG. 7. (Color online) The population of state |2〉 as a function of
retarded time and normalized propagation distance during the storage
process, where field amplitudes are Vc = 1
′ and Vp = 0.01
′. We
see the propagation of a coherent passage of population from |1〉 to
|2〉 that lasts until decay due to (the assumed) decoherence rate γ2

setting in.

where α = πωijNμ2
ij /ch̄
′ is an effective coupling constant.

Vij are the Rabi frequencies for the i ↔ j transitions, and ai
∗aj

are the coherences between the |i〉 and |j 〉 states, calculated
using Eq. (5) at each z step.

We first solve the propagation equations for the simple
case of a narrow-band probe pulse whose spectrum lies within
the EIT transparency window. In particular, we examine
the populations in the |3〉 and the |2〉 states during the light
storage process.

As we switch off Vc we initiate a STIRAP process in
which the light is being absorbed via adiabatic passage from
|1〉 to state |2〉, and the control field is amplified while the
probe field is deamplified. This process is accompanied by the
slowing down of light as VC → 0. The energy of the probe
field is transferred to the writing (control) field via stimulated
Raman process [19,20]. Light can be retrieved and the stored
information decoded by switching back on the Vc coupling.

In order to understand the dynamics of the process we
present in Figs. 7 and 8 the population in state |2〉 and in state
|3〉 for a slowly varying (“adiabatic”) control field. In Fig. 7 we
present the population in the |2〉 state as the probe and coupling
pulses propagate. We see that population accumulates in the
|2〉 state due to adiabatic passage from state |1〉 during the
writing process. Population flows back to the |1〉 state during
the reading process. There is a loss of the population due to
the assumed decoherence processes, as embodied in the γi

parameters of Eq. (5).
In addition to the smooth adiabatic passage between the |1〉

and |2〉 states, some population is seen to be trapped transiently
in the |3〉 state. The time dependence of the |3〉 population
exhibits a double-peak structure. This structure is a result of the
transfer of a small portion of the population to the continuum
and to state |3〉 as the system transits from state |1〉 to state |2〉
and back again. As the pulses propagate further the double-
peak structure is seen to break up, with the earlier peak being
transferred back to state |1〉 during the reading process.

The slowing down of light during the storage process is
demonstrated as a function of t and z in Fig. 9, where we plot
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FIG. 8. (Color online) The population of the high-lying |3〉 state
as a function of retarded time and normalized distance during the
light storage process, where field amplitudes are Vc = 1
′ and Vp =
0.01
′. A small transient accumulation of population is seen to be
transferred to this level as the system shuttles between state |1〉 and
state |2〉, resulting in a double-transient-peak structure.

the position of the peak of the probe pulse during the storage
process (blue dotted line) and contrast it with the behavior
of a pulse (whose peak position is shown with red circles)
propagating at c, the speed of light in vacuum. We clearly see
that the probe pulse is stopped between t = 20 and t = 60 at
which point a portion of it is regenerated to resume its slow
velocity propagation.

We now turn our attention to the propagation of the
continuum components. We distinguish between the three
cases (see Fig. 10) according to dVc/dt, the rate of change
of the coupling-laser Rabi frequency. We term the dVc/dt �
Vcωc case adiabatic, the dVc/dt = Vcωc case quasiadiabatic,
and the dVc/dt � Vcωc case nonadiabatic.

0 20 40 60 80
0

160

tΓ’

α 
Z

FIG. 9. (Color online) The propagation of the peak of the probe
pulse during the storage process (blue dotted line) vs the peak of
a pulse propagating at c, the speed of light in vacuum (line of red
circles). The peak of the probe clearly experiences a great reduction
in speed. At t
′ ∼ 20 (in the units of Fig. 5) the probe pulse is seen
to terminate, corresponding to the stoppage of light. The probe pulse
is resurrected at t
′ ∼ 60, from which point it propagates at v � c.
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0

1

t Γ’

FIG. 10. (Color online) Different coupling-laser turn-on. The
turn-on is parameterized as Vc(t) = Vc{1 − 0.5[tanh(t − τ1) −
tanh k(t − τ2)]}, where k = 1 is the nonadiabatic case (red squares),
k = 0.5 is the quasiadiabatic case (green circles), and k = 0.15 is the
adiabatic case (blue asterisks).

The coupling pulse shape in the midpoints of the “encod-
ing” (storage) and “decoding” (light retrieval) phases for the
above three cases are shown in Fig 10.

The calculations show that in the adiabatic case the
encoding and decoding absorption spectra are essentially
identical to one another. In contrast, in the quasiadiabatic case,
shown in the middle panel of Fig. 11, some differences between
the encoding and the decoding absorption spectra become
evident. Specifically, the decoding absorption spectrum is
seen to exhibit slight undulations superimposed on the usual
EIT line shape. This trend continues for the nonadiabatic
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FIG. 11. (Color online) The absorption spectrum, given as the
|bk(∞)|2 continuum coefficients, in the retrieval phase. In contrast to
the absorption at the storage phase, which is essentially identical to
that of Fig. 3, the spectral features of the retrieved light are seen to
depend on the coupling-laser turn-on rates. (top) The adiabatic case,
(middle) the quasiadiabatic case, and (bottom) the nonadiabatic case.
E − E3 is in units of h̄
′.
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FIG. 12. (Color online) The probe field at the end of the retrieval
process for three cases of the retrieval (coupling) laser. The green
dotted line shows the adiabatic case, the blue dashed line shows the
quasiadiabatic case, and the solid red line shows the nonadiabatic
case. While the efficiency is evidently similar in all three cases,
the probe field is seen to acquire additional modulations in the
nonadiabatic case.

decoding process, shown in the bottom panel of Fig. 11.
We see deep modulations of high visibility imprinted on a
smoothly changing EIT-type envelope. No such modulations
are observed for the light encoding absorption spectrum, which
is identical to that of Fig. 3.

The difference between the encoding and decoding spectra
for the nonadiabatic case is due to the fact that during the
encoding process the ratio between the amplitudes of the
probe and the control fields is well defined. In contrast, in
the decoding process, the probe amplitude is being recreated
from random fluctuations. When the switch-on is fast, the
fluctuations introduce modulations that mimic the Fourier
transform of Vc(t).

The reason for the observed behavior in the quasiadiabatic
case is that we turn on the coupling field rather slowly. This

entails the presence of smaller-frequency Fourier components.
Whereas our (quasi)adiabatic encoding process coincides with
the results obtained in the past [21], Fig. 12 demonstrates
that the nonadiabatic turn-on results in substantial distortions
of the spectrum of the retrieved light, leading to a decrease of
the quantum fidelity of the process.

IV. CONCLUSIONS

In this paper we have presented a uniform quantum
theory of EIT, STIRAP, and pulse propagation of a three-
level system in the presence of a continuum. Using this
formulation, we have performed rigorous calculation of the
absorption spectrum of the probe and coupling pulses under
the familiar EIT setup, during and after the pulses. We
have also performed calculations on the propagation of the
pulses, with special emphasis on the light storage and retrieval
periods.

By including the continuum in a dynamical way we have
been able to show that many of the preconceptions, particularly
the lack of absorption at frequencies corresponding to the
EIT transparency window, are not strictly true. We have
found that during the pulse, transient absorption, followed
by reemission, occurs, though the net absorption at the end
of the pulse does, indeed, go to zero. This finding gives a
simple and detailed explanation to the dramatic slowing down
of light that accompanies the EIT process. Our formulation
includes STIRAP as a special case, and we find that, contrary
to preconceptions based on continuum-free theories, during
the STIRAP process the presence of the continuum causes
the intermediate state to be populated and depopulated
during the pulse in a transient way.

We have also shown that when there is a rapid shutdown
of the coupling laser, which after some delay is followed by
a rapid start-up of that laser, the spectra of the continuum
components (and the retrieved probe pulse) contain rapid
oscillations, superimposed on the usual EIT line shape (and on
the probe-pulse envelope). Hence the potential use of ultrashort
pulses in storing quantum information may be severely
limited.
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