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Coherent population trapping under periodic polarization modulation:
Appearance of the CPT doublet
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In order to understand how stochastic processes might enter and influence coherent atomic dynamics, we
have studied the behavior of a � system under periodic polarization modulation. Polarization, in addition to
amplitude and phase, is a defining feature of a classical vector field. However, to date, there has been little study
concerning the response of quantum systems to temporal variations in polarization, even though some lasers are
known to exhibit stochastic polarization fluctuations. In our work, we square-wave modulate the polarization of
a laser that induces coherent-population trapping (CPT) in 87Rb. At low-modulation frequencies, we find that the
amplitude of the CPT resonance increases with modulation frequency because the polarization variations limit
the number of atoms confined to the system’s trapping state. Surprisingly, at higher-modulation frequencies,
we find that the CPT resonance splits into a doublet. We have developed an analytical theory of CPT in the
presence of polarization modulation that captures the primary features of our experimental findings and shows
that the doublet is a consequence of ground-state coherence modulation in the � system. The present results lay
a foundation for understanding how more complicated (i.e., stochastic) temporal variations in laser polarization
could influence �-system dynamics.
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I. INTRODUCTION

The phenomenon of coherent-population trapping (CPT)
[1,2], which has led to the development of chip-scale atomic
clocks [3,4], is routinely conceptualized in terms of a
three-level system interacting with a bichromatic field [5].
Briefly, as illustrated in Fig. 1 for the 87Rb system, when
the bichromatic field resonantly couples two ground-state
eigenfunctions to a common excited state, destructive inter-
ference between the two excitation pathways can take place.
This interference effectively turns off the atom’s absorption
cross section [6] so that, for a vapor of atoms, there is a
resonant increase in the light intensity transmitted by the
vapor. Importantly for atomic-clock applications, the linewidth
of this CPT signal is not defined by any optical dephasing
rate but rather by the dephasing time of the ground-state
coherence, which, in the case of the alkali metals, can be 4
to 5 orders of magnitude longer than the optical dephasing
time.

As illustrated in Fig. 1, realization of the CPT phenomenon
for the alkali-metal 0-0 hyperfine states requires a circularly
polarized field [7] so that (for example) the |F = 1,mF = 0〉
and |F = 2,mF = 0〉 ground-state eigenfunctions only couple
to the |F ′ = 2,mF = +1〉 excited state. Of course, the absorp-
tion of circularly polarized light transfers angular momentum
from the light field to the atomic system, and as a conse-
quence, the atomic vapor develops a nonzero electronic-spin
polarization 〈Sz〉 [8–10]. Electronic-spin polarization plays the
role of a noncoherent dark state (or equivalently, a trapping
state), which reduces the alkali-vapor density contributing to
the coherent dark state (i.e., the dark state associated with CPT)
and thereby reduces the amplitude of the CPT signal [11]. To
overcome this problem, various research groups have devised
more sophisticated techniques for CPT signal generation:
push-pull optical pumping [12], lin ⊥ lin excitation [13],
and phase-delayed bichromatic fields [14,15]. The common
thread to these techniques is that the circular polarization of

the bichromatic field is modulated between right-circularly and
left-circularly polarized light at a microwave frequency. As a
consequence, while no net angular momentum is transferred
to the vapor (i.e., the noncoherent dark state is eliminated), the
coherent dark state is preserved.

In the present paper, our attention also is focused on
issues of polarization modulation and the CPT phenomenon.
However, although we are certainly interested in polarization
modulation as a means to increase the amplitude of CPT
signals, our primary interest is directed toward a different
question: How does low-frequency polarization modulation
(i.e., fm � 106 Hz) affect CPT line shapes? This specific
question is part of a much broader research area aimed at
elucidating the stochastic-field–atom interaction [16] and is
important in CPT since laser polarization fluctuations may
represent a novel pathway for stochastic fields to affect the
signal-to-noise ratio of chip-scale atomic clocks.

In the following section, we discuss our experimental ar-
rangement and our findings. In particular, we have discovered
that a CPT resonance will split into a doublet when the
polarization modulation frequency exceeds the 0-0 dephasing
rate. In Sec. III, we present an analytical theory of the
splitting where the motivation is to uncover the fundamental
characteristics of the atomic dynamics that give rise to the
splitting. Finally, in Sec. IV, we provide a brief discussion of
the implications of our findings for the stochastic-field–atom
interaction problem.

II. EXPERIMENT

Our experimental arrangement is illustrated in Fig. 2. To
generate the �-system coherence, we employed a cleaved-
facet Fabry-Pérot diode laser [17], which does not suffer
the intrinsic polarization fluctuations sometimes observed in
vertical-cavity surface-emitting lasers (VCSELs) [18]. The
laser light then passed through an electro-optic modulator,
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FIG. 1. In the typical CPT experiment with 87Rb, two modes of a
laser couple the atom’s two 5 2S1/2 (mF = 0) ground-state sublevels
to the same excited state; here, the common excited state is the 5
2P1/2 |F ′ = 2, mF = +1〉 state. The simultaneous coupling creates a
coherence in the ground state, indicated by the double-headed arrows,
and it is this coherence that is at the heart of the CPT phenomenon.
If the laser polarization fluctuates, then the common excited state
momentarily changes to |F ′ = 2, mF = −1〉, and this affects the
ground-state coherence.

which placed sidebands on the laser at ±�s
∼= ±ωhfs/2 with a

single-sideband-to-carrier intensity ratio (Is/Ic) of 0.17; here,
ωhfs is the ground-state hyperfine transition frequency (i.e.,
6834.7 MHz for 87Rb). The beam diameter was 0.4 cm so
that the intensity of a single sideband Is was ∼250 μW/cm2.
[Although not shown, the light also passed through a neutral-
density (ND) filter, allowing variation in the laser intensity.]
The modulated and linearly polarized field then passed through
a ferroelectric liquid-crystal polarization rotator (manufac-
tured by Micron Technology, Inc.), which has a bandwidth
of 10 kHz, and changes the field’s linear polarization by
90◦ depending on an applied voltage. Following this, the
field passed through a quarter-wave plate, creating right- or

FIG. 2. Block diagram of our experimental arrangement. The Rb
cell was maintained at a temperature of 47 ◦C, corresponding to an
alkali-metal density of ∼1011 cm−3, and the Rb atoms were contained
with a 50-torr N2 buffer gas. The laser light passed through an electro-
optic modulator that placed sidebands on the laser at ∼3.4 GHz.
Additionally, although not shown, the light passed through a ND
filter. In our experiments, the single sideband-to-carrier power ratio
was 0.17.

left-circularly polarized light and then passed into a resonance
cell containing isotopically enriched 87Rb and 50 torr of N2 as
a buffer gas; using N2, the dominant relaxation mechanism in
our system was electron-spin randomization (also known as S
damping) [10]. Pressure broadening of the optical transitions
by N2 also ensured that the excited-state hyperfine structure
was unresolved [19]. Our Pyrex resonance cell was 3.9-cm
long with a diameter of 2.2 cm and was maintained at 47 ◦C
with braided heating wire wrapped around the cell body;
the intrinsic attenuation coefficient of the vapor κo was 1.0:
I (L) = Ioe

−κo = Ioe
−[Rb]σL with Io defined as Is × 10−ND.

The resonance cell was located in a set of three mutually
perpendicular Helmholtz coils with a diameter of 66 cm [20]:
Two pairs cancelled out the Earth’s magnetic field, while the
third provided a quantization axis for the atoms along the laser
beam’s propagation direction (i.e., Bz = 0.5 G).

Figure 3(a) shows an example of our CPT line shape in
the absence of polarization modulation for a relative light
intensity Io/Is of 0.13. The solid line through the data is a
Lorenztian fit, which has a HWHM �ν1/2 of 697 s−1 (i.e.,
111 Hz). Figure 3(b) shows our measured values of �ν1/2

as a function of relative light intensity. From these data, we
inferred that our intrinsic dephasing rate γ2 was 319 s−1 and

FIG. 3. (a) An example of our CPT line shapes in the absence of
polarization modulation; the data were taken with a relative light
intensity Io/Is of 0.13, and the solid line through the data is a
Lorentzian least-squares fit. (b) Plot of the half width at half maximum
(HWHM) �ν1/2 from the Lorentzian least-squares fits as a function
of relative light intensity; the data indicate that our intrinsic dephasing
rate γ2 is 319 s−1.
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that the optical excitation rate R ≡ 	2/
 was given by R =
3.14 × 103(Io/Is) s−1; here, 	 is the optical Rabi frequency,
and 
 is the excited-state decay rate. Since we employ 50 torr
of N2 as a buffer gas in our experiments, 
 is affected by
the rate of quenching collisions 
Q: 
 = A + 
Q, where
A is the Einstein-A coefficient for the D1 Rb transition (i.e.,
3.65 × 107 s−1 [21]). Taking the quenching cross section for
the 5 2P1/2 state as 5.8 × 10−15 cm2 [22], we have 
 = 5.7 ×
108 s−1. If we now define the saturation intensity Isat through
the relation ne = 0.5(I/Isat)/[1 + I/Isat] = 0.5(R/
)/[1 +
R/
], where ne is the relative excited-state density, then, at our
full sideband light intensity, we have Is/Isat = 5.5 × 10−6. The
light intensity that maximized our CPT contrast in the absence
of polarization modulation Im corresponded to Im/Is = 0.079
or equivalently Im/Isat = 4.4 × 10−7.

In a previous paper, we examined the transient response
of this atomic system to a step change in laser polarization
[23]. We found that the simplest semiempirical theory capable
of capturing the dominant features of the transient dynamics
corresponded to a seven-parameter model of the attenuation
coefficient κ(t),

κ(t) = Af e−γf t + Ase
−γs t − A2e

−γ2t sin(2δt). (1)

Although a seven-parameter model may seem overly
generous, we note that this is actually the minimum number of
parameters that are required based on more rigorous theoretical
considerations. In Eq. (1), the first two terms on the right-hand
side correspond to a biexponential transient in 〈Sz〉 arising
from electron-spin randomizing collisions with N2 [8] (i.e., a
fast exponential and a slow exponential that derive from the
nucleus’s ability to act as a reservoir of angular momentum).
In effect, these two terms correspond to bulk motion of the
population density from one side of a ground-state Zeeman
multiplet to the other. The third term on the right-hand side
corresponds to a nutationlike transient: As the polarization
suddenly changes, there is a discontinuity in the 0-0 coherence,
which oscillates at 2δ ≡ 2�s − ωhfs and returns to equilibrium
at the dephasing rate.

At the light intensity that maximized the CPT contrast, our
previous results (in a 30-torr N2 cell) yielded γf

∼= 100 s−1

and γs
∼= 30 s−1, where it is to be noted that these terms are

longitudinal relaxation rates for 〈Sz〉. Furthermore, we found
that the transients were dominated by the Af and As terms
(i.e., the bulk motion of population density among the Zeeman
sublevels), and for all light intensities the 〈Sz〉 bulk-motion
transient was six times larger than the actual CPT resonance,
implying that even short-lived laser polarization variations can
have a significant influence on CPT signal-to-noise ratios.

Notwithstanding the biexponential nature of the 〈Sz〉 relax-
ation, in order to better elucidate the underlying physics of
polarization modulation in what follows, we will approximate
the electron-spin randomizing mechanism of 〈Sz〉 with a
uniform relaxation rate γ1. After accounting for a 5/3 rate
increase due to our larger N2 density, we, therefore, anticipate
requiring a γ1 value in the range of 50–110 s−1. In other words,
employing uniform 〈Sz〉 relaxation as a surrogate for the two
terms on the right-hand side of Eq. (1), we expect the requisite
value of γ1 for our theory to lie somewhere between γs and
(γs + γf )/2.

Since many random processes can be modeled as an inco-
herent Fourier series [24], our motivation in the present paper
was to lay the foundations for an empirical understanding
of � systems in the presence of stochastic-polarization fields
[25], and this was to be accomplished by studying the CPT
resonance in the presence of square-wave laser polarization
modulation. For a given value of the square-wave modulation
frequency ωm, we slowly swept the sideband spacing through
the CPT resonance and recorded the change in the transmitted
light intensity. The sweep of the sideband spacing was repeated
at a frequency ωrep so that the CPT line shapes could be
averaged. Of course, as suggested by Eq. (1), every time the
polarization changes at 2ωm, we must expect a large transient
in the transmitted light intensity. Although such transients will
be important for understanding the CPT noise spectrum in the
full stochastic-field–atom interaction problem, in the present
work, we were not primarily interested in those transients.
Rather, we were interested in understanding how polarization
modulation might modify the underlying CPT line shape.
Consequently, we chose ωm to be incommensurate with ωrep. In
that way, the starting phase of the square-wave modulation for
different frequency sweeps through the CPT line shape would
be quasirandom, and therefore the exponential transients
following each polarization change would eventually average
to zero.

Figure 4 illustrates several CPT line shapes for different
values of the modulation frequency with Io/Is = 0.45. At
low-modulation frequencies ωm ∼ 19 s−1 (i.e., 3 Hz), we see
the standard CPT resonance. The noise on the CPT signal is
not noise at all but a residual of the exponential transients
in the transmitted light intensity following each polarization
change. At intermediate modulation frequencies ωm ∼ 188 s−1

(i.e., 30 Hz), we see an increase in the CPT signal amplitude.
This was expected based on our previous paper and that of
Jau et al. [12], since these modulation frequencies exceed the
longitudinal relaxation rate of electronic-spin polarization γ1.
In other words, at these modulation frequencies the light field
is unable to efficiently transfer angular momentum orientation
to the vapor, and so the number of atoms in the so-called
trapping state is reduced. Interestingly, however, as ωm exceeds
the 0-0 coherence dephasing rate, the CPT line shape no
longer simply increases in amplitude; rather, it splits into a
doublet with the separation between the two CPT resonances
increasing with the modulation frequency. This is shown more
quantitatively in Fig. 5 where we have plotted the center
frequency of each doublet component ω± as a function of
the modulation frequency. In the figure, the two straight lines
correspond to ω+ = +ωm and ω− = −ωm. Finally, Fig. 6
shows the CPT contrast as a function of modulation frequency.
For ωm < γ2, the CPT contrast increases with modulation
frequency; however, for ωm > γ2, the splitting causes a
decrease in the CPT contrast, which appears to asymptote
to a constant value at very large modulation frequencies.

III. THEORY

In this section, we want to develop a closed-form expression
for the CPT line shape in the presence of square-wave polariza-
tion modulation. Certainly, multilevel density matrix equations
for the Rb atom in the presence of any modulated quantity
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FIG. 4. As illustrated by the data in this fig-
ure, taken with Io/Is = 0.45, at low-modulation
frequencies we obtain the standard CPT reso-
nance. At intermediate frequencies (i.e., 30 Hz),
the CPT amplitude increases since atoms do
not have time to become trapped in a non-
CPT participating atomic state. At the highest-
modulation frequencies (i.e., fm > 300 Hz), our
CPT resonance splits into a doublet. The solid
lines correspond to least-squares Lorentzian (or
double Lorentzian) fits to the data, where we only
fit the data for normalized values of the CPT line
shape greater than 0.5.

can be derived and then solved numerically. However, while
the results of such numerical computations are valuable and
can be compared to the experiment, they often make it difficult
to uncover the primary dynamical elements responsible for
the atomic system’s behavior. Here, our motivation is to
understand the underlying physical origin of the CPT-doublet’s
and the CPT-contrast’s dependences on modulation frequency.
Consequently, our goal in this section is to develop a relatively
simple density-matrix description of the phenomenon that
leads to closed-form expressions.

FIG. 5. The frequency of each doublet component is plotted as
a function of the modulation frequency. For these results, the laser
intensity was four times larger than that yielding the maximum CPT
contrast in the absence of polarization modulation (i.e., Io/Im = 4).
Note that the doublet splitting equals 2fm. Although it may appear
that the splitting suddenly appears at fm

∼= 250 Hz, it should be
recognized that the CPT resonance is broadening before it splits so
that the sudden appearance of a doublet in the graph is simply due to
our experimental inability to resolve the splitting at low-modulation
frequencies.

In our experiments, the alkali-metal atoms are maintained
with a relatively large buffer gas density so that the excited-
state hyperfine structure is unresolved. The optical absorption
cross section σ , therefore, can be written as [26]

σ = σo(1 − 2	s · 〈 	S〉), (2)

where 	s is the photon-spin vector (i.e., ms ≡ ξ = +1 for
right-circularly polarized light and ξ = −1 for left-circularly
polarized light as projected onto the field’s propagation

direction) and 〈⇀

S〉 is the expectation value of the alkali-
metal ground-state electron-spin polarization. In the present
situation, where the laser’s propagation direction is parallel

FIG. 6. The CPT contrast as a function of modulation frequency.
Diamonds correspond to Io/Is = 0.079, the laser intensity that max-
imized our CPT contrast in the absence of polarization modulation,
and the squares correspond to Io/Is = 0.45. The solid lines through the
data correspond to the theory with γ1 = 63 s−1, and for Io/Is = 0.079
(i.e., R = 251 s−1), we set γ2 = 723 s−1, while for Io/Is = 0.45 (i.e.,
R = 1426 s−1), we set γ2 = 2640 s−1.
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to the atom’s quantization axis, the absorption cross section
becomes

σ = σo

{
1 − ξ

∑
F,m

(−1)F−a m

2
ρ(Fm,Fm)

− 2ξ Re[ρ(a0,b0)]

}
, (3)

where the ρ(Fm,F ′m′) correspond to the alkali-metal ground-
state density-matrix elements and we define the alkali-metal
ground-state angular momentum quantum numbers F as F =
a ≡ I + 1

2 and F = b ≡ I − 1
2 , where, in these expressions, I

is the alkali-metal nuclear spin. The change in the ground-state
optical absorption cross section due to CPT comes from the
last term in brackets on the right-hand side of Eq. (3), and we
primarily focus on that term in what follows.

To highlight the important physical attributes of the prob-
lem, we now define |b0〉 as |1〉, |a0〉 as |2〉, and the |5 2P1/2〉
multiplet of levels as |3〉. Thus, we reduce the full multilevel
problem to the standard three-level � system for CPT. The
multilevel nature of the problem and, in particular, the role
of trapping states in the CPT problem [11] are included
by normalizing the three-level system to η, the fractional
ground-state population contributing to the CPT process (see
the Appendix): ρ11 + ρ22 + ρ33 = η. Additionally, we assume
that the sideband amplitudes are equal so that there is no
hyperfine optical pumping: ρ11 = ρ22.

With these assumptions, we transform to a rotating co-
ordinate system [i.e., σmn = ρmne

iωmnt , where ωmn = (Em −
En)/h̄] and make the rotating-wave approximation [27],
thereby obtaining a system of density-matrix equations [28].
(Here, Em and En are the energies of states |m〉 and |n〉,
respectively),

.
σ 11 = −	31Im[σ13e

−iδt ] + 


2
(η − 2σ11), (4a)

.
σ 12 = − i

2
eiδt [	32σ13 + 	31σ32] − γ2σ12, (4b)

.
σ 13 = − i

2
[	32σ12e

−iδt − 	31e
iδt (3σ11 − η)] − 


2
σ13, (4c)

.
σ 23 = i

2
[	31σ21e

iδt − 	32e
−iδt (3σ11 − η)] − 


2
σ23. (4d)

In these expressions, 	3j is the Rabi frequency connecting
|j 〉 to |3〉, and in order to account for polarization modulation,
we need to consider the effect of electric dipole coupling to the
different excited-state Zeeman sublevels on the Rabi frequen-
cies (i.e., me = mg + 1 → me = mg − 1). First, though, we
must attend to the definition of the Rabi frequency when the
pressure broadening is greater than the excited-state hyperfine
splitting.

Naively, since pressure broadening by the buffer gas washes
out the excited-state hyperfine splitting in our experiments, one
might be tempted to write the Rabi frequency as

	3j ∼
∑
Fe

〈Fe,±1|r1ξ |Fg,0〉, (5)

where r1ξ is a spherical tensor representing the electric dipole
operator. However, Eq. (5) implies that the |Fe,mF 〉 basis
functions are not eigenfunctions of the atomic Hamiltonian

and that the more appropriate eigenfunctions for calculating
the Rabi frequency correspond to the set |I,Je,mI ,mJ 〉. Notice,
though, that the cross section σB for N2 collisions perturbing
the 5 2P1/2 state is 3.3 × 10−14 cm2 [19]. Thus, while the
duration of a perturbing collision is ∼2

√
σB/π/v̄, the rate of

perturbing collisions is [NBG]v̄σB , where [NBG] is the buffer-
gas number density. Consequently, the fraction of time that the
|Fe,mF 〉 basis functions are invalid (and, therefore, must be
replaced by the |I,Je,mI ,mJ 〉 basis functions) is ∼[NBG]σ 3/2

B .
In our case, with 50 torr of N2, this fraction is 10−2 so that
most of the time the atoms’ eigenfunctions correspond to the
|Fe,mF 〉 basis set, and we should write

	3j ∼ 〈Fe, ±1|r1ξ |Fg,0〉. (6)

The fact that two excited-state hyperfine levels simulta-
neously connect to a single ground state simply implies that
we have two subpopulations in our ensemble: those velocity
subgroups interacting coherently through |Fe = a〉 and those
velocity subgroups interacting coherently through |Fe = b〉.

Now, to proceed to the question of how laser polarization
variations affect the Rabi frequency, from Eq. (6) and the
Wigner-Eckart theorem (along with the expression for the
reduced matrix element of a coupled system) [29], we have

	3j ∼ (−1)Fe+Fg−a
√

(2Fg + 1)(2Fe + 1)

×
(

Fe 1 Fg

−ξ ξ 0

) {
1
2 Fe I

Fg
1
2 1

}
〈5 2P1/2‖r‖5 2S1/2〉.

(7)

Note that this expression for 	3j is specific to the D1

transition of the alkali metals and that the last term on
the right-hand side of Eq. (7) is a reduced matrix element.
Evaluating 	3j for 87Rb (i.e., I = 3/2), we find for Fe = b

that

	31 ∼
(

ξ

2
√

6

)
〈5 2P1/2‖r‖5 2S1/2〉, (8a)

	32 ∼ −
(

1

2
√

6

)
〈5 2P1/2‖r‖5 2S1/2〉, (8b)

while for Fe = a,

	31 ∼
(

1

2
√

2

)
〈5 2P1/2‖r|5 2S1/2〉, (8c)

	32 ∼ −
(

ξ

2
√

2

)
〈5 2P1/2‖r‖5 2S1/2〉. (8d)

Thus, when the polarization changes (i.e., ξ → −ξ )
only one of the Rabi frequencies in the � system changes
sign. This is a key theoretical observation, without which,
the splitting of the CPT resonance would not be predicted.
Consequently, to include laser polarization modulation in the
density-matrix equations, we let ξ → (eiωmt + e−iωmt )/2 and
make the replacements,

	31 → 	31

2
(eiωmt + e−iωmt ), (9a)

	32 → 	32. (9b)
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Substituting Eqs. (9) into Eqs. (4), and making an additional
rotating coordinate-system transformation [30],

τ12 = σ12e
−i(2δ−αωm)t , (10a)

τ13 = σ13e
−i(δ−αωm)t , (10b)

τ23 = σ23e
iδt , (10c)

where α ≡ δ/|δ|, the density-matrix equations become

σ̇11 = − 	31

2
Im[τ13(ei(1−α)ωmt + e−i(1+α)ωmt )]

+ 


2
(η − 2σ11), (11a)

τ̇12 = − i

2

[
	32τ13 + 	31

2
τ32(ei(1+α)ωmt + e−i(1−α)ωmt )

]
− [γ2 + i(2δ − αωm)]τ12, (11b)

τ̇13 = − i

2

[
	32τ12 − 	31

2
(ei(1+α)ωmt

+ e−i(1−α)ωmt )(3σ11 − η)

]
−

[



2
+ i(δ − αωm)

]
τ13,

(11c)

τ̇23 = i

2

[
	31

2
τ21(ei(1+α)ωmt + e−i(1−α)ωmt )

−	32(3σ11 − η)

]
−

(



2
− iδ

)
τ23. (11d)

In Eqs. (11), one normally would proceed by making a
secular approximation, arguing that, for a particular choice
of δ, one of the oscillating coefficients in these equations
becomes unity while the other quickly averages to zero (e.g.,
α → +1). This certainly is valid for large ωm (i.e., ωm 
 γ2)
but unfortunately becomes problematic when ωm is small.
Specifically, while the oscillating coefficients can be replaced
by unity for large ωm, they should be replaced by 2 for
ωm � γ2. Since we are interested in exploring a full range
of modulation frequencies, a naive application of the secular
approximation to these equations is too limiting. Alternatively,
retention of the oscillating coefficients makes an analytic
solution impossible. Therefore, in the spirit of the secular
approximation, we perform a filtered-response approximation
for the oscillating coefficients,

(ei(1±α)ωmt + e−i(1∓α)ωmt ) ∼= 1 + e±2iωmt → 1 + fm, (12a)

where we take

fm = γ n
m√

γ 2n
m + (2ωm)2n

. (12b)

Briefly, we imagine that the atom’s dephasing processes
cause a filtering of the atom’s response to the 2ωm oscillatory
coefficients, and for the filtering function we choose an n-pole
Butterworth filter [31] with cutoff frequency γm. (Obviously,
other filtering functions could be chosen, and in future
theoretical papers it may prove useful to compare and contrast
the alternatives.) In what follows, we take n = 1 and γm =
	2/
 + γ2. Although arguably crude, this approximation,
nevertheless, has all the right characteristics: in the limit
that ωm is large, 1 + fm → 1; in the limit that ωm is small,
1 + fm → 2, and the definition of large and small depends on

the modulation frequency’s relationship to the 0-0 coherence’s
dephasing rate. Equations (11), therefore, become

σ̇11 = − 	31

2
(1 + fm)Im[τ13] + 


2
(η − 2σ11), (13a)

τ̇12 = − i

2

[
	32τ13 + 	31

2
τ32(1 + fm)

]
− [γ2 + i(2δ − αωm)]τ12, (13b)

τ̇13 = − i

2

[
	32τ12 − 	31

2
(1 + fm)(3σ11 − η)

]

−
[



2
+ i(δ − αωm)

]
τ13, (13c)

τ̇23 = i

2

[
	31

2
(1 + fm)τ21 − 	32(3σ11 − η)

]

−
(




2
− iδ

)
τ23. (13d)

To proceed, we first solve Eqs. (13c) and (13d) under
the assumption that 
 is much larger than any other rate in
the system so that, in effect, we approximate these density-
matrix elements by their equilibrium values (i.e., e−
t → 0),
obtaining

τ̄13
∼= − i




[
	32τ12 − 	31

2
(1 + fm)(3σ11 − η)

]
, (14a)

τ̄23
∼= i




[
	31

2
(1 + fm)τ21 − 	32(3σ11 − η)

]
. (14b)

We then replace τ13 and τ23 in Eqs. (13a) and (13b) with their
quasiequilibrium values [i.e., Eqs. (14)], take |	31| = |	32| =
	, and solve for τ12, again recognizing that 
 is greater than
any other rate in the system,

Re[τ12]

= 2Rη(1 + fm){R[5 + fm(2 + fm)] + 8γ2}
{R[5 + fm(2 + fm)] + 8γ2}2 + 64(2δ − αωm)2

, (15a)

Im[τ12]

= − 16Rη(1 + fm)(2δ − αωm)

{R[5 + fm(2 + fm)] + 8γ2}2 + 64(2δ − αωm)2
.

(15b)

Here, R, the photon absorption rate, is again defined as 	2/
.
Then, from Eqs. (15), it is straightforward to show that

Re[ρ(a0,b0)] = A sin[(ωhfs + 2δ − αωm)t + ψ], (16)

where

A = 2Rη(1 + fm)√
{R[5 + fm(2 + fm)] + 8γ2}2 + 64(2δ − αωm)2

,

(17a)

and

ψ = tan−1

( {R[5 + fm(2 + fm)] + 8γ2}
8(2δ − αωm)

)
. (17b)

To calculate the transmitted light intensity, we employ
Eq. (16) in Eq. (3) and follow Huang et al. [23] by recognizing
that the modulated laser intensity mixes with the modulated
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absorption cross section. As a consequence, the transmitted
light intensity IT is given by

IT = Ic + 2Ise
−κo(1−2〈Sz〉){1 − cos[ωhfs + 2δ]t}

× exp{−2κo cos(ωmt)A sin[(ωhfs + 2δ − αωm)t + ψ]}.
(18)

For the modulation frequencies of interest (i.e., ωm � ωhfs),
we can replace cos(ωmt) sin[(ωhfs + 2δ − αωm)t + ψ] by
sin[(ωhfs + 2δ)t + ψ]. We then expand the second exponential
in Eq. (18) and average over an intensity modulation period
ωo (i.e., ωo ≡ ωhfs + 2δ),

IT = Ic + 2Ise
−κo(1−2〈Sz〉)

∞∑
n=0

(−2κoA)n

n!

ωo

2π

×
∫

[1 − cos(ωot)]sinn(ωot + ψ)dt. (19)

Retaining terms of (κoA)2 or lower, which represents a rea-
sonably good approximation for the experimental conditions
of most interest, Eq. (19) becomes

IT
∼= Ic + 2Ise

−κo(1−2〈Sz〉)(1 + κoA sin ψ + κ2
oA2

)
, (20)

so that the CPT resonance amplitude �ICPT is given by

�ICPT = 2Ise
−κo(1−2〈Sz〉)(κoA sin ψ + κ2

oA2
)
, (21a)

and the CPT contrast becomes

�ICPT

IT

= 2(Is/Ic)e−κo(1−2〈Sz〉)(κoA sin ψ + κ2
oA2

)
1 + 2(Is/Ic)e−κo(1−2〈Sz〉)

. (21b)

Figure 7 shows the CPT line shapes predicted by Eq. (21a)
for a number of modulation frequencies with Io/Is = 0.45
and γ2 = 320 s−1 [see Fig. 3(b)], and as will be discussed
in connection with Fig. 6, γ1 = 63 s−1. Clearly, the theory
is qualitatively consistent with the experimental observations:

For modulation frequencies less than γ1, the CPT line shape
increases in amplitude; and for modulation frequencies greater
than γ2, the CPT line shape splits into a doublet with the
doublet’s resonant frequencies equal to ±ωm. Furthermore,
the amplitude of the CPT resonance reaches a maximum for
ωm ∼ γ2.

Figure 6 shows a comparison between theory and ex-
periment for the CPT contrast as a function of modulation
frequency, allowing two free theoretical parameters: γ1 and
γ2. We note, however, that γ1 is constrained to be the same
value for the two different light intensities. For the best fit
in the two cases, we set γ1 = 63 s−1 (consistent with the
anticipated range of values for this parameter: 50–110 s−1),
and R is defined through its relation to Io/Is [see Fig. 3(b)].
Overall, the agreement between theory and experiment is very
good with γ2 = 723 s−1 for Io/Is = 0.079 and γ2 = 2640 s−1

for Io/Is = 0.45, and we take this as fairly strong evidence
that the theory captures the important physical processes
generating the atomic dynamics in the presence of polarization
modulation. It also, however, points out the most limiting
feature of the analytical theory: The γ2 we require to get
good agreement for the CPT amplitudes is larger than the
γ2 we require to reproduce the CPT linewidths (i.e., Fig. 7),
and γ2 varies as a function of R. This limiting feature of
the analytical theory, though, should not be too surprising.
In making the filtered-response approximation [i.e., Eq. (12a)
with the specific choice of n = 1], we have called on γ2 to
perform double duty: It must describe the random dephasing
of the ensemble, and it must act as a bridge between the
secular approximation (i.e., ωm → ∞) and the quasistatic
approximation (i.e., ωm → 0). Consequently, we might have
anticipated that this single parameter would have difficulty
accomplishing both tasks. In future experimental and theo-
retical work, it will prove enlightening to more fully explore
the filter-response approximation, and to better understand the
relationship between γm and γ2 in the approximation.

FIG. 7. Theoretical CPT line shapes under
polarization modulation. Similar to the experi-
mental findings, we see that for ωm < γ1, the CPT
amplitude increases with modulation frequency.
Furthermore, when ωm > γ2, the CPT resonance
splits into a doublet, whose amplitude decreases
with increasing modulation frequency.
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IV. DISCUSSION

As noted in Sec. I, one of our primary motivations for
studying the effects of polarization modulation on CPT signals
was to better understand the manner in which stochastic
processes enter and influence atomic dynamics; recognizing
that polarization fluctuations may appear in a � system as a
consequence of microphonics or through the use of VCSEL
diode lasers [32]. The present paper shows that not only will
stochastic polarization fluctuations add noise N to a CPT
signal, but also the fluctuations will likely affect the CPT
signal amplitude S and quality factor Q. In other words, with
the performance of atomic clocks and atomic magnetometers
defined by Q(S/N ), polarization fluctuations will affect the
performance of such devices through all three parameters.

In order to gain some sense of how large the effects on
the product SQ might be, we first note that it is possible to
interpret the power spectrum of a stochastic process L(ωm)
in terms of the likelihood of a Fourier component of the
random process appearing in a long-time history of the
process. Thus, L(ωm)dωm can be taken as the probability that
a random process will exhibit Fourier components ranging
from ωm − dωm/2 to ωm + dωm/2. Furthermore, if we ignore
the transients induced in the atomic system when the rate
of polarization fluctuations changes (i.e., when ωm → ωm +
dωm), then we can make a simple application of the ergodic
theorem in order to write averages over time in terms of
ensemble averages over ωm. This latter approximation is
valid if the correlation time of the stochastic process τc is
much longer than the dephasing time of the atomic system
but certainly becomes problematic as the correlation time
shortens. Nevertheless, this approximation should be workable
for our present purposes since we are only interested in gaining
an illustrative understanding of stochastic-field effects in the
atomic linewidth regimes of most interest. Consequently, we
write the CPT line shape in the presence of polarization
fluctuations very roughly as

�ICPT ∼ 2Ise
−κo(1−2〈Sz〉)

×
∫ ∞

−∞
L(ωm)

(
κoA sin ψ + κ2

oA2)dωm. (22)

FIG. 8. Illustrative prediction of the CPT contrast as a function of
sideband detuning for several values of a broadband stochastic-field’s
correlation time for polarization fluctuations.

FIG. 9. Illustrative prediction of the relative change in the product
SQ as a function of the correlation time for laser polarization
fluctuations: Squares correspond to γ2 = 320 s−1, our measured
dephasing rate, while circles correspond to γ2 = 723 s−1, the
dephasing rate giving good experimental-theoretical agreement, in
Fig. 6, for Io/Is = 0.079.

Taking the power spectrum as a Lorentzian with correlation
time τc,

L(ωm) = τc/π

1 + (ωmτc)2
, (23)

Figure 8 shows several examples of the CPT line shape for
various values of τc, with γ1 = 63, γ2 = 320, and R = 251 s−1

(i.e., Io/Is = 0.079, the light intensity that maximized the
CPT contrast). Clearly, as the correlation time shortens, the
CPT line shape decreases in amplitude and broadens as fast
Fourier components in the power spectrum of the polarization
fluctuations lead to CPT doublets. Figure 9 shows the product
SQ found through Eq. (22) (i.e., SQτc) normalized to its value
in the absence of polarization fluctuations (i.e., SQ0). Here,
we see that, for (R + γ2)τc ∼ 10, there is a slight increase in
SQ as polarization fluctuations reduce the density of atoms in
the trapping state, but then, the product decreases for shorter
values of τc since fast Fourier components in the stochastic
process lead to a CPT doublet splitting and, hence, a reduction
in Q.

Obviously, given the approximations in obtaining Figs. 8
and 9, the results should be taken as illustrative and, at best,
semiquantitative. Nevertheless, they do capture the signifi-
cance of the problem: Broadband polarization fluctuations
in � systems can have a significant effect on CPT signals
and observed linewidths. In the future, we plan to examine
the full stochastic-field problem by introducing broadband
polarization noise into a CPT system and measuring SQ/N .
The results from that work should give experimenters a better
idea of how well they need to understand the magnitude and
origins of polarization noise in their basic and applied physics
experiments.
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APPENDIX: ELECTRON-SPIN POLARIZATION
MODULATION

As noted in the main text, laser polarization modulation has
two effects on a CPT signal: It modulates the coherence, which
is the source of CPT, and it modulates the population density in
trapping states, parametrized in the case of the alkali metals by
〈Sz〉, the average alkali-metal electron-spin polarization in the
ground state. While, in general, these two effects are coupled
(i.e., variations in the 0-0 coherence drive variations in 〈Sz〉,
and variations in 〈Sz〉 affect the number of atoms participating
in the 0-0 coherence), our theory separates the two. Thus, we
consider the effect of polarization modulation on 〈Sz〉 in the
absence of coherence, and we then employ the average value of
〈Sz〉 over a modulation half cycle to account for the fractional
population of atoms participating in the 0-0 coherence. In
this Appendix, we consider the first of these problems
(i.e., the determination of the average value of 〈Sz〉 during
modulation).

For vapor-phase atoms described by a density matrix ρ, 〈Sz〉
equals Tr[ρSz] [29] and to compute the temporal variation of
〈Sz〉 under polarization modulation, we will assume uniform
relaxation of the ground-state Zeeman sublevels [33]. While
this is a fair assumption in situations where relaxation is
dominated by diffusion, in our experiments relaxation more
likely proceeds though electron randomization arising from
Rb/N2 collisions [23]. Nevertheless, at the present theory’s
level of approximation, the assumption of uniform relaxation
is reasonable, and with it the analysis is greatly simplified.
Consequently, ignoring repopulation pumping [8] due to the
relatively high buffer-gas pressure in our experiments, and
the concomitant fast rate of excited-state depolarization and

quenching [34], we have

〈Ṡz〉 = −
(

	2



+ γ1

)
Sz + ξ	2

2

, (A1)

where 	 is the optical Rabi frequency, 
 is the 5 2P1/2 decay
rate, γ1 is the (longitudinal) uniform relaxation rate among
the ground-state Zeeman sublevels, and ξ is the circularly
polarized photon’s spin (i.e., s+ ⇒ ξ = +1 and s− ⇒ ξ =
−1). Solving Eq. (A1), we obtain

〈Sz〉 = ξR

2(R + γ1)
+ Be−(R+γ1)t , (A2)

where R is defined as 	2/
 and is equal to the photon-
absorption rate.

To determine B, we note that for square-wave polarization
modulation, if the laser switches between circular polarization
states at the rate 2/Tm, where Tm is the modulation period,
then 〈Sz(t = 0)〉 = −〈Sz(t = Tm/2)〉. With this as the initial
condition, we then find that

〈Sz〉 =
(

ξR

R + γ1

)(
1

2
− e−(R+γ1)t

1 + e−(R+γ1)Tm/2

)
. (A3)

Averaging 〈Sz〉 over a half-modulation cycle then yields

〈Sz〉 = 1

2

(
ξR

R + γ1

)[
1 − 2

π

(
ωm

R + γ1

)
tanh

(
π (R + γ1)

2ωm

)]
.

(A4)

For an alkali-metal atom with nuclear spin I , the fraction
of ground-state atoms contributing to the 0-0 ground-state
coherence η can be written approximately as

η = 1

2I + 1
(1 − 2	s · 〈 	S〉), (A5)

where 	s is the photon spin with eigenvalue ξ . For present
purposes, where the photon spin is either parallel or an-
tiparallel to the atom’s quantization axis, we have η =
(1 − 2|〈Sz〉|)/(2I + 1).
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