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We study a general quantum key distribution protocol in higher dimension. In this protocol, quantum states in
arbitrary g + 1 (1 � g � d) out of all d + 1 mutually unbiased bases in a d-dimensional system can be used for
the key encoding. This provides a natural generalization of the quantum key distribution in higher dimension and
recovers the previously known results for g = 1 and d . In our investigation, we study Eve’s attack by two slightly
different approaches. One is considering the optimal cloner of Eve, and the other, defined as the optimal attack,
is maximizing Eve’s information. We derive results for both approaches and show the deviation of the optimal
cloner from the optimal attack. With our systematic investigation of the quantum key distribution protocols in
higher dimension, one may balance the security gain and the implementation cost by changing the number of
bases in the key encoding. As a side product, we also prove the equivalency between the optimal phase covariant
quantum cloning machine and the optimal cloner for the g = d − 1 quantum key distribution.
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I. INTRODUCTION

Quantum key distribution (QKD) is a promising application
of quantum mechanics. The first QKD protocol was proposed
by Bennett and Brassard in 1984 (BB84) [1] and has been
proved to be unconditionally secure [2,3]. This protocol was
later generalized to the six-state protocol [4]. Meanwhile,
various other protocols were developed, among which, for
example, was the Ekert 91 protocol [5]. In the past decades,
significant progress has been made both theoretically and ex-
perimentally in establishing point-to-point as well as network
types of key distributions (see, for example, Refs. [6–11]).

In a simple two-dimensional system, one can either use
four quantum states or six quantum states, which correspond
to the BB84 protocol and the six-state protocol, respectively,
to encode binary symbols. In a higher-dimensional system of
dimension d [12], there are altogether d + 1 mutually unbiased
bases (MUBs) available for the QKD. The counterparts of the
BB84 protocol and the six-state protocol in a d-dimensional
system are the 2-basis protocol and the (d + 1)-basis protocol.
Naturally, one may think of a general (g + 1)-basis protocol
(g = 1,2, . . . ,d), where arbitrary g + 1 MUBs are utilized
to encode d-ary symbols. In the past few years, there have
been many studies on higher-dimensional QKD protocols.
The QKDs using four-level systems were done first [13,14],
and interest soon extended to the d-dimensional case [15–23].
Most of these studies, however, focused on the 2-basis and the
(d + 1)-basis cases, and the research on the most general case
is still absent. In this article, we present the study on such a
general (g + 1)-basis QKD protocol.

In principle, the quantum states of a higher dimension can
be encoded in a continuous-variable system such as a harmonic
oscillator [24]. It is of fundamental interest, theoretically, how
a (g + 1)-basis QKD protocol is formalized. Our investigation
of the (g + 1)-basis protocol is a natural generalization of the
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previously studied cases. The results of our systematic study
may help one balance the security gain and the implementation
cost by changing the choice of g.

In this article, our general QKD protocol that uses arbitrary
g + 1 MUBs is the following. Suppose Alice, the sender, wants
to send Bob, the receiver, a set of classical symbols consisting
of 0,1, . . . ,d − 1. To start, Alice encodes every symbol, say
i, into a pure quantum state |i〉 or |ĩ(k)〉 of one randomly
chosen MUB out of the g + 1 and sends the state to Bob.
Upon receipt, Bob measures the state using again a randomly
chosen basis, which is correct with probability 1/(g + 1).
Subsequently, the choice of bases are publicly announced by
Alice, and the states measured in bases different from they are
prepared are discarded by the two parties. In the absence of
any eavesdropping and environmental noises, Alice and Bob
are then left with identical strings of symbols while they are
left with partially correlated strings in the presence of Eve,
an eavesdropper. By checking the agreement of a subset of
the symbol sequence, Alice and Bob can decide whether to
continue or abort the protocol. If the disagreement is below
a threshold, they then perform a direct reconciliation and a
privacy amplification to obtain a set of shared keys. In this
article, we consider that Eve attacks the QKD by intercepting
and cloning the state being sent to Bob. For simplicity, we
envision that Eve uses a fixed and balanced (balanced between
different bases) cloning transformation for each qudit, and
that Eve measures her state before the one-way postprocessing
between Alice and Bob.

In this article, we investigate Eve’s attack scheme by two
slightly different approaches, both starting from a general
form of cloning transformation proposed in Ref. [25]. One
approach is considering the optimal cloner of Eve where
we maximize the fidelities of the state of Eve. The other is
considering maximizing the information Eve has about Alice’s
state, which, rather than maximizing the fidelities, is defined as
the optimal attack. We do these separately in Sec. II and Sec. IV
and compare the two approaches subsequently. As we shall
see, they give different results. The second approach is done
in a somewhat restrictive sense, but it is sufficient to prove the

012334-11050-2947/2012/85(1)/012334(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.012334


XIONG, SHI, WANG, JING, LEI, MU, AND FAN PHYSICAL REVIEW A 85, 012334 (2012)

difference between the optimal cloner and the optimal attack.
Section III gives some analytical solutions to the optimal cloner
in special cases, including the symmetric cloner corresponding
to a general g. In Sec. V, we introduce a side product of our
first approach to the QKD attack, where we present the link
between a QKD cloner and a revised asymmetric form of the
optimal symmetric phase covariant quantum cloning machine
proposed in Ref. [26] and prove the optimality of the latter. In
Sec. VI, we end the article with a brief conclusion.

II. THE OPTIMAL CLONER OF EVE

Now we investigate the optimal cloner that Eve can use.
Before proceeding, let us first introduce some notations. In
dimension d, there are d + 1 MUBs, namely {|i〉} and {|ĩ(k)〉}
(k = 0,1, . . . ,d − 1), which more explicitly are

|ĩ(k)〉 = 1√
d

d−1∑
j=0

ωi(d−j )−ksj |j 〉, (1)

with sj = j + · · · + (d − 1) and ω = ei 2π
d [27]. By saying

two bases, say {|ĩ(0)〉} and {|ĩ(1)〉}, are mutually unbiased,
we mean that |〈ĩ(1)|k̃(0)〉| = 1√

d
for any |k̃(0)〉 and |ĩ(1)〉 in

the two bases respectively. The generalized Pauli matrices
σx and σz act on the states so that σx |j 〉 = |j + 1〉 and
σz|j 〉 = ωj |j 〉. Throughout the article, we omit the “modulo
d,” which is the case here. We define Umn = σm

x σn
z so that

Umn|j 〉 = ωjn|j + m〉. Finally, the generalized d-dimensional
Bell states read

|�mn〉 = (I ⊗ Um,−n)|�00〉, (2)

with m,n = 0,1, . . . ,d − 1 and

|�00〉 = 1√
d

d−1∑
j=0

|j 〉|j 〉. (3)

Now we consider the optimal cloner of Eve. Suppose a
state |ψ〉A is sent by Alice and intercepted by Eve. Then Eve
prepares a maximally entangled state |�00〉E′E and performs
a unitary transformation U of the general form proposed in
Ref. [25]:

U =
d−1∑

m,n=0

amn(Umn ⊗ Um,−n ⊗ I). (4)

Here amn are the parameters of the unitary transformation,
satisfying

∑
m,n |amn|2 = 1. This transformation yields

U |ψ〉A|�00〉E′E

=
∑
m,n

amnUmn|ψ〉B ⊗ |�−m,n〉E′E (5a)

=
∑
m,n

bmn|�−m,n〉BE′ ⊗ Umn|ψ〉E, (5b)

where A, B, E, and E′ denote Alice, Bob, Eve, and her cloning
machine, respectively. bmn are the discrete fourier transform
of amn, that is, bmn = 1

d

∑
k,r akrω

kn−rm. Equations (5a) and
(5b) make it convenient to write the density matrices of Bob

as well as Eve. For |ψ〉A being state |i〉 or |ĩ(k)〉 of each MUB,
we have

ρB =
d−1∑

m,n=0

|amn|2|i + m〉〈i + m|, (6a)

ρ̃
(k)
B =

d−1∑
m,n=0

|amn|2(Umn|ĩ(k)〉B)(〈ĩ(k)|BU †
mn), (6b)

ρE =
d−1∑

m,n=0

|bmn|2|i + m〉〈i + m|, (6c)

ρ̃
(k)
E =

d−1∑
m,n=0

|bmn|2(Umn|ĩ(k)〉E)(〈ĩ(k)|EU †
mn) (6d)

(k = 0,1, . . . ,g − 1).

Let us consider the fidelities of the states B and E with
respect to all the g + 1 different bases. The fidelity here can
be defined as F ≡ 〈ψ |ρout

red.|ψ〉, the value of which differs for
states of different bases. With the help of the properties of the
Pauli matrices and the Bell states, we figure out the fidelities
of B and E for each mutually unbiased basis:

FB =
∑

n

|a0n|2, (7a)

F̃
(k)
B =

∑
m

|am,km|2, (7b)

FE = 1

d

∑
m

|
∑

n

amn|2, (7c)

F̃
(k)
E = 1

d

∑
n

|
∑
m

am,n+km|2 (7d)

(k = 0,1, . . . ,g − 1).

For the QKD using g + 1 MUBs, without loss of generality,
we suppose that the bases {|i〉},{|ĩ(0)〉}, . . . ,{|ĩ(g−1)〉} are
chosen by the two legitimate parties. For simplicity, we assume
that Eve’s attack is balanced; that is, she induces an equal
probability of error for all the g + 1 MUBs. This assumption
follows from the reasoning that Eve can be detected easily by
unbalanced disturbance otherwise, and that, as we find, Eve
cannot maximize all her g + 1 fidelities simultaneously if the
disturbance is unbalanced. Hence, we assume

FB = F̃
(0)
B = · · · = F̃

(g−1)
B . (8)

At this point, to obtain an optimal cloner, Eve has to maximize
her fidelities for a given FB , which quantifies the disturbance.
We claim and will show later that Eve can maximize all her
g + 1 fidelities simultaneously and that they are equal. We
start by a “vectorization” of the matrix elements of (amn). Let

�αi = (a1,1i , . . . ,ad−1,(d−1)i)(i = 0, . . . ,g − 1), (9)

�A = (A1, . . . ,Ad−1), (10)

Ai =
d−1∑

j 	=0,i,...,(g−1)i

aij (i = 1, . . . ,d − 1). (11)
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The rest elements are a0j (j = 0, . . . ,d − 1). Equation (8)
gives the following restrictions:

d−1∑
j=1

|a0j |2 = FB − |a00|2, (12)

||�αi ||2 = FB − |a00|2 (i = 0, . . . ,g − 1). (13)

One of Eve’s fidelity FE now reads

FE = 1

d

⎛
⎜⎝

∣∣∣∣∣∣
d−1∑
j=0

a0j

∣∣∣∣∣∣
2

+
∣∣∣∣∣
∣∣∣∣∣
g−1∑
i=0

�αi + �A
∣∣∣∣∣
∣∣∣∣∣
2
⎞
⎟⎠ . (14)

Equations (12)–(14) tell us how the fidelities of Eve and Bob
are coupled with each other.

Now we show how Eqs. (9)–(14) work by doing the g = 2
version of them. The results for a generic g can be obtained
analogously. For g = 2,

FE = 1

d

⎛
⎜⎝

∣∣∣∣∣∣
d−1∑
j=0

a0j

∣∣∣∣∣∣
2

+ ||�α0 + �α1 + �A||2
⎞
⎟⎠ ,

d−1∑
j=1

|a0j |2 = ||�α0||2 = ||�α1||2 = FB − |a00|2.

We tentatively fix the values of |a00| and �A. By vector
manipulation, it is easy to find that the maximum FE is
achieved when

�α0,�α1 ∝ �A, a01 = · · · = a0,d−1 =
√

FB−|a00|2
d−1

eiArg(a00).

Unfixing |a00| and �A, FE becomes a function of them and is
positively correlated to || �A|| directly. Using the normalization
condition

∑
m,n |amn|2 = 1, we find that || �A|| is maximal

when ai,2i = ai,3i = · · · = ai,(d−1)i (i = 1, . . . ,d − 1). Now
we visualize the matrix (amn):

(amn) =

⎛
⎜⎜⎜⎜⎝

v x x x · · ·
x1 x1 y1 y1 · · ·
x2 y2 x2 y2 · · ·
x3 y3 y3 x3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

where

x =
√

FB − |v|2
d − 1

eiArg(v),

xi =
√

FB − |v|2 Ai

|| �A|| , yi = Ai

d − 2
,

|| �A|| =
√

1 + 2|v|2 − 3FB.

Correspondingly, Eve’s fidelity FE becomes

FE = 1

d
{[|v| +

√
(d − 1)(FB − |v|2)]2

+ (
√

1 + 2|v|2 − 3FB + 2
√

FB − |v|2)2}.
Thus far, we have maximized one of Eve’s fidelities. The other
fidelities can be obtained simply by transposing the roles of

“the horizontal direction,” “the vertical direction,” and “the
diagonal direction” of the matrix (amn) and redefining �α0,
�α1, and �A accordingly. Doing so, we find that the condition
for optimization of all Eve’s fidelities, with an overall phase
omitted, is

(amn) =

⎛
⎜⎜⎜⎜⎝

v x x x · · ·
x x y y · · ·
x y x y · · ·
x y y x · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

where the elements are all real, and

x =
√

FB − v2

d − 1
, y =

√
1 + 2v2 − 3FB

(d − 1)(d − 2)
.

All Eve’s fidelities are found to be equal. They are equal to

FE = 1

d
{[v + (d − 1)x]2 + (d − 1)[2x + (d − 2)y]2}.

The results for a generic g are analogous to those for g = 2.
The difference is that some “2’s” are substituted with “g’s.”
We thus present the following optimization condition and the
optimal Eve’s fidelities:

FE = F̃
(0)
E = · · · = F̃

(g−1)
E

= 1

d
{[v + (d − 1)x]2 + (d − 1)[gx + (d − g)y]2}, (15)

amn =
⎧⎨
⎩

v, m = n = 0,

x, m = 0, n 	= 0 or m 	= 0, n = km,

y, otherwise
(16)

(k = 0, . . . ,g − 1), for some v,

where

x =
√

FB − v2

d − 1
, y =

√
1 + gv2 − (g + 1)FB

(d − 1)(d − g)
. (17)

One notices that there is still an undetermined, independent
variable v. To achieve the maximal FE for a given FB , one
needs to further optimize the value of v. In some cases, this
can be done analytically, but, in the general case, there seems
to be no evident analytical expression. Those analytical results
are presented in Sec. III. We do numerical calculation for the
general case.

To show the performance of the optimal cloner, we choose
d = 5 as an example and plot the optimized FE and v curves
as functions of FB in Fig. 1. The figure shows that, as FB

increases, FE decreases, that is, as the disturbance decreases,
the state E resembles the original state less. The figure
also shows reasonable shifts of the curves as g varies. As
g increases, that is, as more bases are used, the FE curve
shifts down, suggesting that FE is lower for a given FB . The
difference between adjacent curves is small for large g’s.
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FIG. 1. (Color online) The curves of the fidelity FE (dashed blue
lines) and the parameter v (solid red lines) as functions of FB of
the optimal cloner for d = 5 and g = 1,2, . . . ,5. The g = 1 and
g = 5 lines are derived from Eqs. (19) and (21), respectively. The
curves for general g’s are numerically computed from Eqs. (15)–
(17). The general-g curves in some domains with very small FB

are incomputable by Eqs. (15)–(17), but they can be obtained by
exchanging the roles of E and B.

III. ANALYTICAL SOLUTIONS TO THE
OPTIMAL CLONER

In this section, we present the analytical expressions of FE

and v for some special cases. The first one is the g = 1 case.
For g = 1, an easier method gives that

v = FB, x =
√

FB(1 − FB)

d − 1
, y = 1 − FB

d − 1
, (18)

whence

FE = 1

d
[
√

FB +
√

(d − 1)(1 − FB)]2. (19)

The second set of analytical results is for g = d. In this case,
there exists no y in the matrix (amn), and v has a fixed value
given below:

v =
√

(d + 1)FB − 1

d
, (20)

whence

x =
√

1 − FB

d(d − 1)
,

(21)

FE = 1

d2
[
√

(d + 1)FB − 1 +
√

(d − 1)(1 − FB)]2 + (1 − FB).

Equations (19) and (21) recover the previous known results in
Ref. [15]. Here they are related by parameters v and g within
a unified framework.

The third case in which we have analytical results is that
Eve and Bob have equal fidelities, that is, FE = FB = F . We

start by observing the following fact: When FB = FE = F ,
Eq. (15) is equivalent to√

(d − g)[1 + gv2 − (g + 1)F ]

= v
√

d − 1 − (g + 1)
√

F − v2. (22)

We square this equation and let u = √
F − v2, and we end up

with a quadratic equation of u and v,

(d+1)(g+1)

d−g
u2 + 2d−g−1

d − g
v2 − 2(g + 1)

√
d − 1

d − g
uv = 1,

(23)

which represents an ellipse centering at the origin. The fidelity
F = u2 + v2 is the square of the distance from the origin to
the point (u,v) and is thus maximal at one end of the major
axis. It is easy to find that point by diagonalizing the coefficient
matrix. The eigenvalues of that coefficient matrix are found to
be

λ± = d

2(d − g)
[(g + 3) ± P (d,g)], (24)

where

P (d,g) =
√

(g + 3)2 − 8
(d − g)(g + 1)

d
. (25)

By further calculating the eigenvectors, we figure out the
maximal fidelity F and the corresponding parameter v. The
maximal fidelity is

F = 1

λ−
= 2

d

d − g

(g + 3) − P (d,g)

= 2

d

d − g

(g + 3) −
√

(g + 3)2 − 8 (d−g)(g+1)
d

. (26)

The corresponding v satisfies

u

v
= (d + 1)(g + 1) − (d − g)λ+

−(g + 1)
√

d − 1
(27)

and is thus

v =
⎧⎨
⎩ 2

d

(d − 1)(d − g)

(g + 3) − P (d,g)

× 1

(d − 1) + [
d

2(g+1)P (d,g) − 1 − d
2

g−1
g+1

]2

⎫⎬
⎭

1
2

. (28)

We remark that Eqs. (26) and (28) are the results for an optimal
symmetric cloning machine that clones arbitrary g + 1 MUBs
and that has not been studied. We can find that, as g increases,
F increases as it is expected.

IV. THE OPTIMAL ATTACK OF EVE

In our g + 1 basis QKD protocol, we consider that Eve
intercepts each state and copies it using a fixed cloning
machine of the form of Eq. (4). We now think of that
Eve’s scheme is to maximize her information about the state,
rather than the fidelity, for a given, balanced disturbance. We
consider that the postprocessing between Alice and Bob is
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one way, consisting of a direct reconciliation and a privacy
amplification. Therefore, the amount of secret information
extractable by Alice and Bob reads

r = IAB − IAE, (29)

where IAB (or IAE) is the mutual information between the two
classical strings of symbols of Alice and Bob (or of Alice
and Eve). Note that Eve can measure E′ and E jointly, so
IAE represents the mutual information between the classical
random variable A and the random variable pair E′ and E,
which is Eve’s joint-measurement outcome (for convenience,
we denote the associated random variables again by A, B, E′,
and E).

Let us now see what restrictions are imposed on Eve. We
supposed that Eve’s attack is balanced between different bases,
that is, the fidelities of Bob’s state are the same for different
MUBs. Here, for similar reasons, we additionally suppose that,
for each basis, the probabilities that Bob makes different errors
are equal (one can check that this restriction is compatible
with the results in Sec. II). Say the error Bob makes is m

(m = 0,1, . . . ,d − 1), that is, Bob’s symbol is greater than
Alice’s symbol by m. Then, from Eqs. (6a)–(6d), we find the
following explicit expressions for these restrictions:

d−1∑
j=0

|amj |2 =
{

FB, m = 0,
1−FB

d−1 , m 	= 0,
(30)

d−1∑
i=0

|ai,ki−m|2 =
{

FB, m = 0,

1−FB

d−1 , m 	= 0
(31)

(k = 0,1, . . . ,g − 1).

Under these restrictions, one can easily find that the mutual
information between Bob and Alice is given by

IAB = log2 d + FB log2 FB + (1 − FB) log2
1 − FB

d − 1
. (32)

To find IAE for one basis {|i〉}, we first rewrite Eq. (5a) as

|i〉A→
∑
m,j

(
1√
d

∑
n

amnω
n(i−j )

)
|i+m〉B |j 〉E′ |j+m〉E. (33)

As mentioned above, IAE is between the random variable A

and the random variable pair (E′,E). Suppose (E′,E) takes
the value (e′,e). Equation (33) tells us that it is equivalent to
represent (e′,e) by (m,e′). Thus, Eve’s information IAE can be
written as

IAE = −
∑
m,e′

p(m,e′) log2 p(m,e′)

+
∑

a,m,e′
p(a)p(m,e′|a) log2 p(m,e′|a). (34)

a is the value the random variable A takes. We assume that
Alice sends symbols randomly. Thus, in Eq. (34), p(a) = 1

d
.

The other terms in Eq. (34) are given below, as they are derived
from Eq. (33):

p(m,e′|a) = 1

d

∣∣∣∣∣
∑

n

amnω
n(a−e′)

∣∣∣∣∣
2

, (35)

p(m,e′) = 1

d

∑
a

p(m,e′|a). (36)

The expressions for IAE of the other bases can be written
analogously. Most generically, the optimal attack can be found
by maximizing the IAE’s under the restrictions of Eqs. (30)
and (31). This can be done in principle, but it is hard because
of the great number of variables and summations. Hence,
instead, we here maximize Eve’s information conditionally:
We suppose that the matrix (amn) takes the form of Eq. (16) but
that v is adjustable to maximize Eve’s information (rather than
Eve’s fidelities). One can check that Eq. (16) satisfies Eqs. (30)
and (31), and one need only calculate IAE with respect to one
basis because Eq. (16) is balanced between different bases.
We shall compare the results with those of the optimal cloner
approach later. In this more restrictive case, amn are given
partial freedom, but as we shall see, this is sufficient to prove
the deviation of the optimal attack from the optimal cloner.

We refer to Eq. (16) and find that Eq. (35) now reads

p(m,e′|a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[v+(d−1)x]2

d
, m = 0, e′ = a,

(v−x)2

d
, m = 0, e′ 	= a,

[gx+(d−g)y]2

d
, m 	= 0, e′ = a,

(x−y)2

d

∣∣ 1−ωmgt

1−ωmt

∣∣2
, m 	= 0, e′ = a − t(t 	= 0).

(37)

Then, numerical calculation can be easily done by adjusting
v to maximize IAE , and both IAB and IAE become functions
of FB . Let us focus on the critical point where the amount
of extractable information is zero, that is, according to
Eq. (29), IAB = IAE . As usual, we substitute FB with DI , the
disturbance, defined as DI = 1 − FB . We compute the DI ’s
associated with zero extractable information for several d’s
and list them in Table I. The values of these critical DI ’s show
regular behaviors: As d or g increases, DI increases; that is,
as more bases are used, higher disturbance is acceptable for
Alice and Bob.

It is interesting to see whether the maximizing information
approach and the maximizing fidelity approach are equivalent.
For definiteness, let us consider whether the optimal cloner
corresponds to the maximal IAE . We substitute the amn in
Eqs. (34)–(36) with the values associated with the optimal
cloner. This means that we plug into Eq. (37) the value of v of

TABLE I. The disturbance DI associated with zero extractable
information for Alice and Bob. These values are obtained with
conditionally maximized IAE , where (amn) is restricted to the form of
Eq. (16). For the d’s and g’s we consider, DI shows regular behaviors:
Both when d increases and when g increases, DI increases. Since the
unconditionally maximized IAE can be slightly higher, the real critical
DI can be slightly lower than the values here.

g

DI (%) 1 2 3 4 5 6 7

2 14.64 15.64
3 21.13 22.47 22.67

d 5 27.60 28.91 29.12 29.20 29.23
7 30.90 32.10 32.26 32.32 32.36 32.38 32.39
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TABLE II. The disturbance DF associated with zero extractable
information, obtained simply by plugging the values of amn of the
optimal cloner into Eqs. (34)–(36). DF has an irregular behavior: As
g increases, DF does not change monotonously. DF deviates above
DI of Table I except for g = d , in which case v is fixed, and the
higher the dimension, the larger the deviation. This suggests that the
optimal cloner is not the optimal attack (see the text).

g

DF (%) 1 2 3 4 5 6 7

2 14.64 15.64
3 21.13 22.99 22.67

d 5 27.64 29.75 29.83 29.63 29.23
7 31.10 33.24 33.16 33.00 32.83 32.64 32.39

the optimal cloner, as is calculated in Sec. II. Then, we simi-
larly end up with a table (Table II) of the disturbance associated
with zero extractable information. We use a different notation
DF here to indicate that it corresponds to the maximized FE

rather than the maximized IAE . In Table II, DF shows an
irregular behavior: As g increases, that is, as more bases are
used, DF does not always increase. DF is greater than DI

except for g = d, in which case v is fixed, and the deviation
tends to be larger as d increases. As we know, associated
with DI is the IAE that is maximized under the condition that
(amn) is of the form Eq. (16), so the maximal IAE free of this
condition may be slightly larger, and thus the condition-free
DI may be lower. Since DF is larger than the conditional DI ,
it is larger than the condition-free DI . Therefore, maximizing
FE is not equivalent to maximizing IAE , and the optimal cloner
does not correspond to the optimal attack.

V. PHASE COVARIANT QUANTUM CLONING MACHINE

We now introduce a side product of the optimal cloner
approach to our g + 1 protocol QKD. As mentioned in
Ref. [15], the optimal cloner for d + 1 MUBs (g = d) is the
universal quantum cloning machine [25,28]. For d MUBs (g =
d − 1), one may intuitively think of a phase-covariant quantum
cloning machine. In this section, we show that the optimal
cloner of d MUBs is equivalent to the optimal asymmetric
phase-covariant quantum cloning machine. More specifically,
we show that it is equivalent to a revised asymmetric form of
the symmetric phase-covariant quantum qudit cloning machine
presented in Ref. [26], and we prove the optimality of that
revised form.

In Ref. [26], the following equatorial states are considered:

|�〉(in) = 1√
d

d−1∑
j=0

eiφj |j 〉, (38)

where φj are arbitrary phase parameters. (Thus, the corre-
sponding MUB cloning machine should be the one that clones
the bases {|ĩ(0)〉}, . . . , and {|ĩ(d−1)〉}). The explicit expression
for the symmetric cloning transformation is given as

|i〉 → α|ii〉12|i〉R + β√
2(d − 1)

∑
j 	=i

(|ij 〉 + |ji〉)|j 〉, (39)

where 1, 2 represent the two clones while R is the ancillary
state. α and β are real parameters that satisfy α2 + β2 = 1.
The optimal fidelity for the symmetric cloning machine
reads

Foptimal = 1

4d
(d + 2 +

√
d2 + 4d − 4). (40)

One finds that Eq. (40) is consistent with Eq. (26).
Now we claim that the optimal asymmetric phase-covariant

quantum cloning machine is equivalent to the optimal cloner
of the d MUBs and takes the form

|i〉 → α|ii〉|i〉+ β√
d − 1

∑
j 	=i

(cos θ |ij 〉+ sin θ |ji〉)|j 〉, (41)

where θ is a real parameter. To prove this claim, we first write
the fidelities associated with this cloning transformation,

F1 = 1

d
+ 2αβ

d

√
d − 1 cos θ + β2(d − 2)

d
cos2 θ, (42)

F2 = 1

d
+ 2αβ

d

√
d − 1 sin θ + β2(d − 2)

d
sin2 θ, (43)

where the constraint α2 + β2 = 1 still holds. We perform
a numerical calculation that manipulates α, β, as well as
θ to maximize one fidelity given the other. The results
show that the optimized fidelities for this asymmetric phase-
covariant cloning quantum machine are equal to the fidelities
of the optimal d-MUB cloner, as are computed in Sec. II.
Since cloning equatorial states has a higher requirement than
cloning d-MUBs, the optimality of a d-MUB cloner infers
the optimality of an asymmetric phase-covariant quantum
cloning machine with the same achieved fidelities and their
equivalency. This proves our claim.

VI. CONCLUSION

In this article, we study the general, d-dimensional QKD
that uses arbitrary g + 1 MUBs, focusing on the individual
attack by Eve and the one-way postprocessing (a direct
reconciliation plus a privacy amplification) by Alice and Bob.
This investigation of the general g + 1 MUB QKD protocol
is a natural generalization of the QKD in higher dimension
and may help one balance the gain and the cost of the
implementation. In this article, we investigate Eve’s attack by
two different approaches. One is maximizing FE , the fidelity
of Eve’s state E, while the other is maximizing IAE , the
information Eve has about Alice’s classical symbol. In the first
approach (Sec. II), we derive the fidelities and the parameter
of the optimal cloner and demonstrate their behaviors, which
are reasonable. It turns out that in some special cases, the most
significant of which is the symmetric cloning, the optimal
cloner can by solved analytically (Sec. III). In the second
approach (Sec. IV), we give the equations for the most
generic calculation for IAE maximization, but, considering its
complexity, we do instead a more restrictive version. Though
restricted, the calculation still shows interesting results. In
particular, it proves (except for g = d) the deviation of the
optimal cloner from the optimal attack. Section V is dedicated
to a side product of our optimal cloner approach. We show
that the optimal asymmetric phase covariant quantum cloning
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machine is equivalent to the optimal cloner of d MUBs
(g = d − 1). We also show that this optimal asymmetric phase
covariant quantum cloning machine can be formulated as a
revised version of the optimal symmetric cloning transfor-
mation presented in Ref. [26]. As the bottom line, we here
remark that there still exist several possible extensions, which
may be of future interest, for our general, (g + 1)-basis, qudit-
based QKD protocol: extension to two-way postprocessing,

to prime-power dimensional systems, and to the coherent
attack.
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