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Multipolar blackbody radiation shifts for single-ion clocks
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Appraising the projected 10−18 fractional uncertainty in the optical frequency standards using singly ionized
ions, we estimate the blackbody radiation (BBR) shifts due to the magnetic dipole (M1) and electric quadrupole
(E2) multipoles of the applied external electromagnetic field. Multipolar scalar polarizabilities are determined
for the singly ionized calcium (Ca+) and strontium (Sr+) ions using the relativistic coupled-cluster method,
though the theory can be exercised for any single-ion clocks. The expected energy shifts for the respective clock
transitions are estimated to be 4.38(3) × 10−4 Hz for Ca+ and 9.50(7) × 10−5 Hz for Sr+. These shifts are large
enough and may be a prerequisite for the frequency standards to achieve the foreseen 10−18 precision goal.
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I. INTRODUCTION

Optical transitions with ultranarrow frequencies in the
single positively charged ions that use advanced laser cooling
and trapping techniques are of current interest for frequency
standards [1–3]. Some of the successful single-ion optical
atomic clocks are Hg+ [4,5], Ca+ [6], Sr+ [7,8], Al+ [3,9],
Yb+ [10], and so on, and among these the fractional uncertainty
in Hg+ and Al+ has already reached 10−17 [3]. A new range
of experiments are also proposed for other ions like Ba+
[11,12], Ra+ [13,14], In+ [15,16], and Yb+ [17]. More precise
frequency standards will open up possibilities to study the
underlying physics related to fundamental constants, probing
new elementary physics, and, more importantly, it can help in
improving the present-day global positioning systems and also
in tracking deep-space probes [1,5,18–20].

One of the major fortifications to attain smaller fractional
uncertainties in the optical frequency standard measurements
using ions is the accurate estimation of blackbody radiation
(BBR) shifts. The considered standard frequency is shifted
from the atomic resonance value due to the interaction of the
ion with the external stray electromagnetic fields present in
and around the experimental apparatus [21]. The BBR shift is
caused by the isotropic field radiated due to finite temperature
of the apparatus [21–23].

The dominant contribution to the BBR-induced energy shift
is from the electric dipole (E1) component of the radiation
field, which has been gauged by many groups for a number
of ions using the relativistic theories [13,24–29]. However,
there is absolutely no rigorous estimate of the BBR shifts due
to higher multipoles for any proposed scheme. Following the
derivations for the E1 BBR shift in Refs. [21–23], Porsev and
Derevianko have given a generalized derivation [26] to deduce
the BBR shifts spawned by any multipole component of the
electromagnetic field. In their work, formulas for polarizability
in the general case were also presented.

Two of the proficiency gadgets for the optical frequency
standards are with a single calcium ion (43Ca+) [30,31] trapped
in a Paul trap and with a strontium ion (88Sr+) confined in
an endcap trap [7,32]. The considered clock transitions in
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these ions are the s1/2 → d5/2 transitions operating in the
optical regime; the principles are also similar to the proposed
Ba+- [11,12], Ra+- [13,14], and Yb+-based [10,17] frequency
standards. A major advantage of using the 43Ca+ ion is that the
radiation required for cooling, repumping, and clock transition
is easily produced by a nonbulky solid state or diode laser [30].
The reported frequency measurements of the transition for
frequency standard in 88Sr+ have achieved a spectral resolution
of better than 1.5 Hz [7,32–34]. As has been proclaimed,
these experiments have the dexterity to diminish the relative
systematic uncertainties to a level of 10−17 or below [7,13,14].
In such a scenario, it is compelling to estimate the BBR shifts
caused by the higher multipoles, especially through the M1 and
E2 channels for the experiments comprising the s1/2 → d5/2

transitions as in the above ions. Such an attempt was made by
Porsev and Derevianko [26] for divalent atoms like Mg, Ca, Sr,
and Yb. In this paper, we extend the work to preview the BBR
shifts commenced by the M1 and E2 multipoles in the ions and
in particular for the 43Ca+ and 88Sr+ ions where efficacious
experiments are in progress to reduce the uncertainties over
their previous measurements [6,7,30,32–34].

The paper is organized as follows. First, we discuss the
inception of the BBR shifts which embody the M1 and E2
contributions of the radiation field. We then discuss the method
of calculation in the 43Ca+ and 88Sr+ ions, subsequently
presenting the results for the above multipolar contributions
to the BBR shifts in these ions before summarizing the work.
Unless stated otherwise, we use the conventional system of
atomic units (a.u.), in which e,me, 4πε0, and the reduced
Planck constant h̄ have the numerical value 1.

II. THEORY

The interaction Hamiltonian between an electron in an
atomic system with the external propagating electromagnetic
field in the Coulomb gauge coupling is given by

V (r,ω) = −c α · A(r,ω)

= −c (α · ε̂) exp (ik · r), (1)

where α is the Dirac matrix in operator form, ω is the angular
frequency of the field, and k = kk̂ and ε̂ are its wave vector
and polarization direction, respectively. In the presence of
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this interaction, the energy shift that can occur for an atomic
energy level |�n〉 with energy En = ωn can be approximated
to Refs. [22,23],

δEn(ω) = 1

2

∑
m�=n

|Vnm(r,ω)|2
[

ωn − ωm

(ωn − ωm)2 − ω2

]
. (2)

Using the multipolar expansion and in terms of the traditional
multipole moments Qλ

LM (k · r), we have [35]

(α · ε̂) exp (ik · r) = −
∑
LM

(kL)(iL+1+λ)

(2L + 1)!!

[
Yλ

LM (k̂) · ε̂
]

√
4π (2L + 1)(L + 1)

L
Qλ

LM (k · r),

= −
∑
LM,l

(kL)(iL+1+λ)

(2L + 1)!!
Yλ

LM (kl)

√
4π (2L + 1)(L + 1)

L
Qλ

LM (rl), (3)

where kl is the component of k projecting toward the lth unit
vector of ε̂ and λ = 1 and λ = 0 correspond to the electric and
magnetic multipoles, respectively.

Since the blackbody radiation is isotropic, each component
of the electric and magnetic fields is related to the spectral
energy density as

u(ω,T ) = 3

8π
E2

l (ω) = 3

8π
B2

l (ω)

= 1

π2c3

ω3

exp(ω/kBT ) − 1
, (4)

B = ∇ × A and E = iω
c

A, the energy shift after averaging
over ω for all the polarization and propagation directions is
given as [23,26]

δE(λ,L)
n = − (αkBT )2L+1

2Jn + 1

∑
m�=n

∣∣〈�n|
∣∣Qλ

L

∣∣|�m〉∣∣2

× FL

(
ωmn

kBT

)
, (5)

where Jn is the angular momentum of state |�n〉 and

FL(y) = 1

π

L + 1

L(2L + 1)!!(2L − 1)!!

×
∫ ∞

0

(
1

y + x
+ 1

y − x

)
x2L+1

ex − 1
dx. (6)

Here argument y = ωmn/(kBT ) = (ωn − ωm)/(kBT ). The
function FL(y) is a universal function applicable to all the
atoms with argument y depending on the range of the atomic
parameters. These functions were first introduced by Farley
and Wing [23] in the E1 case and were extended in a general
form by Porsev and Derevianko [26]. In this work, we present
simpler forms for the energy-shift expressions. The limit
|y| � 1 which corresponds to the case when the transition
energy is much larger than the temperature (kBT ) is of our
current interest.

Substituting values from Eq. (A4) (see Appendix A) in
Eq. (5), the BBR shift for L = 1 can be expressed as

δE(λ,1)
n = −1

2

[
8π3α3(kBT )4

45(2Jn + 1)

] ∑
m�=n

∣∣〈�n|
∣∣Qλ

1

∣∣|�m〉∣∣2

ωmn

.

(7)

Using the general definition of the scalar polarizability
given by

α
Qλ

L
n = C

Qλ
L

n

∑
m�=n

∣∣〈�n|
∣∣Qλ

L

∣∣|�m〉∣∣2

En − Em

(8)

with C
Qλ

L
n = 2

α2(λ−1)(2L+1)(2Jn+1) , the BBR shift for the E1
channel can be expressed as

δEE1
n = −1

2

4π3α3

15
(kBT )4αE1

n

= −1

2

〈
E2

E1(ω)
〉
αE1

n , (9)

whereas for the M1 channel it can be reduced to

δEM1
n = −1

2

4π3α5

15
(kBT )4αM1

n

= −1

2
α2〈B2

M1(ω)
〉
αM1

n , (10)

where αE1
n , αM1

n , 〈E2
E1(ω)〉, and 〈B2

M1(ω)〉 are the scalar
E1 polarizability, scalar M1 polarizability, the averaged E1-
induced electric field, and the averaged M1-induced magnetic
fields, respectively.

Similarly, substituting values from Eq. (A5) (see Ap-
pendix A) in Eq. (5), the BBR shift for L = 2 comes out
as

δE(λ,2)
n = −1

2

[
16(απ )5(kBT )6

945(2Jn + 1)

] ∑
m�=n

∣∣〈�n|
∣∣Qλ

2

∣∣|�m〉∣∣2

ωmn

,

(11)

which corresponds to the E2 and M2 channels.
Therefore, the BBR shift for the E2 channel is given by

δEE2
n = −1

2

8(απ )5(kBT )6

189(2Jn + 1)
αE2

n

= −1

2

〈
E2

E2(ω)
〉
αE2

n , (12)

where αE2
n is the scalar E2 polarizability and 〈E2

E2(ω)〉 is the
averaged E2-induced electric field.

The above energy shifts in the the scale of room temperature
T = 300 K now are given by

δEE1
n (300K) = −1

2
(831.9V/m)2

[
T (K)

300

]4

αE1
n , (13)

δEM1
n (300K) = −1

2
(2.77 × 10−6tesla)2

[
T (K)

300

]4

αM1
n ,

(14)

and

δEE2
n (300K) = −1

2
(7.2 × 10−3V/m)2

[
T (K)

300

]6

αE2
n , (15)
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due to the E1, M1, and E2 multipoles, respectively, given in
Hz where the polarizabilities are taken in a.u..

Accumulating all the above expressions, the BBR shifts
in Hz due to both the M1 and E2 channels for an atomic
transition |�f 〉 → |�i〉 in the scale of the room temperature
turns out to be

δEM1
f →i = δEM1

f − δEM1
i = −1

2
(2.77 × 10−6tesla)2

×
[
T (K)

300

]4 (
αM1

f − αM1
i

)
(16)

and

δEE2
f →i = δEE2

f − δEE2
i = −1

2
(7.2 × 10−3V/m)2

×
[
T (K)

300

]6 (
αE2

f − αE2
i

)
, (17)

respectively.

III. METHOD OF CALCULATION

In order to determine M1 and E2 polarizabilities in the
considered systems which have one valence electron each
outside closed core, we, first, calculate the Dirac-Fock (DF)
wave function (|	0〉) for the corresponding closed core and
then append the valence orbital (n) to define a new reference
state (i.e., |	n〉 = a

†
n|	0〉) in the spirit of the Fock-space

approach. To obtain the exact atomic wave function (ASF) for
the closed core with the valence electron n (|�n〉), correlation
effects through the core-virtual, core-valence, and conjointly
the core-virtual and valence-virtual excitations are included in
the |	n〉 reference state using wave operators 
c, 
cn, and 
n,
respectively, i.e.,

|�n〉 = a†
n
c|	0〉 + 
cn|	n〉 + 
n|	n〉. (18)

We adopt the relativistic coupled-cluster (RCC) method in
the Fock-space representation to determine ASFs. With T

and Sn representing excitation operators for the electrons in
the closed core and for the valence electron n in conjunction
with the closed core, respectively, the above ASF in the RCC
framework can be encapsulated in a form [12,13,27,28,36–38]

|�n〉 = eT {1 + Sn}|	n〉, (19)

where |�0〉 = 
c|	0〉 = eT |	0〉 can be treated as ASF for
the closed core, while other wave operators are given by

cn|	n〉 = eTn |	n〉 and 
n|	n〉 = eT Sn|	n〉. Subscript n is
used for Tn to represent 
cn which implies that the T operator
also involves excitations of the core electrons to the valence
orbital n. All these correlation effects are coupled in the course
of the |�n〉 ASF determination.

The equations determining the coupled-cluster amplitudes
and energies are accustomed in compact forms as〈

	K
0

∣∣{Ĥ eT }|	0〉 = δ0,K�Ecorr (20)

and〈
	K

n

∣∣{Ĥ eT }{1 + Sn}|	n〉 = 〈
	K

n

∣∣1 + Sn|	n〉
× 〈	n|{Ĥ eT }{1 + Sn}|	n〉

= 〈
	K

n

∣∣δn,K + Sn|	n〉�En, (21)

where K = 1, 2 . . . represent the single, double, and so
on, excited configurations, respectively, with respect to their
corresponding reference states in both the equations, Ĥ eT

denotes the connected terms of the Dirac-Coulomb (DC)
Hamiltonian (H ) with the T operators, and �Ecorr and �En

are the correlation energy for the closed core and the energy
required to attach the valence electron n to the closed core
[which is negative of the ionization potential (IP) of the valence
electron n], respectively. It can be noted that the reference
states |	0〉 in Eq. (20) and |	n〉 in Eq. (21) contain different
numbers of particles, hence, the Hamiltonian used in the
respective equations describe different numbers of particles
in our Fock-space representation. We have considered here
contributions only from the singly and doubly excited states
by defining T and Sn operators as

T = T1 + T2

and Sn = S1n + S2n. (22)

To improve the quality of the results, we also construct
important valence triple excitations by contracting T2 and
S2n operators with the Coulomb interaction operator (V ) in
a perturbative procedure in the same spirit as discussed in
some of the earlier works (e.g., see Refs. [12,13,27,28,36–39])
and include their contributions to �En in the above equations
self-consistently. This approach is commonly known as the
CCSD(T) method.

To calculate the scalar polarizabilities, it is precedence to
adopt an approach similar to [27,28] or it would be prudent to
follow a procedure given in Ref. [29]. Such approaches may be
required to achieve better accuracies. Procuring the derivations
in Eq. (B2) (see Appendix B), we can now write

α
Qλ

L
n = α

Qλ
L

n (c) + α
Qλ

L
n (nc) + α

Qλ
L

n (n), (23)

where α
Qλ

L
n (c), α

Qλ
L

n (nc), and α
Qλ

L
n (n) are referred to as core,

core-valence, and valence correlation contributions, respec-
tively.

In the sum-over-states approach as given in Eq. (8), it is
convenient to determine the low-lying singly excited states
|�m〉 with respect to the |�n〉 states of our interest for both the
considered ions using the above RCC method. Contributions
from these states correspond to the above-mentioned valence
correlation contributions and are the dominant ones compared
to the contributions arising from higher-level excited states
which can be estimated from a lower-order perturbation theory.
In contrast to this contribution, it is not possible to estimate
the core and core-valence correlation contributions in the
sum-over-states approach. As stated above, the RCC methods
described in Refs. [27–29] would be more suitable to account
these contributions rigorously. Nevertheless, reasonably accu-
rate core and core-valence contributions are sufficient enough
for estimation of the BBR shifts, which is the primary intent
of the work. This is for two reasons: First, the core correlation
effect may be notable but in the BBR shift estimation this
contribution cancels out between two states involved in a
transition. Second, it is observed in the earlier works that
the core-valence contributions are minuscule in the dipole
polarizability calculations [24,25,27,28], which is also the case
for the considered multipoles, as has been found below. So it
is not necessary to employ a powerful method at the cost
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Core−valence correlation evaluating MBPT diagrams
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Core correlation evaluating MBPT diagrams

FIG. 1. Few important many-body perturbation theory (MBPT)
diagrams used for the core-valence and core correlations estimation.

of heavy computation to determine these small contributions.
We determine both the core and core-valence correlation
contributions to the M1 and E2 polarizabilities using the third-
order relativistic many-body perturbation theory [MBPT(3)].
In this approach, we rewrite Eq. (8) in a form similar to
Refs. [40,41] following the derivation given in Appendix C
as

α
Qλ

L
n = 2

α2(λ−1)
〈�n|Qλ

L

∣∣�(1)
n

〉
, (24)

where |�(1)
n 〉 can be obtained by solving the following

inhomogeneous equation:

(H − En)
∣∣�(1)

n

〉 = (E(1)
n − Qλ

L)|�n〉, (25)

with E(1)
n = 〈�n|Qλ

L|�n〉, which is similar to the first-order
perturbation equation. Some of the important diagrams repre-
senting this equation for the core and core-valence correlation
effects evaluation are shown in Fig. 1.

The reduced transition matrix element of a physical oper-
ator Qλ

L between |�f 〉 and |�i〉 in our approach is calculated
using the expression

〈�f |∣∣Qλ
L

∣∣|�i〉√〈�f |�f 〉〈�i |�i〉
= 〈	f ||{1 + S

†
f }Qλ

L{1 + Si}||	i〉√
NfNi

,

(26)

where Qλ
L = eT †

Qλ
LeT and Nn = 〈	n|eT †

eT +
S
†
ne

T †
eT Sn|	n〉 involve two nontruncating series in the

above expression. We have mentioned concisely the
procedure for calculating these expressions in the Appendix
of Ref. [36]. We evaluate them keeping terms at least up to
fourth order in Coulomb interaction.

The single-particle orbital reduced matrix elements for the
corresponding Qλ

L = ∑
qλ

L operators are as follows:

〈κf |∣∣q0
1

∣∣| κi〉 = (κf + κi)〈−κf || C(1) || κi〉

×
∫ ∞

0
drr[Pf (r)Qi(r) + Qf (r)Pi(r)] (27)

and

〈κf |∣∣q1
2

∣∣|κi〉 = 〈κf || C(2) || κi〉

×
∫ ∞

0
drr2[Pf (r)Pi(r) + Qf (r)Qi(r)], (28)

where P (r) and Q(r) represent the radial parts of the large
and small components of the single-particle Dirac orbitals,
respectively. The reduced Racah coefficients are given by

〈κf || C(k) || κi〉 = (−1)jf +1/2
√

(2jf + 1)(2ji + 1)

×
(

jf k ji

1/2 0 −1/2

)
π

(
lκf

,k,lκi

)
, (29)

with

π (l,m,l′) =
{

1 for l + m + l′ = even

0 otherwise.
(30)

We have used Gaussian-type orbitals (GTOs) to construct
the single-particle orbitals for the Dirac-Fock (|	0〉) wave-
function calculation. The large and small components of the
Dirac orbitals in this case are expressed as

Pκ (r) =
∑

k

cP
k rlκ e−αkr

2
(31)

and

Qκ (r) =
∑

k

c
Q
k rlκ

(
d

dr
+ κ

r

)
e−αkr

2
, (32)

where the summation over k is for the total number of GTOs
used in each symmetry and cP

k and c
Q
k are the normalization

constants for the large and small components, respectively, and
we use the ( d

dr
+ κ

r
) operator to expand the small component

Dirac orbitals to maintain the kinetic balance condition with
its large component. In the present calculations, we have
considered nine relativistic symmetries (up to g symmetry) and
28 GTOs for each symmetry to generate the orbitals. In order
to optimize the exponents to describe orbitals from various
symmetries in a smooth manner, we use the even tempering
condition

αk = α0β
k−1, (33)

where α0 and β are two arbitrary parameters that are chosen
suitably for different symmetries.

We have considered α0 = 7.5 × 10−4 for all the symmetries
and βs are optimized to be 2.56, 2.58, 2.61, 2.75, and 2.83
for the s, p, d, f , and g orbitals, respectively. For the RCC
calculations, we have considered excitations up to first 16s,
16p, 16d, 14f , and 13g orbitals while contributions from
other virtual orbitals having large energies are neglected.

IV. RESULTS AND DISCUSSIONS

To verify how accurately the present method can reproduce
energies and E(1),λ

n s, we have given these results in Table I for
the considered states in both Ca+ and Sr+ and compared them
with the corresponding available experimental values. As seen
in this table, our results are in sufficient agreement with the
measured values. Therefore, we can expect the other quantities
estimated using our method to be of similar accuracy. As has
been emphasized before, precise estimation of the BBR shifts
due to M1 and E2 transitions in Ca+ and Sr+ are the focus of
this work. There are two uncertainties in these estimations: (i)
the errors associated with the considered excitation energies
(EEs) and (ii) the inaccuracies from the estimated transition
matrix elements. As can be noted from Table I, our calculated
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TABLE I. Experimental and calculated ionization potentials (En)
in cm−1 and E(1),λ

n in a.u. for different states in Ca+ and Sr+.

State Experiment This work

|�n〉 En [42] E(1),1
n En E(1),0

n E(1),1
n

Ca+ 4s1/2 95751.87 95758.57 0.0073 0.0
3d5/2 82040.99 1.83(1)a 80983.28 0.0219 1.894

Sr+ 5s1/2 88965.18 88982.51 0.0073 0.0
4d5/2 74128.94 2.6(3)b 73554.86 0.0219 2.945

aReference [43].
bReference [44].

energies are in reasonable agreement with the experimental
values. However, the associated uncertainties are a little large
for the d5/2 states. For this reason and to abate the uncertainties
in the evaluation of the BBR shift for the atomic clock
application, we use the experimental EEs from the NIST
database [42] for the important singly excited states in the
valence contribution. In Tables II and III, contributions to the
M1 and E2 matrix element calculations are given in terms of
important RCC terms for various transitions in Ca+ and Sr+,
respectively. We also estimate uncertainties from the neglected
contributions as (i) the Breit interaction, (ii) the neglected triple
excitations, and (iii) the inactive orbitals that are not accounted
for in the RCC method (given as contributions from basis).

TABLE II. Contributions to the M1 and E2 matrix elements from the important RCC terms containing the lowest-order contributions (in
a.u.) in Ca+. Estimated uncertainties from various neglected contributions (absolute values) are also given. Numbers after four decimal places
are neglected.

Uncertainty (absolute values)

Transition DF Qλ
L-DF Qλ

LS1i S
†
1f Qλ

L Qλ
LS2i S

†
2f Qλ

L Others Breit Triples Basis

M1 channels

4s1/2 → 5s1/2 ∼0.0 0.0012 0.1044 −0.0898 ∼0.0 ∼0.0 −.0140 ∼0.0 ∼0.0 0.0003
4s1/2 → 6s1/2 ∼0.0 0.0008 0.0482 −0.0419 ∼0.0 ∼0.0 0.0058 ∼0.0 ∼0.0 0.0002
4s1/2 → 3d3/2 ∼0.0 0.0006 0.0001 ∼0.0 ∼0.0 ∼0.0 0.0001 ∼0.0 ∼0.0 0.0001
4s1/2 → 4d3/2 ∼0.0 0.0003 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.0001
4s1/2 → 5d3/2 ∼0.0 0.0001 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.0001
4s1/2 → 6d3/2 ∼0.0 0.0001 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.0001
3d5/2 → 3d3/2 1.5491 −0.0129 −0.0014 −0.0010 0.0001 −0.0001 0.0095 0.0001 0.0017 0.0065
3d5/2 → 4d3/2 0.0011 0.0025 0.1466 −0.1261 ∼0.0 ∼0.0 −0.0201 0.0002 ∼0.0 0.0008
3d5/2 → 5d3/2 0.0001 0.0040 0.0611 −0.0583 ∼0.0 ∼0.0 −0.0039 0.0001 ∼0.0 0.0009
3d5/2 → 6d3/2 ∼0.0 0.0030 0.0374 −0.0381 ∼0.0 ∼0.0 0.0007 0.0001 ∼0.0 0.0009
3d5/2 → 4d5/2 ∼0.0 0.0014 0.8215 −0.7085 ∼0.0 ∼0.0 −0.1104 ∼0.0 ∼0.0 0.0014
3d5/2 → 5d5/2 ∼0.0 0.0098 −0.3426 0.3284 ∼0.0 ∼0.0 0.0232 ∼0.0 0.0001 0.0017
3d5/2 → 6d5/2 ∼0.0 0.0035 0.2101 −0.2148 ∼0.0 ∼0.0 0.0032 ∼0.0 ∼0.0 0.0012
3d5/2 → 5g7/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
3d5/2 → 6g7/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

E2 channels

4s1/2 → 3d3/2 9.7672 −0.0075 −1.4539 −0.2751 −0.0431 −0.0072 0.1396 0.0071 0.0153 0.0276
4s1/2 → 4d3/2 12.7033 −0.0026 1.5117 −1.3596 0.0015 −0.0131 0.3312 0.0092 0.0071 0.0637
4s1/2 → 5d3/2 4.2184 −0.0016 −0.2634 −0.1176 −0.0106 −0.0007 −0.0654 0.0001 0.0045 0.0354
4s1/2 → 6d3/2 2.6120 0.0010 −0.3452 −0.0037 −0.0010 −0.0085 0.0324 0.0008 0.0053 0.0539
4s1/2 → 4d5/2 15.3802 0.0035 1.8448 −1.6652 0.0020 −0.0163 −0.2490 0.0144 0.0301 0.0155
4s1/2 → 5d5/2 5.1556 0.0021 −0.3249 −0.1454 −0.0008 0.0131 0.0503 0.0004 0.0036 0.0460
4s1/2 → 6d5/2 3.3798 0.0014 −0.4239 −0.0052 −0.0012 −0.0106 0.0397 0.0016 0.0031 0.0553
3d5/2 → 4s1/2 12.1082 −0.0099 −0.3377 −1.7472 −0.0076 −0.0530 0.1723 0.0121 0.0152 0.0327
3d5/2 → 5s1/2 7.4423 0.0045 0.6277 −2.9089 0.0003 0.0191 −0.1950 0.0228 0.0011 0.0261
3d5/2 → 6s1/2 1.5126 0.0028 0.0014 −0.3526 0.0002 0.0113 0.0443 0.0020 0.0001 0.0179
3d5/2 → 3d3/2 5.0892 −0.0140 −0.5895 −0.5772 −0.0425 −0.0428 0.0768 0.0073 0.0089 0.0238
3d5/2 → 4d3/2 5.4910 0.0052 0.6682 −1.7138 0.0144 0.0112 −0.1562 0.0098 0.0091 0.0311
3d5/2 → 5d3/2 1.5620 0.0030 −0.1241 −0.1683 0.0092 0.0058 0.0924 0.0011 0.0007 0.0182
3d5/2 → 6d3/2 1.2119 0.0025 −0.1270 −0.0689 0.0067 0.0039 0.0509 0.0006 0.0006 0.0088
3d5/2 → 4d5/2 10.9736 0.0108 1.3324 −3.4267 0.0289 0.0225 −0.3115 0.0172 0.0243 0.0085
3d5/2 → 5d5/2 3.1174 0.0064 −0.2496 −0.3390 0.0184 0.0116 0.1848 0.0023 0.0134 0.0143
3d5/2 → 6d5/2 2.4256 0.0052 −0.2547 −0.1393 0.0134 0.0078 0.1020 0.0015 0.0026 0.0159
3d5/2 → 5g7/2 2.4225 −0.0001 0.0105 −0.8315 −0.0005 −0.0007 −0.0202 0.0221 ∼0.0 0.0021
3d5/2 → 6g7/2 1.6175 −0.0006 0.0042 −0.5644 −0.0005 −0.0008 −0.0154 0.0043 ∼0.0 0.0057
3d5/2 → 5g9/2 8.5489 −0.0003 0.0372 −2.9400 −0.0018 −0.0026 −0.0714 0.0225 ∼0.0 0.0275
3d5/2 → 6g9/2 5.7122 −0.0020 0.0149 −1.9955 −0.0020 −0.0029 −0.0547 0.0151 ∼0.0 0.0249
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TABLE III. Contributions to the M1 and E2 matrix elements from the important RCC terms containing the lowest-order contributions (in
a.u.) in Sr+. Estimated uncertainties from various neglected contributions (absolute values) are also given. Numbers after four decimal places
are neglected.

Uncertainty (absolute values)

Transition DF Qλ
L-DF Qλ

LS1i S
†
1f Qλ

L Qλ
LS2i S

†
2f Qλ

L Others Breit Triples Basis

M1 channels

5s1/2 → 6s1/2 ∼0.0 0.0011 0.1255 −0.1086 ∼0.0 ∼0.0 −0.0166 ∼0.0 ∼0.0 0.0021
5s1/2 → 7s1/2 ∼0.0 0.0007 0.0559 −0.0494 ∼0.0 ∼0.0 −0.0059 ∼0.0 ∼0.0 0.0013
5s1/2 → 8s1/2 ∼0.0 0.0005 0.0345 −0.0294 ∼0.0 ∼0.0 −0.0046 ∼0.0 ∼0.0 0.0011
5s1/2 → 9s1/2 ∼0.0 0.0004 0.0283 −0.0207 ∼0.0 ∼0.0 −0.0070 ∼0.0 ∼0.0 0.0010
5s1/2 → 4d3/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
5s1/2 → 5d3/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
5s1/2 → 6d3/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
5s1/2 → 7d3/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
4d5/2 → 4d3/2 1.5491 −0.0096 −0.0013 ∼0.0 0.0004 −0.0003 0.0067 0.0001 0.0007 0.0058
4d5/2 → 5d3/2 0.0052 0.0042 0.1081 −0.0944 ∼0.0 0.0001 −0.0142 0.0003 0.0001 0.0023
4d5/2 → 6d3/2 0.0028 0.0028 0.0458 −0.0429 ∼0.0 0.0001 −0.0025 0.0002 0.0001 0.0012
4d5/2 → 7d3/2 0.0022 0.0022 0.0306 −0.0301 ∼0.0 ∼0.0 −0.0009 0.0001 ∼0.0 0.0010
4d5/2 → 5d5/2 ∼0.0 0.0112 0.5953 −0.5282 ∼0.0 ∼0.0 −0.0752 ∼0.0 ∼0.0 0.0013
4d5/2 → 6d5/2 ∼0.0 0.0073 0.2535 −0.2416 ∼0.0 ∼0.0 −0.0162 ∼0.0 ∼0.0 0.0012
4d5/2 → 7d5/2 ∼0.0 0.0059 0.1708 −0.1701 ∼0.0 ∼0.0 −0.0046 ∼0.0 0.0001 0.0010
4d5/2 → 5g7/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0
4d5/2 → 6g7/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

E2 channels

5s1/2 → 4d3/2 12.9754 0.0052 −1.2114 −0.4403 −0.0685 −0.0343 0.0258 0.0093 0.0057 0.0551
5s1/2 → 5d3/2 13.4672 0.0022 1.4970 −1.8951 0.0080 −0.0100 −0.2047 0.0138 0.0061 0.0601
5s1/2 → 6d3/2 5.0007 0.0017 −0.03153 −0.2551 0.0103 −0.0030 0.0407 0.0013 0.0007 0.0482
5s1/2 → 7d3/2 3.1389 0.0015 −0.1127 −0.0122 0.0018 −0.0097 −0.2007 0.0002 0.0002 0.0421
5s1/2 → 4d5/2 15.9812 −0.0074 −1.4408 −0.5456 −0.0849 −0.0360 0.0435 0.0169 0.0086 0.0545
5s1/2 → 5d5/2 16.3892 0.0032 1.8133 −2.3191 0.0103 −0.0139 0.7570 0.0231 0.0067 0.0602
5s1/2 → 6d5/2 6.2615 0.0024 −0.0294 −0.3205 0.0039 −0.0136 0.0657 0.0022 0.0008 0.0570
5s1/2 → 7d5/2 3.8933 0.0022 −0.1278 −0.0193 0.0023 −0.0127 0.0260 0.0005 0.0002 0.0393
4d5/2 → 6s1/2 9.8215 0.0032 1.0103 −2.9297 0.0111 0.0275 −0.2295 0.0357 0.0007 0.0136
4d5/2 → 7s1/2 2.0783 0.0019 0.0015 −0.2697 0.0073 0.0154 0.0625 0.0028 0.0003 0.0169
4d5/2 → 8s1/2 0.9773 0.0013 0.0328 −0.0913 0.0054 0.0099 0.0268 0.0010 0.0001 0.0089
4d5/2 → 9s1/2 0.6311 0.0010 0.1267 −0.0603 0.0050 0.0074 0.0058 0.0009 ∼0.0 0.0091
4d5/2 → 4d3/2 7.2609 −0.0188 −0.5495 −0.5281 −0.0656 −0.0678 0.0510 0.0111 0.0005 0.0484
4d5/2 → 5d3/2 6.6393 0.0074 0.7200 −1.6470 0.0232 0.0174 −0.1326 0.0142 0.0002 0.0456
4d5/2 → 6d3/2 1.9530 0.0046 −0.0594 −0.1594 0.0154 0.0092 0.0616 0.0016 0.0001 0.0183
4d5/2 → 7d3/2 1.2132 0.0037 −0.0812 −0.0485 0.0126 0.0068 0.0284 0.0006 ∼0.0 0.0094
4d5/2 → 5d5/2 13.1991 0.0150 1.4235 −3.2899 0.0471 0.0345 −0.2622 0.0237 0.0065 0.0398
4d5/2 → 6d5/2 3.9065 0.0093 −0.1118 −0.3292 0.0312 −0.0184 0.1574 0.0032 0.0008 0.0460
4d5/2 → 7d5/2 2.4310 0.0075 −0.1561 −0.1027 0.0254 0.0136 0.0561 0.0055 0.0003 0.0242
4d5/2 → 5g7/2 3.6591 −0.0002 0.0264 −0.9298 −0.0016 −0.0022 −0.0252 0.0109 0.0001 0.0190
4d5/2 → 6g7/2 2.7932 0.0003 0.0086 −0.5747 −0.0016 −0.0023 −0.0166 0.0068 ∼0.0 0.0132
4d5/2 → 5g9/2 12.9370 −0.0006 0.0932 −3.2873 −0.0056 −0.0078 −0.0893 0.0385 ∼0.0 0.0315
4d5/2 → 6g9/2 9.8755 −0.0009 0.0305 −2.0320 −0.0059 −0.0083 −0.0560 0.0241 ∼0.0 0.0359

Contributions from the first and third sources are estimated
using the MBPT(2) method and the second contributions
are estimated contracting the perturbatively constructed triple
excitation operators with the conjugate of the T2 operators,
which are used to improve the calculations of the energies
but are not available explicitly for the property evaluation, as
shown in Fig. 2. Contributions in estimating the scalar M1
and E2 polarizabilities from the above matrix elements with

their uncertainties are given in Tables IV, V, VI, and VII.
Also, the contributions from the higher singly and doubly
excited states whose matrix elements are not given in the
above table are reported as αtail. These contributions and the
contributions from core and core-valence states are estimated
using MBPT(3) method. It can be noted from Tables IV, V,
VI, and VII that αtail contributions are diminutive and these
results can be calculated with reasonable accuracy using the
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FIG. 2. Some of the important diagrams which along with their
conjugates are used to estimate the contributions from the neglected
triple excitations.

MBPT(3) method. The large uncertainties in the determination
of the polarizabilities for a given state |�n〉 are from the lower
valence states and the uncertainties are evaluated for each of
these intermediate state |�m〉 using the relation

δα
Qλ

L
n (m) = 1

α2(λ−1)

∑
m�=n

〈�n|
∣∣Qλ

L

∣∣|�m〉 1

2L + 1

1

2Jn + 1

×〈�n|
∣∣Qλ

L|∣∣�m〉
En − Em

δ
(〈�n|

∣∣Qλ
L

∣∣|�k〉
)

= 2 × α
Qλ

L
n (m)

δ
(〈�n|

∣∣Qλ
L

∣∣|�m〉)
〈�n|

∣∣Qλ
L

∣∣|�m〉 , (34)

where 〈�n||Qλ
L||�m〉 and δ〈�n||Qλ

L||�m〉 are the absolute
value and uncertainties of the matrix elements, respectively.

Finally, uncertainties to the polarizability δα
Qλ

L
n (m) from each

intermediate state are added using the quadrature formula to

estimate the net uncertainty in α
Qλ

L
n .

We, first, present the static scalar αM1 polarizabilities in
the Ca+ and Sr+ ions in Tables IV and V, respectively, for
both the ground and d5/2 states. As seen in these tables, αM1s
are very small for the corresponding ground states in both the
ions; however, they are reported in this paper for completeness
of the results. Contributions from the core correlations are the
largest in determining these results and they will be canceled
while estimating the BBR shifts due to the M1 multipole.
Therefore, the ground-state M1 polarizability contributions
in the considered ions can be neglected. Essentially, the
contributions to the αM1 polarizabilities in the d5/2 states are
overwhelmingly dominant due to the very small energy gap of
their fine-structure partner states and the contributions from all
other states are small. The M1 matrix elements between the
d3/2-d5/2 transitions in the considered ions were also reported
earlier by us [45] and they seem to be very consistent. From
our calculations, we obtain αM1 for the 3d5/2 and 4d5/2 states
as −957(6) a.u. and −208(2) a.u. in the Ca+ and Sr+ ions,
respectively.

We now turn to the αE2 results. Our calculated results for
the ground and 3d5/2 states in Ca+ are given in Table VI.
Both results are comparatively large with opposite signs. The

TABLE IV. Contributions to the 4s1/2 and 3d5/2 scalar (αM1) static
polarizabilities in Ca+ and their uncertainties in a3

0 (a.u.). The values
of the corresponding |〈ψn||Q1

0||ψm〉|/α matrix elements are given in
ea0 (a.u.).

Transition Amplitude αM1

αn

4s1/2 → 5s1/2 0.0018(3) 0.4(1) × 10−5

6s1/2 0.0013(2) 1.7(5) × 10−6

3d3/2 0.0008(1) 3.1(8) × 10−6

4d3/2 0.0003(1) 0.9(7) × 10−7

5d3/2 0.0001(1) 0.8(20) × 10−8

6d3/2 0.0003(1) 0.6(5) × 10−7

αc 5.0(2) × 10−5

αcn −1.4(3) × 10−8

αtail 1.0(2) × 10−8

αtotal 5.9(3) × 10−5

αn

3d5/2 → 3d3/2 1.543(5) −957(6)
4d3/2 0.004(1) 8(4) × 10−6

5d3/2 0.004(1) 8(4) × 10−6

6d3/2 0.003(1) 2(2) × 10−6

4d5/2 0.004(1) 8(4) × 10−6

5d5/2 0.009(2) 3(1) × 10−5

6d5/2 0.002(1) 1(1) × 10−6

5g7/2 3.2 × 10−7 ∼0
6g7/2 4.6 × 10−7 ∼0

αc 5.0(2) × 10−5

αcn 0.0
αtail −5.0(6) × 10−6

αtotal −957(6)

largest contribution to the ground-state polarizability comes
from the 3d states followed by the 4d states. The core
contribution is comparatively small and the αcn contribution
to the ground-state polarizability is zero due to the absence
of occupied d states in Ca+. There are two more calculations
available in the literature on the same using the RCC methods
with different levels of approximations [46,47]. The results
reported in Ref. [46] are ab initio and are obtained from a linear
response theory–based calculation. A linear approximation
in the RCC method is being considered to evaluate the
corresponding transition matrix elements for the estimation
of the ground-state polarizability in Ref. [47] using a sum-
over-states approach as in the present work. All the results
are of the same order in magnitude. The ab initio result
seems to be a little lower than the results obtained from the
sum-over-states approach due to the additional uncertainties
from the calculated energies which justifies the use of the
experimental energies in these calculations. However, it should
be noted that the differences in these results will not alter the
BBR shift results which is apparent from the following finding
on the E2 polarizability contributions. To our knowledge, no
other quadrupole polarizability result is available for the 3d5/2

state in Ca+ to compare with ours. Again, the contribution from
its fine-structure partner is the decisive factor for the final result
followed by a significant contribution from the ground state.

In Table VII, we present the αE2 results for the ground and
4d5/2 states in Sr+. The magnitudes of the ground-state result
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TABLE V. Contributions to the 5s1/2 and 4d5/2 scalar (αM1) static
polarizabilities in Sr+ and their uncertainties in a3

0 (a.u.). The values
of the corresponding |〈ψn||Q1

0||ψm〉|/α matrix elements are given in
ea0 (a.u.).

Transition Amplitude αM1

αn

5s1/2 → 6s1/2 1.35(2) × 10−3 2.79(8) × 10−6

7s1/2 1.24(1) × 10−3 1.73(3) × 10−6

8s1/2 1.00(1) × 10−3 1.0(2) × 10−6

9s1/2 1.00(1) × 10−3 9.4(2) × 10−7

4d3/2 5.0(3) × 10−5 1.3(2) × 10−8

5d3/2 1.0(1) × 10−5 1.4(3) × 10−10

6d3/2 1.0(1) × 10−6 1.1(2) × 10−12

7d3/2 3.0(2) × 10−6 8.8(6) × 10−12

αc 1.0(1) × 10−3

αcn −2(1) × 10−8

αtail 1.0(1) × 10−8

αtotal 1.0(1) × 10−3

αn

4d5/2 → 4d3/2 1.545(6) −208(2)
5d3/2 0.009(2) 5(2) × 10−5

6d3/2 0.006(1) 1.5(5) × 10−5

7d3/2 0.004(1) 7(3) × 10−6

5d5/2 0.003(1) 6(4) × 10−6

6d5/2 0.003(1) 4(3) × 10−6

7d5/2 0.002(1) 2(2) × 10−6

5g7/2 3.2(5) × 10−7 ∼0
6g7/2 3.0(4) × 10−7 ∼0

αc 1.0(1) × 10−3

αcn −2.5(2) × 10−7

αtail −1.5(1) × 10−7

αtotal −208(2)

in this ion is larger than Ca+, while for the corresponding
d5/2 state it is the other way around. There are no results
available, to the best of our knowledge, with which to compare
our results. The trend of the contributions from different
transitions is almost similar for corresponding states in both
ions.

Using the above values of the polarizabilities, we obtain
the BBR shift due to the M1 multipole for the 4s 2S1/2 →
3d 2D5/2 transition in Ca+ at the room temperature (300 K) to
be 4.38(3) × 10−4 Hz. Similarly, this result comes out to be
9.50(7) × 10−5 Hz for the 5s 2S1/2 → 4d 2D5/2 transition in
Sr+. Contributions from the E2 multipole are very small and
below the uncertainties of the above results and, hence, can
be neglected for the present purposes of this work. However,
the reported quadrupole polarizabilities for all the considered
states may be useful elsewhere. For comparison, it should
be noted that the BBR shifts due to the E1 multipole are
0.38(1) Hz [28,47] and 0.22(1) Hz [27] in the corresponding
transitions in Ca+ and Sr+, respectively.

V. CONCLUSION

In summary, we have estimated the blackbody radiation
shifts due to the magnetic dipole and electric quadrupole
multipoles for the 4s 2S1/2 → 3d 2D5/2 and 5s 2S1/2 →

TABLE VI. Contributions to the 4s1/2 and 3d5/2 scalar (αE2) static
polarizabilities in Ca+ and their uncertainties in a5

0 (a.u.). The values
of the corresponding |〈ψn||Q2

1||ψm〉| matrix elements are given in ea2
0

(a.u.).

Transition Amplitude αE2

αn

4s1/2 → 3d3/2 8.12(5) 212(3)
4d3/2 12.51(8) 121(2)
5d3/2 3.89(4) 9.1(2)
6d3/2 2.44(6) 16.2(4)
3d5/2 9.97(6) 318(3)
4d5/2 15.30(9) 181(2)
5d5/2 4.75(5) 13.6(3)
6d5/2 2.98(6) 24.2(4)

αc 6.15(8)
αcn 0.0
αtail 5.36(5)
αtotal 906(5)

Other works 712.91,a 871b

αn

3d5/2 → 4s1/2 9.97(6) −106(1)
5s1/2 4.99(5) 9.4(2)
6s1/2 1.22(2) 0.38(1)
3d3/2 3.90(4) −3657(75)
4d3/2 4.32(5) 6.3(1)
5d3/2 1.38(2) 0.47(1)
6d3/2 1.08(1) 0.25(5)
4d5/2 8.63(5) 25.2(3)
5d5/2 2.75(3) 1.87(4)
6d5/2 2.16(2) 1.02(2)
5g7/2 1.58(2) 0.56(1)
6g7/2 1.04(1) 0.210(4)
5g9/2 5.57(5) 7.0(1)
6g9/2 3.67(4) 2.62(6)

αc 6.15(8)
αcn 0.18(2)
αtail −4.29(7)
αtotal −3706(75)

aReference [46].
bReference [47].

4d 2D5/2 transitions in the singly ionized calcium and stron-
tium, respectively. The contribution due to the former is the
decisive in this case. Nevertheless, the reported polarizabilities
for the considered states which are rarely studied in the
above ions may also be useful for other purposes. It may be
imperative to contemplate the reported shifts which are given
as 4.38(3) × 10−4 Hz and 9.50(7) × 10−5 Hz in the considered
ions to achieve the 10−18 precision uncertainty in the proposed
clock experiments.
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TABLE VII. Contributions to the 5s1/2 and 4d5/2 scalar (αE2
0 )

static polarizabilities in Sr+ and their uncertainties in a5
0 (a.u.). The

values of the corresponding |〈ψn||Q2
1||ψm〉| matrix elements are given

in ea2
0 (a.u.).

Transition Amplitude αE2

αn

5s1/2 → 4d3/2 11.25(7) 382(5)
5d3/2 12.87(8) 136(2)
6d3/2 5.00(5) 16.2(3)
7d3/2 3.11(4) 5.7(1)
4d5/2 13.91(8) 572(6)
5d5/2 15.64(9) 201(2)
6d5/2 5.97(6) 23.3(4)
7d5/2 3.76(4) 8.3(1)

αc 14.50(9)
αcn −1.7(2) × 10−8

αtail 6.35(8)
αtotal 1366(9)
αn

4d5/2 → 5s1/2 13.91(8) −191(2)
6s1/2 7.71(5) 274(3)
7s1/2 1.90(2) 1.05(2)
8s1/2 0.96(1) 0.231(5)
9s1/2 0.72(1) 0.119(4)
4d3/2 6.08(6) −1930(38)
5d3/2 5.63(6) 12.1(3)
6d3/2 1.83(2) 0.92(2)
7d3/2 1.14(1) 0.315(6)
5d5/2 11.17(7) 47.4(6)
6d5/2 3.65(5) 3.7(1)
7d5/2 2.28(3) 1.27(3)
5g7/2 2.73(3) 1.76(4)
6g7/2 2.21(2) 1.11(2)
5g9/2 9.64(7) 22.0(3)
6g9/2 7.80(6) 13.7(2)

αc 14.50(9)
αcn 0.24(3)
αtail −4.83(5)
αtotal −1732(41)

APPENDIX A: FARLEY AND WING’S FUNCTIONS

With the aid |y| � 1, the following expression [26]

FL(y) = 1

π

L + 1

L(2L + 1)!!(2L − 1)!!

×
∫ ∞

0

(
1

y + x
+ 1

y − x

)
x2L+1

ex − 1
dx, (A1)

for L = 1, we have

F1(y) = 2

3π

∫ ∞

0

(
1

y + x
+ 1

y − x

)
x3

ex − 1
dx

= 2

3π

(
2

y

∫ ∞

0

x3

ex − 1
dx + 2

y3

∫ ∞

0

x5

ex − 1
dx

)
.

(A2)

Further, by using the definite integral value∫ ∞

0

x2n−1

epx − 1
dx = (−1)n−1

(
2π

p

)2n
B2n

4n
, (A3)

where B2n is the Bernoulli number, F1(y) reduces to

F1(y) = 4π4

45y
. (A4)

Similarly for L = 2, the above expression turns out to be

F2(y) = 1

30π

∫ ∞

0

(
1

y + x
+ 1

y − x

)
x5

ex − 1
dx

= 1

15y

∫ ∞

0

x5

ex − 1
dx + 2

y3

∫ ∞

0

x7

ex − 1
dx

= 8π5

945y
. (A5)

APPENDIX B: SQUARE OF THE MATRIX ELEMENT

In our approach, we write

|�n〉 = a†
n
c|	0〉 + 
cn|	v〉 + 
n|	v〉. (B1)

With this expression, the square of the matrix element of
any arbitrary operator O can be expressed as

〈�n|O|�m〉2 = 〈�n|O|�m〉〈�m|O|�n〉
= 〈	0|
†

cO
m
†
mO
c|	0〉

+ 〈	0|
†
cO
cm
†

cmO
c|	0〉
+ 〈	n|
†

cnO
c

†
cO
cn|	n〉

+ 〈	n|
†
nO
c


†
cO
n|	n〉

+ 〈	n|
†
nO
cm
†

cmO
n|	n〉
+ 〈	n|
†

nO
m
†
mO
n|	n〉, (B2)

where we have facilitated the generalized Wick’s theorem to
derive these terms and assumed all the operators are in normal
order form and only the connected terms are survived. For
simplicity the first two terms, the third term, and the last three
terms are categorized into core (c), core-valence (cn), and
valence (n) correlation contributions, respectively; i.e., in an
abbreviate form it is given as

〈�n|O|�m〉2 = 〈�n|O|�m〉2
c + 〈�n|O|�m〉2

cn

+〈�n|O|�m〉2
n. (B3)

APPENDIX C: DIFFERENT FORM OF
POLARIZABILITY EXPRESSION

Multipole polarizability of an atomic state |�n〉 is defined
as

α
Qλ

L
n = C

Qλ
L

n

∑
m�=n

∣∣〈�n|
∣∣Qλ

L

∣∣|�m〉∣∣2

En − Em

. (C1)
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We can rewrite the above expression as

α
Qλ

L
n = 2

α2(λ−1)

∑
m�=n

〈�n|Qλ
L|�m〉〈�m|Qλ

L|�n〉
En − Em

= 2

α2(λ−1)

〈
�n

∣∣Qλ
L

∣∣�(1)
n

〉
, (C2)

where we define

∣∣�(1)
n

〉 =
∑
m�=n

|�m〉 〈�m|Qλ
L|�n〉

En − Em

. (C3)
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