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Accuracy of the Faddeev random phase approximation for light atoms
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The accuracy of the Faddeev random phase approximation (FRPA) method is tested by evaluating total and
ionization energies in the basis-set limit. A set of light atoms up to Ar is considered. Comparisons are made with
the results of coupled-cluster singles and doubles (CCSD), with third-order algebraic diagrammatic construction
[ADC(3)], and with the experiment. It is seen that even for two-electron systems, He and Be2+, the inclusion
of RPA effects leads to satisfactory results, and therefore it does not overcorrelate the ground state. The FRPA
becomes progressively better for larger atomic numbers, where it gives ≈5 mH more correlation energy, and it
shifts ionization potentials by 2–10 mH with respect to the similar ADC(3) method. The ionization potentials
from FRPA tend to reduce the discrepancies with the experiment.
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I. INTRODUCTION

Ab initio studies of electronic systems aim at a direct
solution of the Schrödinger equation in terms of the underlying
Coulomb interaction, thus avoiding phenomenological input
[1]. Due to its favorable accuracy and the gentle scaling
of computational requirements with increasing number of
particles the single-reference coupled-cluster (CC) method [2]
has become the most frequently used theory in contemporary
investigations of molecular and atomic systems. One can thus
calculate molecules for which full configuration interaction
(FCI) would not be feasible. Another approach with analo-
gous characteristics is the Green’s function (GF) theory (or,
equivalently, propagator theory) [3–6]. An early scheme based
on this approach is the outer-valence GF (OVGF) [7,8], which
expands ionization energies up to third order in perturbation
theory. The OVGF is very practical and computationally
simple, and it has found several applications to studies of
ionization spectra [8–12]. However, it becomes inaccurate
whenever inner- and outer-valence ionization energies (IEs)
are subject to shake-up contaminations [13–15]. In such
cases one needs to resort at least to the third-order algebraic
diagrammatic construction [ADC(3)] method [16,17]. The
ADC(n) approach is an intermediate-state representation
[18,19] of the GF made to be consistent with perturbation
theory up to order n. Thus, it is size consistent and can
be systematically improved by going to higher orders. For
the one-body propagator, ADC(3) implies performing explicit
configuration mixing between valence electrons and shake-up
configurations, such as two-hole–one-particle (2h1p) and/or
two-particle–one-hole (2p1h) configurations [20]. These
states are mixed together by ADC(3) theory in a Tamm-
Dancoff approximation (TDA) fashion. The accuracy of the
ADC(3) approach has been tested in several studies for both
IEs [20,21] and excited states [22,23].
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Green’s function theory has also extensive applications
to solid-state physics, where the most successful scheme is
the GW approximation (GWA) [24–26]. The GWA describes
the modification of electrons through repeated interactions
with collective particle-hole (ph) excitations of the system,
which are described in the random phase approximation
(RPA). The RPA is essential for extended systems because
it screens the Coulomb interaction at large distances [5,6]
and it guarantees finite correlation energies in metals and the
uniform electron gas [27–30]. In contrast, the TDA plasmon
spectrum is incorrect and even diverges at small momenta.
The GWA, however, is not always satisfactory. As an example,
particle-particle (pp) and hole-hole (hh) configurations, which
would be included by ADC(3) but not in GWA, are necessary
to explain satellite structures above and below the Fermi
surface [31]. How to include these effects efficiently in GWA
is still being researched [32]. Conversely, the inclusion of
RPA in atomic and molecular studies may be advantageous for
describing long-range (van der Waals) forces and dissociation
processes [33–35]. Thus, a practical method that combines
ADC(3) with RPA might become beneficial to the fields above.

In a recent publication we have considered the ab initio
calculation of the Ne atom using Green’s function theory in the
so-called Faddeev random phase approximation (FRPA) [36],
which was originally proposed for studies of nuclear structure
[37–41]. This approach completely includes 2p1h and 2h1p
states in the self-energy but expands these configurations in
terms of couplings between valence particles and (simpler)
ph and pp (hh) excitations that are calculated using RPA. By
calculating these excitations in TDA one would be led back to
the ADC(3) scheme. Stated otherwise, the FRPA can be seen as
an extension of ADC(3) that employs RPA for pairs of electron
and hole excitations (see also Ref. [42] for a discussion). The
inclusion of RPA opens a possible way for treating long-range
correlations in both finite and extended electron systems on
a equal footing. An application of this method to extended
systems, such as the electron gas, could be pursued following
the approach of Ref. [43]. Before this is attempted, however,
one wishes to better assess the quality of the method for
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light systems. A first study carried out on simple molecules
has found accurate results and confirmed that potential RPA
instabilities do not arise at equilibrium internuclear distances
[44]. However, calculations were limited to small bases, and
a proper investigation of the complete basis-set limit is still
in order. This work addresses this last question by applying
FRPA to a set of light atoms and using correlation-consistent
bases for extrapolating to the basis-set limit.

The field of high-precision atomic structure calculations has
a rich history. In particular multiconfiguration self-consistent
field methods [45–50] have been shown to provide very
accurate results. Using explicitly correlated Gaussian basis
functions [51] is another technique to generate results of high
quality. The method investigated in the present paper is not
multireference in character, and as such, it is most closely
related to single-reference CC methods; hence all our results
will be compared to calculations at this level of theory.

There have been efforts to understand the connection be-
tween Green’s function theory and CC theories. A study on the
relationship between the ADC method and CC linear response
showed how one can get from the approximate CC doubles
(CC2) to the ADC(2) stability matrix by replacing the CC2
ground-state amplitudes by the ones obtained in first-order
perturbation theory and taking the Hermitian average [52]. The
relation between direct RPA and ring CC doubles (ring CCD)
[53] is another example. Even though the correspondence
between CC on the one side and ADC(3) and FRPA on the
other side is not a priori clear, one can argue that CC singles
and doubles (CCSD) has the closest resemblance to ADC(3)
and FRPA and will be our reference.

The essential features of FRPA are reviewed in Sec. II so
that this paper is self-contained. References to the details of
the formalism are also given. In our calculations we adopt
Gaussian basis sets and discuss the accuracy of extrapolations
to the basis-set limit in Sec. III A. The results for total energies
and IEs are given in Sec. III B, and the major conclusions are
summarized in Sec. IV.

II. FORMALISM

A. General propagator theory

In the present study we consider the calculation of the
single-particle propagator [4,6],
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∑
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In these definitions, cα (c†β) are second-quantization annihila-

tion (creation) operators, |�N+1
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k 〉 are the eigenstates,
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n , EN−1
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system. Therefore, the poles of the propagator reflect the
electron affinities (EAs) and IEs. Equation (1) also yields

the total binding energy via the Migdal-Galitskiı̆-Koltun sum
rule [6],
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where uαβ represent the matrix elements of the one-body part
of the Hamiltonian (kinetic energy plus nuclear attraction)
and the k sum runs only over the eigenstates of the (N − 1)-
electron system.

The one-body Green’s function solves the Dyson equation
(hereafter, summations over repeated indices are implied)

gαβ(ω) = g0
αβ(ω) + g0

αγ (ω) 
�
γδ(ω) gδβ(ω), (4)

where g0(ω) is the propagator for a free particle. The
irreducible self-energy 
�

γδ(ω) acts as an effective, energy-
dependent, potential that can be written as [54,55]


�
αβ(ω) = 
∞

αβ + 
̃αβ(ω) =
∫

dω

2πi
Vαγ,βδ gδγ (ω) e−iωη+

+ 1

4
Vαλ,μν

[
R

(2p1h)
μνλ,μ′ν ′λ′(ω) + R

(2h1p)
μνλ,μ′ν ′λ′(ω)

]
Vμ′ν ′,βλ′ ,

(5)

and Vαβ,γ δ are antisymmetrized Coulomb matrix elements.
In Eq. (5) we have emphasized the energy-independent [or
correlated Hartree-Fock (CHF)] contribution to the self-energy

∞. This generalizes the Hartree-Fock (HF) potential by
replacing the Slater mean field with the (correlated) density
matrix extracted from the dressed propagator (1). 
∞ is
represented by the first diagram on the right-hand side in
Figs. 1(a) and 1(b). The remaining term, 
̃(ω), accounts
for deviations from the mean field and depends on the 2p1h
and 2h1p polarization propagators, R(2p1h)(ω) and R(2h1p)(ω).
These involve the simultaneous propagation of 2p1h (or 2h1p)
and higher excitations. Equation (5) is represented in Fig. 1(a)
in terms of time-ordered Feynman diagrams (or Goldstone
diagrams). R(ω) can also be expanded in terms of Coulomb
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FIG. 1. (Color online) (a) The self-energy 
�(ω) separates
exactly into a correlated HF term 
∞ and the polarization propagators
R(2p1h/2h1p)(ω) for the 2p1h and 2h1p motion. (b) Upon expansion of
R(ω) in Feynman diagrams, one obtains this series of diagrams for
the self-energy. (c) Another, more complicated, term appearing in the
expansion of R(2p1h)(ω). This is also included in the FRPA contribution
of Fig. 3, but it introduces a time ordering not generated by FTDA or
ADC(3). Dashed lines are antisymmetrized Coulomb matrix elements
Vαβ,γ δ , single lines represent the reference state (a HF propagator),
and the double lines represent the correlated propagator of Eq. (1).
All diagrams are time ordered, with time propagating upward.
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FIG. 2. (Color online) Expansion of the ph propagator �(ω)
in a series of ring diagrams. The diagrams resummed by TDA
are shown in the first line. The second line gives examples of
time-inversion patterns that are generated only by RPA; these account
for the presence of 2p2h and more complicated configurations in the
correlated ground state. The diagrams are time ordered, with time
propagating upward.

matrix elements and unperturbed propagators, as shown in
Figs. 1(b) and 1(c).

B. The Faddeev random-phase-approximation method

The Faddeev approach consists in expanding R(2p1h) and
R(2h1p) in terms of couplings between single electrons or holes
and ph, pp, or hh excitations [36,56]. Information about the
latter is fully contained in the ph polarization propagator �(ω)
that describes excited states of the N -electron system and
the two-particle propagator gII (ω) that describes the addition
or removal of two electrons. These Green’s functions are
calculated as resummations of ring and ladder diagrams using
either the TDA or the RPA. The difference between the two
approximations is in the choice of the propagators for the non-
interacting ph (i.e., �0) and pp (hh) (i.e., g0) configurations.
Both of these contain a term that conserves the direction of
time propagation and one that inverts it. By including only the
first term the TDA equations are obtained. If both contributions
are retained, one is led to the RPA. The RPA induces extra time
orderings in the resummations, as shown in Fig. 2 for the ph
case. These account for 2p2h and more complicated admix-
tures in the ground state that are generated by correlations.

The R(2p1h)(ω) and R(2h1p)(ω) propagators are obtained by
first calculating �(ω) and gII (ω) and then by recoupling them
to single-electron or -hole states, as shown in Fig. 3. This
is done by solving the set of Faddeev equations detailed in
Refs. [36,56]. We refer to this procedure as Faddeev TDA
(FTDA) or Faddeev RPA depending on the approximation
chosen to calculate �(ω) and gII (ω). The Faddeev summation
and the diagram depicted in Fig. 3 are the same in both
cases. Contributions from ph and pp (hh) excitations in all
possible partial waves are included in FRPA and FTDA since
this is required for a complete solution of the problem. In
order to fulfill Pauli constraints up to 2p1h and 2h1p level
in the expansion for R(ω) one must employ the generalized
version of RPA (in which the Coulomb matrix elements are
the antisymmetrized ones). Two separate sets of Faddeev
equations are used for R(2p1h)(ω) and R(2h1p)(ω).

The Faddeev procedure can be recast in terms of two
separate diagonalizations in the 2p1h and 2h1p configuration
spaces. In each case one solves a non-Hermitian eigenvalue
problem [56]. The Dyson equation is transformed into a

(ph)

[pp (hh)]

ΠΠ
II

Π(ph)

gII [pp (hh)]

(ph)

Π(ph)

g

FIG. 3. (Color online) (left) Example of one of the diagrams for
R(2p1h)(ω) that are summed to all orders by means of the Faddeev
method. Each of the ellipses represents an infinite sum of rings [�(ω)]
or ladders [gII (ω)]. Contributions of all possible partial waves are
included. (right) The corresponding contribution to the self-energy,
obtained upon insertion of R(2p1h)(ω) into Eq. (5). This representation
is valid for both the FTDA and FRPA approaches, the difference
between the two being in the diagrams implicitly resummed inside
�(ω) and gII (ω) (see Fig. 2).

diagonalization problem, which can be solved directly for the
IE and EA and the corresponding residues in the single-particle
propagator (1). The explicit form of the FTDA and FRPA
equations is given in Ref. [36], and their reduction to a matrix
diagonalization is described in Ref. [56]. In the particular case
of the FTDA, one finds that the Faddeev Hamiltonian matrix
is Hermitian and is equivalent to the effective interaction
among 2p1h or 2h1p states in ADC(3). When the coupling
vertex between single-particle states and 2p1h and 2h1p states,
in analogy with ADC(3) theory, is taken as the minimum
coupling that ensures consistency with perturbation theory up
to third order [17], the equations reduce to the usual Dyson
ADC(3) equations [44]. In the following we refer to this
approximation as “FTDA” with the understanding that for the
present calculations it is strictly equivalent to “ADC(3)”.

III. RESULTS

We considered a set of neutral atoms and ions corresponding
to shell and subshell closures with Z � 18. The calculations of
the smallest systems (He, Be, and Be2+) were performed using
the correlation-consistent polarization valence Gaussian bases,
cc-pVXZ, of increasing quality from double to quintuple zeta
(X = 2–5). For the larger atoms it was found that a sizable
fraction of the correlation energy is lost with similar bases. The
remaining systems were therefore calculated with the corre-
sponding core-valence bases, cc-pCVXZ, which include addi-
tional compact Gaussians to improve the description of the core
electrons. This choice was seen to speed up the convergence
and led to accurate results for these atoms.1 The correction
to the correlation energies induced by the extra core orbits

1The augmented version of the bases (aug-cc-pVXZ) were also
tested and gave no sizable improvement for the quantities being
considered in this work.
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TABLE I. Total binding energies (in hartrees) for Ne and Be obtained for cc-p(C)VXZ bases of different sizes. The results obtained with
FTDA and FRPA (with self-consistency in the CHF diagram) and with the CCSD methods are compared to FCI calculations.

Ne Be

Etot cc-pCVDZ cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

FTDA −128.7191 −14.6089 −14.6154 −14.6314 −14.6375
FRPA −128.7210 −14.6084 −14.6150 −14.6310 −14.6371
CCSD −128.7211 −14.6174 −14.6236 −14.6396 −14.6457
Full CI −128.7225 −14.6174 −14.6238 −14.6401 −14.6463

increases with the number of electrons, and it was found to be
≈40 mH for Ne and ≈300 mH for Mg in the cc-pCVQZ basis.

The bases for the Be2+ (Mg2+) ions were obtained from the
cc-p(C)VXZ sets for He (Ne) but scaling the corresponding
single-particle orbits to correct for the different atomic number,

φi

Be2+/Mg2+(r) ∝ φi
He/Ne

(
r
Z

N

)
, (6)

where Z is the nuclear charge and N = Z − 2 is the number
of electrons.

Correlation and ionization energies were computed with
both the FTDA and the FRPA methods. The CHF term 
∞
was calculated fully self-consistently by iterating Eq. (4) and
the first term on the right-hand side in Eq. (5) [the first diagram
in Figs. 1(a) and 1(b)].2 This aspect is important since it
consistently generates all the nondynamic contributions from
perturbation theory up to third order and more. The dynamic
part of the self-energy 
̃(ω) was instead calculated in terms
of an HF reference state.

The ground-state energies are compared to the results of
CCSD, starting from the same HF reference state. In all cases,
the full configuration space was considered to be active (i.e.,
no frozen-core approximation). The ground-state energies are
compared to empirical values, which have been corrected by
subtracting relativistic effects [57–59]. Ionization energies are
compared to experimental spectra. Since our calculations are
nonrelativistic, it is of interest to have an estimate of relativistic
effects. This was studied at the level of the ADC(3) formalism
in Ref. [60], and one expects the error at the FRPA level
to be of the same order of magnitude. For instance, in Ne
the 2p ionization energy is shifted by the small amount of
0.8 millihartree, and the same holds for the 3p state of Ar
(a shift of 0.6 millihartree). The s states are reported to show
larger effects and are shifted upward by 5.1 mH for the 2s state
of Ne and by 6.6 mH for the 3s state of Ar; i.e., in this case
the effects become comparable to the discrepancy between
experimental and theoretically obtained values.

A. Convergence

Total binding energies predicted by both Green’s function
theory and CCSD are compared with the results of full

2The present notation differs from previous works, where FRPA
denoted the 
∞,HF obtained from the HF reference state and FRPAc
denoted the fully correlated CHF version of it [36,44]. In this paper
we drop the subscript c and always use FRPA to denote the complete
CHF term.

configuration interaction (FCI) in Table I. For a Ne atom
in cc-pCVDZ, Green’s functions and CCSD agree with each
other and deviate from the exact result by less than 2 mH. FRPA
gives just a very small correction, but it halves the discrepancy
between FTDA and FCI. The total correlation energy for this
basis is 233 mH. The atom of Be is the most difficult case
among those discussed here due to the fact that this is not
a good closed-shell system. In this case, a near degeneracy
between the 2s and 2p orbitals leads to very soft excitations
of the Jπ = 1−, S = 1 states and drives the ph-RPA equations
close to instability. The FRPA was thus solved by employing
the TDA approximation of the polarization propagator in this
channel alone (all other partial waves were treated properly
in RPA). The resulting correlation energies agree with FTDA,
indicating that RPA is not crucial for this small system nor
does it introduce spuriousities by overcorrelating the ground
state. FCI calculations of Be were possible for all bases up
to quintuple zeta and are reproduced by CCSD with high
accuracy. However, FTDA and FRPA are consistently behind
by about 9 mH, corresponding to 10% of the total correlation
energy. This is the most serious discrepancy obtained in this
work and suggests a limitation of the FRPA, in its present
form, for near-degenerate systems. To overcome this, it may
be necessary to improve the effective coupling vertex (which
is described with higher accuracy by CCSD) or to extend
the treatment of the excitation spectrum of the polarization
propagator beyond bare ph states [61].3 The close agreement
between FTDA and FRPA in Table I is a welcome feature
since for a few electrons in the Be atom one should expect
RPA-like effects (that is, several ph excitations admixed in
the ground state) to be negligible. The RPA is not optimal for
few-body systems since breaking of the Pauli principle may
become substantial in these cases. Nevertheless, this result
(and the one for He discussed below) suggests that it can
be safely applied also in this regime without overestimating
ground-state correlations. The usual issues of RPA for cases of
near degeneracy remain and may lead to instabilities in certain
partial waves, as described above. In the worst case it is still
possible to release the RPA requirement in such channels and
obtain reasonable results.

Extrapolations to the basis-set limit were obtained from two
consecutive sets according to

EX = E∞ + AX−3 , (7)

3In the ADC language, this means adding fourth- and fifth-order
terms that are introduced at the ADC(5) level.

012501-4



ACCURACY OF THE FADDEEV RANDOM PHASE . . . PHYSICAL REVIEW A 85, 012501 (2012)

TABLE II. Convergence of total energies and IEs (in hartrees) in the FRPA approach. Calc. indicates energies calculated using double
(X = D) to quintuple (X = 5) valence orbits basis sets. Extrap. indicates results extrapolated from two consecutive sets using Eq. (7). The
Be atom was calculated with the cc-pVXZ bases, while Ne, Mg, and Ar were done using cc-pCVXZ. The experimental values are from
Refs. [57–59,62].

cc-p(C)VDZ cc-p(C)VTZ cc-p(C)VQZ cc-p(C)V5Z Experiment

Etot Be calc. −14.6084 −14.6150 −14.6310 −14.6371 −14.6674
extrap. −14.6178 −14.6427 −14.6436

Ne calc. −128.7210 −128.8643 −128.9079 −128.9226 −128.9383
extrap. −128.9246 −128.9397 −128.9381

Mg calc. −199.8147 −199.9507 −200.0033 −200.0271 −200.054
extrap. −200.0080 −200.0417 −200.0519

IE Ar (3p) calc. 0.5623 0.5695 0.5751 0.5770 0.579
extrap. 0.5725 0.5792 0.5788

Ar (3s) calc. 1.0985 1.0616 1.0599 1.0622 1.075
extrap. 1.0461 1.0586 1.0646

where X is the cardinal number of the basis. This relation is
known to give proper extrapolations for correlation energies
[1]. Table II gives some examples of the calculated binding
energies for all basis sizes and shows the convergence of the
extrapolated results. In the smallest systems, up to Ne, we find
changes of less than 2 mH between the last two extrapolations
(X = T ,Q and X = Q,5). This number can be taken as a
measure of the uncertainty in reaching the basis-set limit. For
the larger atoms Mg is the one that converges more slowly, with
a difference of 10 mH (we found 7 mH for Ar). Calculations
with X = 6 are beyond our present computational capabilities.
However, given the fast convergence with increasing cardinal
number, it appears safe to assume an uncertainty of �5 mH
for Mg and Ar.

In general, IEs and EAs tend to converge faster because they
represent differences of total energies between the N -electron
ground state and the excited states of (N ± 1) electrons. Inac-
curacies in the correlation energies are similar and therefore
could cancel each other to a large extent. Equation (7) is
preserved when taking differences of correlation energies that
obey the same trend, and therefore one may expect that a
similar behavior applies to IEs for large basis sets. However,
this is not always guaranteed, especially in cases where
shake-up configurations are important. For smaller bases these
contributions are less stable with respect to changing basis
set and can affect IEs differently. The possible behaviors are

displayed in Table II for the calculated IEs of Ar. The 3p

orbit has a strong one-hole character and converges smoothly.
Here the difference of only 0.4 mH between the last two
extrapolations indicates that a convergence as X−3 effectively
takes place. We obtained similar trends for the other cases.
The only remarkable exception is the 3s hole in Ar, which
has a large admixture of 2h1p configurations. The calculated
IE shows an oscillatory behavior; however, a monotonic
convergence could still happen for larger bases once shake-up
contributions have stabilized. In Sec. III B, we will apply
Eq. (7) also to extrapolate ionization energies. We estimate
an error up to 2 mH for the larger atoms and <1 mH for the
smaller ones.

B. Ground states and ionization energies of simple atoms

Table III shows the ground-state energies extrapolated from
X = Q,5 for both Green’s function and CCSD methods. These
are compared to the corresponding Hartree-Fock results and
the experiment. The empirical values are from Refs. [57–59]
and have been corrected by subtracting relativistic effects.
The CCSD results for He and Be2+ are equivalent to FCI.
Note that the extrapolated value based on X = Q and X = 5
is not yet fully converged at the submillihartree level and
lies slightly below the basis-set limit. We see that FRPA misses
1 mH, or 2%, of the correlation energy of He. In larger systems

TABLE III. Hartree-Fock, FTDA, FRPA, and CCSD total energies (in hartrees) extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z basis
sets. He, Be2+, and Be were calculated with the cc-pVXZ bases, while cc-pCVXZ bases were used for the remaining atoms. The deviations
from the experiment are indicated in parentheses (in mhartrees). The experimental energies are from Refs. [57–59]. The rms errors in parentheses
are calculated by neglecting the Be results.

Hartree-Fock FTDA FRPA CCSD Experiment

He −2.8617(+42.0) −2.9028(+0.9) −2.9029(+0.8) −2.9039(−0.2) −2.9037
Be2+ −13.6117(+43.9) −13.6559(−0.3) −13.6559(−0.3) −13.6561(−0.5) −13.6556
Be −14.5731(+94.3) −14.6438(+23.6) −14.6436(+23.8) −14.6522(+15.2) −14.6674
Ne −128.5505(+387.8) −128.9343(+4.0) −128.9381(+0.2) −128.9353(+3.0) −128.9383
Mg2+ −198.837(+444) −199.226(−5) −199.228(−7) −199.225(−4) −199.221
Mg −199.616(+438) −200.048(+6) −200.052(+2) −200.050(+4) −200.054
Ar −526.820(+724) −527.543(+1) −527.548(−4) −527.536(+8) −527.544
σrms [mH] 392 9.5(3.6) 9.5(3.4) 6.9(4.2)
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TABLE IV. Ionization energies obtained with Hartree-Fock, second-order perturbation theory for the self-energy (plus the CHF term),
FTDA, and the full Faddeev RPA (in hartrees). All results are extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z basis sets (see Table III).
The deviations from the experiment (indicated in parentheses) and the rms errors are given in mhartrees. The experimental energies are from
Refs. [62–64].

Second Experiment
Hartree-Fock order FTDA FRPA [63,64]

He 1s 0.918(+14) 0.9012(−2.5) 0.9025(−1.2) 0.9008(−2.9) 0.9037
Be2+ 1s 5.6672(+116) 5.6542(−1.4) 5.6554(−0.2) 5.6551(−0.5) 5.6556
Be 2s 0.3093(−34) 0.3187(−23.9) 0.3237(−18.9) 0.3224(−20.2) 0.3426

1s 4.733(+200) 4.5892(+56) 4.5439(+11) 4.5405(+8) 4.533
Ne 2p 0.852(+57) 0.752(−41) 0.8101(+17) 0.8037(+11) 0.793

2s 1.931(+149) 1.750(−39) 1.8057(+24) 1.7967(+15) 1.782
Mg2+ 2p 3.0068(+56.9) 2.9217(−28.2) 2.9572(+7.3) 2.9537(+3.8) 2.9499

2s 4.4827 4.3283 4.3632 4.3589
Mg 3s 0.253(−28) 0.267(−14) 0.272(−9) 0.280(−1) 0.281

2p 2.282(+162) 2.117(−3) 2.141(+21) 2.137(+17) 2.12
Ar 3p 0.591(+12) 0.563(−16) 0.581(+2) 0.579(≈ 0) 0.579

3s 1.277(+202) 1.111(+36) 1.087(+12) 1.065(−10) 1.075
3s 1.840 1.578 1.544

σrms [mH] 81.4 29.3 13.7 10.6

FRPA explains at least 99% of the correlation energies, and
all calculations, including CCSD, agree with the experiment
within the uncertainty expected from basis extrapolation. For
Z � 10, the inclusion of RPA correlations predicts about 5 mH
more binding than the corresponding FTDA. The atom of Be
is the only exception to this trend, as already noted above. In
this case the 9 mH difference between FRPA and CCSD is
seen also in the basis limit. Based on the agreement between
FCI and CCSD in Table I, the remaining discrepancy with the
experiment (≈15 mH) may be due to the basis set employed,
which is probably not capable of accommodating the relevant
correlation effects. We have attempted FRPA calculations with
the aug-cc-pVXZ bases to allow for a better description of
the valence orbits but without any appreciable change in the
results.

The Ne atom was also computed in the FRPA approach by
using a Hartree-Fock basis with a discretized continuum [36].
The basis set was chosen to be as large as possible to approach
the basis-set limit for IEs and EAs but was not optimized for
treating core orbits. The total binding energy obtained was
128.888 H, away from both the basis-set limit of Table III and
the experiment.

Ionization energies are shown in Table IV, together with
the predictions from Hartree-Fock theory and the second-order
self-energy [obtained by retaining only the first two diagrams
of Fig. 1(b)]. Second-order corrections account for a large part
of correlations but still lead to sizable errors. The additional
correlations included in the present calculations appear to
reduce this error substantially. The FTDA [i.e. ADC(3)]
results give a measure of the importance of a treatment
that is consistent with at least third-order perturbation theory
[13]. Corrections are particularly large for states with higher
ionization energies, where the density of 2h1p states is
increased. Since configuration mixing among these states
is not introduced by strict second-order perturbation theory,
calculations at least at the level of FTDA are required in these
cases. Configuration mixing among the 2h1p states reduces

the errors in the 1s state in Be by a factor of 5. Another
effect is the fragmentation of the 3s orbit of Ar. Second-order
calculations predict this as a quasiparticle state 36 mH away
from the empirical energy and carrying 0.81 of the total orbit’s
intensity. A small satellite state with relative intensity of 0.10
is calculated at larger separation energies. The mixing with
2h1p configurations corrects the energies of both peaks and
redistributes their strengths more correctly. For the FRPA
calculation the peak at 1.065 H has intensity of 0.61, close
to the experimental values (peak at 1.075 H with intensity
0.55 [62]). The second peak is obtained at 1.544 H and carries
the remaining strength of the original quasiparticle.

Adding the effects of RPA excitations has a larger impact
on ionization than on correlation energies. Almost all the
calculated IEs shift closer to the experimental values by a
few millihartree. The only exceptions are the two-electron He
atom, where the RPA approach tends to overestimate correla-
tions, and the first ionization of Be, where soft excitations tend
to invalidate the RPA. In general, the rms error for the valence
orbits of Table IV decreases from 13.7 to 10.6 mH, passing
from FTDA to FRPA.

The FRPA first and second IEs of the Ne atom computed
using the discretized continuum basis of Ref. [36] are 0.801
and 1.795 H. These are in good agreement with the extrapo-
lations of Table IV and give us further confidence in applying
Eq. (7) also for quasiparticle states.

IV. CONCLUSIONS AND DISCUSSION

We have performed microscopic calculations of total and
ionization energies in order to assess the accuracy of the Fad-
deev RPA approach for light atoms. The FRPA is an expansion
of the many-body self-energy that makes explicit the coupling
between particles and collective excitations arising from
interacting electrons and holes. This formalism completely
includes the ADC(3) theory and retains all contributions from
perturbation theory up to third order, which is crucial for a
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correct prediction of IEs for outer-valence electrons in atomic
and molecular systems. At the same time, it also includes
full resummations of RPA diagrams necessary to screen the
long-range Coulomb interaction in extended systems [5,6]. In
this work the FRPA was tested in the basis-set limit, and it was
found that even for very small systems, where RPA violations
of the Pauli principle might have hindered satisfactory results,
the FRPA is accurate.

In general, FTDA [i.e. ADC(3)] and FRPA give very
similar results for the lightest systems, while the inclusion
of ground-state correlations via RPA theory leads to small
but systematic improvements as the atomic number increases.
For total binding energies, their difference is negligible in
the He and Be atoms, while the FRPA yields ≈5 mH more
correlation energy for atomic numbers Z � 10. Except for
the lightest atoms, 99% of the the total correlation energy is
normally recovered, and the total energies obtained agree well
with CCSD (as expected from the estimates for ADC(3) in
Ref. [20]). The discrepancies with the experimental data are
also within the errors estimated for the extrapolation to the
basis-set limit. The only notable exception is the neutral Be
atom, for which the small gap at the Fermi surface complicates
the extraction of the correlation energy. In this case, the
discrepancy obtained with respect to the experiment appears
to be mostly due to deficiencies in the basis set. However, a
smaller fraction of it is probably related to missing correlations.

Similar trends are found for the ionization energies. For the
two-electron cases, He and Be2+, FRPA does not introduce
improvements with respect to FTDA, but it gives again sensible
predictions. The above problems in describing the correlations
in neutral Be are also reflected in the results for the first

ionization energy. For all other cases, the use of RPA shifts IEs
by 2–10 mH and always brings them closer to the experiment.
On average, the rms error for outer-valence IEs decreases
from 13.7 to 10.6 mH by adding RPA effects. The 3s orbit
in Ar is found to be fragmented, and configuration mixing
effects between 2h1p states are required to obtain the correct
ionization energy and relative intensity. The present results are
in agreement with analogous calculations of simple molecules
[44] and show that conclusions on the accuracy of the FRPA
method still hold in the basis-set limit.

Numerically, the FRPA can be implemented as a
diagonalization in 2p1h-2h1p space, implying similar
computational costs as an ADC(3) calculation. Due to the
inclusion of RPA excitations, the FRPA method holds the
promise of bridging the gap between accurate descriptions of
quasiparticles in finite and extended systems. Investigating the
feasibility of FRPA for larger molecules and the electron gas
is therefore a priority for future research efforts. Consistent
calculations of quasiparticle properties in these cases, once
feasible, could also be useful for constraining functionals in
quasiparticle density functional theory [65].
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