
PHYSICAL REVIEW A 85, 012503 (2012)

Binding-energy predictions of positronium-atom systems
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A large amount of work has been performed on positron and positronium (Ps) binding to atoms. Positron binding
was treated in our last paper [Phys. Rev. A 83, 032504 (2011)], of which the present paper is a continuation. For
Ps binding, 12 atoms have been found to bind with Ps, and 2 atoms have been found not to bind with Ps. We fit
the known binding energies to a simple expression involving a few common physical properties and then use it
to predict the Ps-binding energies of the other atoms. The model and results appear to be reliable.
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I. INTRODUCTION

Positronium (Ps) is an atom consisting of a positron and
an electron. Ps and positrons have some practical applications,
such as serving as sensitive probes of free volume and defects
in polymers and semiconductors [1,2], characterization of thin
films, quantum dots [3,4], and more [1,5]. They are potentially
as useful as neutrons, electrons, and x rays as probes of matter;
in order to reach that potential, we must have more accurate
and extensive information on the interactions of positrons and
Ps atoms with ordinary matter [6].

Recent advances in the development of positron sources
[7,8] and traps [9–11] have led to an interest in multipositron
physics and chemistry [12]. These advances provide the
technology required to accurately measure positron- and Ps-
binding energies to atoms and molecules [6]. This field, bound
states of positrons and Ps atoms to koino atoms and molecules,
is unusual in that the theory is ahead of the experiments [6].
We hope the present paper will stimulate and will promote
laboratory work in this area.

Recently, the entire field of positron- and Ps-atom and Ps-
molecule-bound systems was reviewed [6]. An updated list of
all known Ps-binding energies of atoms is given in Table I.

First, we give a general summary and analysis of the current
status of Ps binding to atoms. Then, we examine the depen-
dence of Ps-atom-binding energies (E) on parameters derived
from a few physical properties, such as ionization potential
(Vi), static electric dipole polarizability (α), electron affinity
(Ea), covalent radius (Rcov), numbers and types of valence
electrons, and so on. We employ MATLAB to test about 30
combinations of these. We pick the most accurate and reason-
able combination, demonstrate its validity, and use it to predict
binding energies for all the unstudied atoms up to bismuth.

II. CURRENT STATUS OF THE PROBLEM

All our knowledge of positron and Ps binding to atoms
and molecules comes from quantum-mechanical calculations.
Several experimental methods have been suggested for mea-
suring these quantities [25–28], but only two have been used so
far, the more fruitful of which has been exploited skillfully in
Professor Surko’s laboratory [29]. Considerable experimental
work was performed there on positron binding to small organic
molecules [26], which were inferred from the redshifts of
certain infrared vibrational spectral features upon the capture
of positrons into vibrational Feshbach resonances [30]. The
method gives binding energies with precisions of 20–25 meV.

It does not appear to be applicable to Ps binding to atoms and
molecules nor to positron binding to atoms. It has been used
to measure positron-binding energies of about 30 molecules,
mostly hydrocarbons and halosubstituted hydrocarbons. In
addition, about ten such molecules were found not to bind
positrons, which is also useful knowledge.

The other method, dissociative attachment, appears to be
potentially more general, but it has been used in only one
measurement so far, that of the Ps-H bond strength [25]. With
available equipment at the time of the experiment (about 20 yr
ago), a precision of 200 meV did not compare with much
superior precision from quantum calculations. Nevertheless,
the experiment was significant because it was a laboratory
demonstration that showed dissociative attachment can pro-
vide the desired binding energies. Today, cryogenic mod-
eration of positron beams [31] coupled with high-precision
recoil ion momentum spectroscopy (RIMS) [32] can provide
a precision in binding energies of a few meV. The experiment
entails crossed pulsed beams of positrons and molecular targets
and the detection of a signature ion and the measurement of
its kinetic energy by RIMS.

A positron colliding with a molecule AB has four possible
dissociative attachment outcomes that have two products,

Products Appearance potentials (eV)

PsA + B+ EAB + ViB − ViPs − EPsA

A + e+B EAB − Ee+B

A+ + PsB EAB + ViA − ViPs − EPsB

e+A + B EAB − Ee+A

(1)

A and B above may be complex and/or identical. The
right-hand column gives the appearance potentials of the
signature ions; this energy is provided by the incident positron.
The product species above that contain a positron, which
annihilates on a much shorter time scale than ion extraction
and detection, so B+ is detected in the first two reactions
but at different positron energies and is similarly for the last
two reactions. In the case of A = CH3 and B = H, the new
compounds, thresholds (in eV) and signature ions are in the
order above,

New Appearance Signature
compounds potentials (eV) ions

PsCH3 11.342 − EPs−CH3 H+
e+H 4.543 − Ee+H H+

PsH 6.53 CH+
3

e+CH3 4.543 − Ee+CH3 CH+
3

(2)

012503-11050-2947/2012/85(1)/012503(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.032504
http://dx.doi.org/10.1103/PhysRevA.85.012503


XIANG CHENG, D. BABIKOV, AND D. M. SCHRADER PHYSICAL REVIEW A 85, 012503 (2012)

TABLE I. The binding energies and methods of calculation for
all studied Ps-atom systems. Stochastic variational method (SVM),
configuration interaction (CI), ∞ indicates an extrapolation to
convergence of a basis expansion, diffusion Monte Carlo (DMC)
method. In all cases, the threshold is Ps + A.

System E (eV) Method References

Binding atoms

Ps2 0.4355 SVM [13]
PsH 1.0547 SVM [14,15]
LiPs 0.3366 SVMFC3 [16]
NaPs 0.229 SVMFC3 [17,18]
KPs 0.139 SVMFC3 [17,19]
PsCu 0.423 CI∞FC3 [20]
PsC 0.476 DMC, CI∞FC3 [21,22]
PsO 0.785 DMC, CI∞FC6 [22,23]
PsF 2.776 DMC, CI∞FC9 [21,24]
PsCl 2.297 CI∞FC9 [24]
PsBr 1.873 CI∞FC9 [24]
PsI 1.39 CI∞FC9 [24]

Nonbinding atoms

PsB Unbound DMC, CI [21,22]
PsN Unbound CI∞FC5 [22]

The two signals for mass 1 cannot be confused because they
are far apart in energy. The first appearance of a proton signal
is at 4.543 eV since e+H is known not to be bound [33]. The
binding energy for Ps-CH3 is unknown, so an observation of
a second appearance of H+ at 10.00 eV, say, would indicate a
binding energy for Ps-CH3 of 1.34 eV. The energy that supplies
the appearance potential comes from the kinetic energy of the
positron, (Ekin)e+ , so the binding energies are as follows:

EPsA = EAB + ViB − ViPs − (Ekin)e+ + (Ekin)prod,
(3)

Ee+B = EAB − (Ekin)e+ − (Ekin)prod.

The kinetic energy of the products is, of course, zero at the
threshold, but the cross sections of the attachment processes
are also zero there [25]; therefore, a RIMS determination
of (Ekin)prod is desirable—without this determination, only a
lower bound of the binding energy is obtained. Here, we ignore
possible internal excitation of products (also zero at threshold)
for simplicity, although this is of interest in its own right [6].

The method of Surko and co-workers and the method
of dissociative attachment are nicely complementary:
Surko’s method provides positron-binding energies to whole
molecules, and the dissociative attachment method can give
positron- and Ps-binding energies to fragments of molecules
including atoms.

The theoretical methods that have given us all our
knowledge of Ps-atom binding are as follows: the stochastic
variational method (SVM), the configuration interaction (CI)
method, the quantum Monte Carlo method (QMC), and the
many-body perturbation theory (MBPT).

SVM has been applied to hydrogen, to the three lighter
alkali metals, and to Ps itself. All four particles of PsH and
Ps2 were treated explicitly as were all five particles of e+Li
and the three outer light particles of Na and K. The core

FIG. 1. (Color online) Ps-atom-binding energy vs different phys-
ical properties. (a) Ionization potentials are from Ref. [46]. (b) The
source of polarizabilities is Ref. [47]. (c) The source of electron
affinities is Ref. [48]. (d) The source of covalent radius is Ref. [49].

electrons of the latter were subsumed into a sophisticated
model polarization potential [34]. The trial wave function was
expressed as a linear sum of Gaussian functions that correlate
the relative motions of the particles [35]. These basis functions
are inapt to account for correlation between light particles, but
the Hamiltonian matrix elements are very easy to calculate,
permitting the use of large numbers of terms in the expansion, a
few thousand in some cases [16]. The wave functions were built
up by choosing values for the nonlinear parameters that appear
in the arguments of the Gaussian functions in an automated
random manner with some constraints. As terms were added
to the sum, they were retained or were discarded according
to their effect on the calculated energy. The linear parameters
in the expansion were obtained by solving a secular equation.
Five of the twelve known Ps-atom-binding energies have been
obtained with this method, mostly by Mitroy and Ryzhikh [36],
with accuracies on the order of up to several meV. The method

TABLE II. Parameters of physical properties tested in the Ps-
binding part. Z is the atomic number.

1/x x x2 x1x2 x3

1/Vi Vi V 2
i Viα V 3

i

1/α α α2 αEa α3

1/Ea Ea E2
a EaVi E3

a

1/Rcov Rcov R2
cov

1/Ns Ns N 2
s

1/Np Np Np2

1/Nd Nd Nd2

1/Z Z Z2
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FIG. 2. (Color online) Binding energies from literature vs binding
energies of the present paper. The solid line is the binding energy
calculated from the best-fit equation [Eq. (4)]. The solid circles are
the binding energies from the literature. Ps is not used in the fit but is
shown here for reference purposes.

also has been used to predict positron binding to atoms. So
far, it has been used for S and P states with up to six explicit
particles; see Ref. [6] for a review of this paper.

The CI method has been used mainly by Saito [24] for Ps
binding to atoms with only a few vacancies in their valence
shells (i.e., atoms on the right side of the periodic chart) and by
Mitroy et al. [37] for positron binding to atoms with only a few
electrons in their valence shells (on the left side of the periodic
chart). The method consists of building up an approximate
wave function by adding other configurations that resemble
excited states that can be single excitations (using helium as
an example, 1s2s) and double (2s2, 2p2, etc.) excitations to
a ground-state configuration. The choice of configurations is
unlimited, and accuracy improves as more are added. Each
configuration is composed of products of orbitals that are
themselves expansions in some primitive basis set. Thus,
two expansions are involved, one within the other. These are

TABLE IV. Prediction using Eq. (4) for Ps and nonbinding atoms.

Vi (eV) Ea (eV) Rcov (Å) Ns E (eV), present paper

Ps 6.803 0.326(0) 1.59(16) 1 0.1944(415)
B 8.298 0.279723(25) 0.84(8) 2 −0.1102(174)
N 14.5341 −0.21(5) 0.71(7) 2 −0.3644(147)

necessarily finite, and sophisticated methods of extrapolation
have been devised to estimate the effects of incompleteness
[38,39]. For the primitive basis functions, Saito uses natural
orbitals (NOs) expressed in terms of B-splines; otherwise,
his approach is known in modern quantum chemistry as
multireference configuration interaction with the single- and
double-excitations method. He has performed calculations
on PsB, PsC, PsN, PsO, as well as on the Ps halides that
have from 11 to 53 light particles, all of which he treated
explicitly [23]. Taking PsF and PsI as representative examples,
Saito used NOs with orbital angular momentum l up to 9
that were coupled into the total L = 0 symmetry. Forty-four
reference configurations for PsF (38 for PsI) were constructed
from NOs using an iterative bootstrap process; altogether, the
total number of configurations used in the final calculations
were ∼40 000 to ∼60 000 for PsF to PsI. Saito’s results
agree with predictions from the MBPT calculations of Ludlow
and Gribakin [40] within a few tens of meV. Relativistic
corrections were included in both these papers and were
found to significantly reduce predicted binding energies from
nonrelativistic predictions by a few tens of meV for the lightest
species to a few hundreds of meV for the heaviest.

The CI approach of Mitroy and coworkers differs from that
of Saito in two ways: Mitroy and coworkers do not treat core
electrons explicitly but use carefully crafted potentials [34]
to mimic the effects of core electrons on the outer particles;
and the atomic orbitals are constructed from mixtures of
Slater-type orbitals and Laguerre-type basis functions. For
CuPs, a sequence of calculations using about 100 atomic
orbitals with increasing values of atomic orbital angular
momentum l from 0 to 10 were performed, with increasing
numbers of L = 0 configurations up to about 64 000 to give a
calculated Ps-Cu-binding energy of 0.292 eV. The truncation
error was estimated, by extrapolation, to be 0.132 eV,

TABLE III. Input data and results for the binding energies. The error is the difference between the present paper and the literature values.
The tolerance is the sum of the uncertainties of the present paper and literature values.

Vi (eV) Ea (eV) Rcov (Å) Ns E (eV), literature values E (eV), present paper Error (eV) Tolerance (eV)

H 13.5984 0.754195(19) 0.32(3) 1 1.0547(0) 0.8794(66) −0.1753 0.0066
Li 5.3917 0.618049(20) 1.3(1) 1 0.3366(30) 0.3141(269) −0.0225 0.0299
Na 5.1391 0.547926(25) 1.6(2) 1 0.229(15) 0.2249(332) −0.0041 0.0482
K 4.3407 0.50147(10) 2.0(2) 1 0.139(10) 0.1085(415) −0.0305 0.0515
Cu 7.7264 1.235(5) 1.22(12) 1 0.423(80) 0.6555(254) 0.2325 0.1054
C 11.2603 1.262119(20) 0.75(8) 2 0.476(30) 0.5305(155) 0.0545 0.0455
O 13.6181 1.461114(1) 0.64(6) 2 0.785(60) 0.8507(133) 0.0657 0.0733
F 17.4228 3.401190(3) 0.60(6) 2 2.776(2) 2.9181(124) 0.1421 0.0144
Cl 12.9676 3.612724(27) 1.0(1) 2 2.297(180) 2.1860(207) −0.1110 0.2007
Br 11.8138 3.363588(2) 1.17(12) 2 1.873(60) 1.7787(249) −0.0943 0.0849
I 10.4513 3.059037(10) 1.36(14) 2 1.39(20) 1.3331(282) −0.0569 0.2282

012503-3



XIANG CHENG, D. BABIKOV, AND D. M. SCHRADER PHYSICAL REVIEW A 85, 012503 (2012)

TABLE V. Predictions using Eq. (4) for all other atoms up to Bi.

Atomic number Atoms Vi (eV) Ea (eV) Rcov (Å) Ns E (eV), present paper Result

2 He 24.5874 −0.22(5) 0.37(4) 2 −0.42(1) Unbound
4 Be 9.3227 −0.65(7) 0.99(10) 2 −0.58(2) Unbound
10 Ne 21.5645 −0.3(1) 0.62(6) 2 −0.52(1) Unbound
12 Mg 7.6462 −0.52(5) 1.4(1) 2 −0.56(3) Unbound
13 Al 5.9858 0.43283(5) 1.24(12) 2 −0.18(3) Unbound
14 Si 8.1517 1.389521(1) 1.14(11) 2 0.30(2) Bound
15 P 10.4867 0.7465(3) 1.09(11) 2 0.13(2) Bound
16 S 10.36 2.077104(7) 1.04(10) 2 0.85(2) Bound
18 Ar 15.7596 −0.37(4) 1.01(10) 2 −0.57(2) Unbound
20 Ca 6.1132 0.02455(10) 1.9(2) 2 −0.41(3) Unbound
21 Sc 6.5615 0.188(20) 1.59(16) 2 −0.32(3) Unbound
22 Ti 6.8281 0.079(14) 1.48(15) 2 −0.33(3) Unbound
23 V 6.7462 0.525(12) 1.44(14) 2 −0.17(3) Unbound
24 Cr 6.7665 0.666(12) 1.3(1) 1 0.38(3) Bound
25 Mn 7.434 −1.07(10) 1.29(13) 2 −0.74(3) Unbound
26 Fe 7.9024 0.151(3) 1.24(12) 2 −0.25(3) Unbound
27 Co 7.881 0.662(3) 1.18(12) 2 −0.03(2) Unbound
28 Ni 7.6398 1.156(10) 1.17(12) 2 0.16(2) Bound
30 Zn 9.3942 −0.67(7) 1.2(1) 2 −0.64(2) Unbound
31 Ga 5.9993 0.43(3) 1.23(12) 2 −0.18(3) Unbound
32 Ge 7.8994 1.232712(15) 1.2(1) 2 0.20(2) Bound
33 As 9.7886 0.804(2) 1.2(1) 2 0.11(2) Bound
34 Se 9.7524 2.020670(25) 1.18(12) 2 0.73(2) Bound
35 Br 11.8138 3.363588(2) 1.17(12) 2 1.78(2) Bound
36 Kr 13.9996 −0.42(4) 1.16(12) 2 −0.61(2) Unbound
37 Rb 4.1771 0.48592(2) 2.15(22) 1 0.07(4) Bound
38 Sr 5.6949 0.048(6) 1.9(2) 2 −0.44(4) Unbound
39 Y 6.2173 0.307(12) 1.76(18) 2 −0.32(4) Unbound
40 Zr 6.6339 0.426(14) 1.64(16) 2 −0.25(3) Unbound
41 Nb 6.7589 0.916(5) 1.56(16) 1 0.41(3) Bound
42 Mo 7.0924 0.748(2) 1.46(15) 1 0.38(3) Bound
43 Tc 7.28 0.55(20) 1.38(14) 2 −0.13(8) Unbound
44 Ru 7.3605 1.05(15) 1.36(14) 1 0.53(6) Bound
45 Rh 7.4589 1.137(8) 1.34(13) 1 0.58(3) Bound
46 Pd 8.3369 0.562(5) 1.3(1) 0 0.85(3) Bound
47 Ag 7.5762 1.302(7) 1.36(14) 1 0.64(3) Bound
48 Cd 8.9938 −0.78(8) 1.4(1) 2 −0.71(3) Unbound
49 In 5.7864 0.3(2) 1.42(14) 2 −0.26(7) Unbound
50 Sn 7.3439 1.112067(15) 1.4(14) 2 0.08(3) Bound
51 Sb 8.6084 1.046(5) 1.4(1) 2 0.12(3) Bound
52 Te 9.0096 1.970876(7) 1.37(14) 2 0.59(3) Bound
54 Xe 12.1298 −0.45(5) 1.36(14) 2 −0.63(3) Unbound
55 Cs 3.8939 0.471626(25) 2.38(24) 1 0.01(5) Indeterminate
56 Ba 5.2117 0.14462(6) 2.06(21) 2 −0.45(4) Unbound
57 La 5.5769 0.48(2) 1.94(19) 2 −0.32(4) Unbound
58 Ce 5.5387 0.65(3) 1.84(18) 2 −0.25(4) Unbound
59 Pr 5.473 0.962(24) 1.9(2) 2 −0.18(4) Unbound
60 Nd 5.525 1.916(383) 1.88(19) 2 0.11(12) Indeterminate
61 Pm 5.582 No data 1.86(19) 2 No data Indeterminate
62 Sm 5.6437 No data 1.85(19) 2 No data Indeterminate
63 Eu 5.6704 0.864(24) 1.83(18) 2 −0.18(4) Unbound
64 Gd 6.1498 1.165(230) 1.82(18) 2 −0.06(8) Indeterminate
65 Tb 5.8638 No data 1.81(18) 2 No data Indeterminate
66 Dy 5.9389 0 1.8(2) 2 −0.43(16) Indeterminate
67 Ho 6.0215 No data 1.79(18) 2 No data Indeterminate
68 Er 6.1077 No data 1.77(18) 2 No data Indeterminate
69 Tm 6.1843 1.029(22) 1.77(18) 2 −0.09(4) Unbound
70 Yb 6.2542 −0.02(1) 1.78(18) 2 −0.43(4) Unbound
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TABLE V. (Continued.)

Atomic number Atoms Vi (eV) Ea (eV) Rcov (Å) Ns E (eV), present paper Result

71 Lu 5.4259 0.34(1) 1.74(17) 2 −0.32(4) Unbound
72 Hf 6.8251 0.017(2) 1.64(16) 2 −0.39(3) Unbound
73 Ta 7.5496 0.322(12) 1.58(16) 2 −0.26(3) Unbound
74 W 7.864 0.815(2) 1.5(2) 2 −0.03(3) Indeterminate
75 Re 7.8335 0.15(15) 1.41(14) 2 −0.29(7) Unbound
76 Os 8.4382 1.1(2) 1.36(14) 2 0.15(9) Bound
77 Ir 8.967 1.5638(50) 1.32(13) 2 0.40(3) Bound
78 Pt 8.9588 2.128(2) 1.3(1) 1 1.14(3) Bound
79 Au 9.2255 2.30863(3) 1.3(1) 1 1.25(3) Bound
80 Hg 10.4375 −0.67(7) 1.32(13) 2 −0.70(3) Unbound
81 Tl 6.1082 0.377(13) 1.44(14) 0 −0.24(3) Unbound
82 Pb 7.4167 0.364(8) 1.45(15) 0 −0.27(3) Unbound
83 Bi 7.2855 0.942362(13) 1.5(2) 0 −0.01(3) Indeterminate

giving a predicted binding energy of 0.424 eV [20]. The very
large truncation error suggests an accuracy of several tens
of meV at best in the calculated energy. Binding energies for
NaPs and KPs were calculated in this way with accuracies
of probably a few tens of meV [18,19]. LiPs was treated as
a six-particle system in extensive calculations [16] that are
probably accurate in calculated energies to better than 1 meV.

In the QMC (more specifically, the DMC) method, one
transforms the Schrödinger equation into a diffusion equation
by the substitution t → it. Diffusion equations can be solved
by stochastic methods in 3n-dimensional space, where n is the
number of particles being treated explicitly; each point in this
3n-dimensional space represents one possible arrangement
of the real particles. The 3n-dimensional particles are called
walkers, and a great many of them, 1000 or more, are allowed
to perform random walks under the influence of the quantum-
mechanical potential of the system. After a large number of
steps, the distribution of walkers approaches a state of dynamic
equilibrium that approximates the quantum-mechanical wave
function of the system, from which the eigenvalue of the
original Schrödinger equation easily is extracted. Accuracy
improves with the number of walkers, the number of their
steps, and the small size of steps. Typically, 1000 walkers are
used and are made to take 10 000 to 100 000 steps to produce
acceptable precision, which currently is 20 meV.

Not surprisingly, some refinements are required, for solu-
tions of conventional diffusion equations (e.g., distributions
of temperature and concentrations of components) are nec-
essarily positive while quantum-mechanical wave functions
have parts that are positive or negative as well as imaginary or
real. An artifice has been invented to deal with this distinctly
nonclassical behavior: An approximate wave function �̃ from
outside the QMC is combined with the desired solution � into
a product f = �̃�, and a new diffusion equation is written that
has f as its solution. At the nodes of �̃, f is necessarily zero;
elsewhere f is positive and real. The nodes of �̃ are not only
the familiar orbital nodes in elementary quantum theory, but
also (3n − 3)-dimensional nodes that arise from the exclusion
principle. For good results, �̃, called the trial function, must be
accurate in regions of space near singularities of the potential.
To achieve this, Jastrow factors [41] are attached to the trial
function.

The method naturally is variational in nature, thus, pre-
serving the comforting boundedness in calculated energies
that quantum chemists rely upon. The QMC requires no
integrations, no matrix inversions, no complications related
to wave function completeness, and gives a good account
of the correlation of light-particle motion. Accuracy and
precision are limited only by computational resources and by
discrepancies in the nodes of the trial function. Aside from
calculations that ignore correlation, the QMC was the first
ab initio method to be applied to bound systems containing
positrons and more than five electrons [42,43]. Later, it was
used in extensive calculations by Mella et al. [44].

The important thing to remember is that the technology ex-
ists for the measurement of positron- and Ps-binding energies
to atoms with a precision of a few meV. This precision would
empower laboratory measurements to challenge calculations
for all but the very few simplest systems.

III. DATA ANALYSIS

For Ps binding to atoms, only 14 atoms have been studied
so far. As in our first paper [45], we present four graphs of
binding energies vs ionization potentials, static electric dipole
polarizabilities, electron affinities, and covalent radii. They
are shown in Fig. 1. There are three contributing resonance
schemes instead of just one as in positron binding to atoms.
These three schemes are as follows:

(1) Scheme 1. {A,Ps} ↔ {A+,Ps−}—an electron moder-
ates the A+-Ps interaction.

(2) Scheme 2. {A−,e+}↔ {A,Ps}— an electron moderates
the A-e+ interaction.

(3) Scheme 3. { e+A,e−}↔ {A,Ps}—a positron moderates
the A-e− interaction.

If Scheme 1 was important, there should be a maximum
in Ps-binding energy as a function of ionization potential
at 0.326 eV (the binding energy of e−Ps), but none of the
ionization potentials was that small [as shown in Fig. 1(a)].
If Scheme 2 was important, there would be a maximum
in Ps-binding energies vs electron affinity at 6.803 eV,
but none of our positron-binding energies was that large [as
shown in Fig. 1(c)]. If Scheme 3 was important, there would
be a maximum in Ps-binding energy vs positron affinity at
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FIG. 3. (Color online) All available results on the binding of positron and Ps to atoms. The binding energies (in electron volts) of e+A

and PsA are given under the atomic number and chemical symbol of each atom. X means the atom does not bind a positron or Ps. All the
predictions in the present paper and our last paper are in parentheses. Binding energies for atoms with uncertainties larger than our predicted
values are indicated with question marks.

6.803 eV, but none of our positron affinities was that large.
Thus, a resonance stabilization model similar to that for e+
binding [45] does not lend itself to Ps binding. However, we
expect the Ps-binding energies, unlike the positron-binding
energies, to be a smooth function of all parameters, permitting
a good fit with a simple polynomial function. To find the
function, we used the MATLAB program written for our last
paper [45] to carry out the data analysis. We consider 30
parameters (Table II), from which

(
30

2

)
+

(
30

3

)
+

(
30

4

)
+

(
30

5

)
+

(
30

6

)
= 767746

distinct combinations of two to six members can be created.
The best combination is shown in the following section.

IV. RESULTS

As shown in Table I, 12 atoms are known to bind with Ps.
All these, except Hg and the atypical atom Ps, are used in the
fitting. The parameters of physical properties included in the
fitting are shown in Table II. After numerous sets of fitting
with different physical properties and various combinations,
we find that a fitting of binding energies with ViEa, covalent
radius Rcov (from Ref. [49]), and the number of valence s

electrons (Ns) is the best compromise between good accuracy
and a small number of parameters. The fitting equation for the
binding energy E is

E = 0.875928 + 0.052314ViEa

− 0.207273Rcov − 0.466741Ns. (4)
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FIG. 4. (Color online) Binding energy vs ViEa.

The fitting results are shown in Fig. 2. The units of Vi

Ea and Rcov are eV2 and angstroms, respectively. The root-
mean-square deviation is only 0.12, and the normalized root-
mean-square deviation is as small as 4%. The uncertainties
in the calculated binding energies are mostly from electron
affinities and covalent radii. The uncertainties of the predicted
Ps-binding energies are calculated from

�E =
√

(0.052314Vi�Ea)2 + (0.207273�Rcov)2. (5)

These are verified by calculating E from Eq. (4), whereas,
Ea and Rcov are varied to the maximum of their uncertainties.
The detailed data and results are shown in Table III.

The fitting equation is tested on the nonbinding atoms B
and N and is found to predict negative-binding energies as
shown in Table IV. This is a significant confirmation of our
predictor function [Eq. (4)]. The bond length or covalent radius
of Ps is from Ref. [50]. The Ps affinity of Ps itself is given
poorly by our predictor, but this is not surprising since Ps is
an atypical atom. B and N are known not to bind, and the
predictor correctly gives negative values. The model appears
to provide a reliable predictor.

Using the best-fit equation [Eq. (4)], the binding energies
of 47 other atoms not previously studied are predicted. The
atoms that cannot form a stable state with an electron have

negative electron affinities from Ref. [51]. In the prediction,
23 atoms will bind with a Ps, 33 will not, and 11 are
indeterminate because their electron affinities are unknown
or they have uncertainties that are larger than the predicted
binding energies. These results are shown in Table V.

Together with the predictions in our last paper [45], all the
current data are shown in Fig. 3. We predict that 24 new atoms
will bind with a positron [45], and 23 new atoms will bind
with Ps (present paper).

V. DISCUSSION

It is important to understand that Eq. (4) does not have a
physical basis—it is merely curve fitting. Other sets of fitting
parameters give results that are only slightly inferior to these,
and in that sense, there is some arbitrariness in our selection.
However, some of these other sets have more parameters than
our set.

It is curious that the only energies in the chosen set, the
ionization potential and the electron affinity, only appear in
a product. Relativistic terms are important in calculated Ps-
binding energies for the heavier atoms [23], and these effects
are included in experimental ionization potentials and electron
affinities also, of course. Our approach, therefore, should give
good results for both light and heavy atoms, and it is probably
more reliable than other attempts to predict positron- and Ps-
binding energies [52] including quantum calculations made
with dubious approximations [27].

As shown in Fig. 4, the cross term of Vi and Ea is a very
important factor. It can be regarded simply as an indicator
of the magnitude of the binding energy. This is easy to
understand from the definitions of the ionization potential
and electron affinity. The ionization potential is the energy
needed to remove an electron from an atom. The greater the
Vi , the more difficult it is to remove an electron from an atom.
The electron affinity is the energy change when an electron is
added to the neutral atom to form a negative ion. The greater
the Ea, the more eager the atom is to add an electron. Thus,
the cross term is a good parameter to indicate the binding
energy between atoms and Ps. In short, in Ps binding, both of
the atom’s eagerness to gain an electron (Scheme 2) and its
reluctance to lose one (Scheme 1) are important. Moreover,
it is qualitatively true for the studied molecules binding to Ps
as shown in Table VI. These molecules are not so adequate
to prove Vi Ea’s influence because they can be regarded as
e+M− instead of PsM (M = molecule). The Vi’s and Ea’s are
all about the electron. It may indicate that the electron from Ps
is closer to the bound atom than is the positron.

TABLE VI. The energies of Ps binding to molecules. The sources of Ea’s and Vi’s are from Refs. [53,54], respectively.

Ea (eV) Vi (eV) ViEa (eV2) E (eV) References

CH 1.238(8) 10.64(1) 13.17(9) 0.44(2) [55]
OH 1.8276487(11) 13.0170(2) 23.79(0) 0.28(3) [55]
CN 3.862(4) 13.5984 52.51(5) 0.83(80) [56]
NH2 0.771(5) 11.14(2) 8.59(6) 0.15(2) [55]
N3 2.70(12) 0.14(10) [56]
CH3 0.08(3) 9.843(2) 0.79(30) 0.2(20) [57]
NO3 3.937(14) 0.3(3) [58]
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The covalent radius and Ns can both be regarded as
parameters of electron configuration. Atoms that can attain
a more stable configuration by adding an electron tend to
bind with Ps because the electron in Ps completes a subshell
[6]. This idea finds support from the alkali metals and the
halogens, two families that are otherwise starkly different
that both strongly bind to Ps. The Ps binding is sensitive to
electron configuration. In our predictions above, most atoms
with half-filled s subshells will bind with Ps. Positive-binding
energies are obtained for the following such atoms: Rb
([Ar]5s), Cr([Ar]3d54s), Mo ([Kr]4d45s), Ag ([Kr]4d105s), Pt
([Xe]4f 145d96s), and Au ([Xe]4f 145d106s). Moreover, most
atoms with three or five electrons in the p subshell also will
bind with Ps. They are P ([Ne]3s23p3), As ([Ar]3d104s24p3),
Sb ([Kr]4d105s25p3), and Br ([Ar]3d104s24p5). Among these
atoms, only Cs and Bi are indeterminate because of large
uncertainties. The unbound predictions are good too. All atoms
in the beryllium family are predicted not to bind with Ps. None
of the noble gases are predicted to bind with Ps. These results

further substantiate the reliability and value of our model and
prediction.

There are no data on Ps binding to atoms with open d

and f subshells, so the predictions for these atoms are less
authoritative.

VI. SUMMARY

The relationship between PsA-binding energies and atomic
physical properties has been studied. Good results [Eq. (4)]
are obtained using the parameters ViEa, the covalent radius
Rcov, and the number of valence s electrons Ns . Then, using
the best-fit equation, other stable atoms are calculated and
are predicted. Twenty-three other atoms are predicted to bind
with Ps, and the predicted binding energies are shown in
Table V.

We hope the present paper will provide a motivation for
experimental measurement and the high-quality calculation of
Ps binding to atoms.
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