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Photon-assisted conditionality for double-dot charge qubits in a single-mode cavity
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The problems of the design, control, and interaction of the single-electron double-dot charge qubits coherently
coupled to the optical cavity mode are studied theoretically. A way to overcome the challenges concerned with
the use of classical laser pulses for a qubit state engineering is described, replacing the lasers by a quantized
photon field in a semiconductor cavity and a gate voltage. Using this strategy, a simple and efficient scheme is
proposed for the creation of highly entangled multiqubit states like the nine-qubit Shor states.
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I. INTRODUCTION

Semiconductor quantum dots (QDs), often termed as
artificial atoms, are widely studied objects in both theoretical
and experimental physics [1]. The possibility to form ordered
QD assemblies together with plausible control of spectral
and coherent properties of individual QDs make them very
promising systems for quantum information purposes [2],
especially for single-photon sources [3] and quantum bit
(qubit) embodiments (see, e.g., Refs. [4–9]). Usually, the
QD-based qubits are divided into three groups (i.e., the charge
[4,5], spin [6,7], and exciton [8,9] qubits). Particularly, in
the charge qubits quantum information is stored in electron
orbital states of the QD confining potential. Any qubit state
transformation can be organized by classic optical excitations
[4] and/or by electrostatic voltages [5]. On other hand,
one may also exploit an empty QD (logical zero) and QD
with a single bound electron-hole pair (logical one) as the
exciton qubit [8,9]. The transition between its logical states is
performed by a short (∼1 ps) laser pulse [9] with frequency
corresponding to the electron-hole pair generation energy
(∼1 eV). This frequency domain is easily accessible with
commercial lasers. Besides, the QDs are extensively integrated
into solid-state photonic devices such as high-quality quantum
electrodynamics cavities and waveguides. This field-matter
interface enables one to address optical (electron or exciton)
transitions in the single QD with the help of the cavity photons.
Up to now, several prototypes of quantum computation devices
relying upon single QDs embedded in microresonators (toroids
or spheres) and in defects in photonic crystals have been
realized experimentally [10–21]. The discovery of such an
optical driving force (i.e., a quantized electromagnetic field
in the cavity) opens another (distinct from that using the
classical field) way of qubit control and allows one to perform
single-qubit rotations under near-field regime by variation of
the QD frequency relative to the cavity frequency (or vice
versa). The field strength generated by a single cavity photon
may be as large as 10 V/cm in antinodes, which is enough
for fast implementation of quantum operations. Moreover, the
cavity can modify the QD electron or exciton lifetime due to
the Purcell effect [21].

An alternative strategy for the charge qubit design and
control was proposed by Openov [22] and developed in
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papers [23–27] by later researchers. In his proposal, the qubit
logical states are presented by electron orbital states localized
in the conduction band of a symmetric double quantum dot
(DQD). Quantum operations are driven by the laser whose
frequency is resonant to the transition between logical states
and an auxiliary state delocalized over the whole structure.
The frequency of the electron transitions lies in the terahertz
range (∼ 50 - 100 meV). Since the logical states are the ground
states of the DQD, this qubit is expected to be much more stable
than the single QD charge qubit [4] or the exciton qubit [8].
However, many authors believe such optical mechanisms of
charge qubit state control to be quite difficult for realization in
practice because of the absence of reliable terahertz coherent
sources.

Here, we propose a scheme for quantum control and
entanglement of localized charge states of single-electron
DQDs placed in a semiconductor cavity. Earlier improvement
of optically driven charge qubits by means of cavity exploiting
was made by the authors of Ref. [28]. However, their proposal,
together with the cavity and the gate voltages, still required
the use of a terahertz laser. Our study is aimed at overcoming
the challenges inherent to the laser-driven DQD charge qubit
by full replacement of the laser with the cavity field and the
gate voltage as it was already done theoretically in Ref. [29]
for the DQD exciton qubits. In view of recent experimental
advances in the design and fabrication of these systems, one
is able to achieve the desired terahertz frequency domain
by an appropriate choice of the geometry and material of
the cavity. Hence, required engineering of the electron DQD
state can be carried out by means of the control over its
frequency by electrostatic gating without the laser. As we
show, a single photon in the cavity mode can be employed as
a driver for electronic transitions in the DQD thus providing
the single-qubit rotations. Further, making use of conditional
absorption of the cavity photon by the first (control) qubit,
one can stop the evolution of the second (target) qubit. This
effect will be utilized in nontrivial two-qubit operations like
the controlled-NOT(CNOT) gate. The strength of such indirect
photon-mediated coupling between qubits does not depend
on the interqubit distance. Therefore, one gains an ability
to weaken the crosstalks by placing the qubits as far as
possible from each other. Note that the cavity initialization
(viz., its population by the single photon) may be achieved
via the electrostatic injection of a single electron from the
substrate to the excited QD level and its subsequent relaxation
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FIG. 1. (Color online) The schematics of the double quantum dot
(DQD) placed in the antinode of single-photon cavity field Ec(r). The
cavity is lithographically arranged in InGaAs/GaAs heterostructure-
based two-dimension photonic crystal due to several hole omission
(line defect). The InAs QDs A and B are formed in InGaAs layers
separated by GaAs barrier. The electron is initially localized in the
ground state of the QD A. Its orbital state is controlled by the voltage
Vg on the gate plates.

to the QD ground state with single-photon emission into
the cavity mode. This mechanism resembles that exploited
in heterostructure-based cascade lasers and assures flexible
control of the emitted photon frequency by electrostatic means
as well. Finally, the qubit state measurement may be performed
with the help of modern high-sensitivity charge sensors [30]
or, alternatively, via diverse photon detection techniques.

The paper is organized as follows. In Sec. II we introduce
the model and the formalism describing coherent evolution
of the charge qubit in the cavity. Section III contains the
description of how to realize several important quantum gates
and the numerical simulations. The perspectives of application
of the results obtained are discussed in Sec. IV. We conclude
our study in Sec. V.

II. THE MODEL

Consider a single-electron DQD composed of a pair of
two-level, nearly identical QDs, A and B, and placed in the
body of a single-mode cavity, as shown in Fig. 1. In the figure,
the cavity is presented by the defect in the two-dimensional
photonic crystal; however, the formalism developed in the
paper is valid for arbitrary quantum single-mode resonators.
The QD ground states, |A0〉 and |B0〉, are well isolated from
each other while their excited states, |A1〉 and |B1〉, are

coupled by electron tunneling. The Hamiltonian that describes
the DQD and the cavity has the form

H = Hq + Hc,

Hq =
∑

k=A0,A1,B0,B1

εk|k〉〈k| − V (|A1〉〈B1| + |B1〉〈A1|)

+ (gA|A0〉〈A1|a† + gB |B0〉〈B1|a† + H.c.), (1)

Hc = h̄ωca
† a,

where εk ≡ εk(t) are the energies of the DQD single-electron
states |k〉 (k = A0,A1,B0,B1), V ≡ V (t) > 0 is the tunneling
matrix element between the DQD excited states |A1〉 and |B1〉,
gA(B) = 〈A(B)0| − eEcr|A(B)1〉 is the coupling coefficient
between the cavity field and the single QD optical transition
|A0〉 ↔ |A1〉 (|B0〉 ↔ |B1〉), r is the electron position, Ec ≡
Ec(r) is the cavity field strength, e is the electron charge, ωc

is the cavity mode frequency, a = ∑∞
n=0

√
n|n − 1〉〈n| is the

photon annihilation operator, n is the photon number in the
cavity, and h̄ is the Planck constant (in what follows, h̄ ≡ 1).
Equation (1) represents the generalized Jaynes-Cummings
Hamiltonian, where the counter-rotating terms are dropped
since we suppose that |gA(B)| 	 ωc. Next, the QD relaxation
and cavity dissipation rates, γ and �c, are believed small when
compared to the couplings gA(B) to attain the strong-coupling
regime. Besides, all of the time-dependent parameters in
Eq. (1) are supposed to be smooth enough at the photon
bouncing time τ ′ ∼ ω−1

c .
Let the cavity mode be initially populated by a single photon

while the DQD is loaded into one of its ground states (or
their superposition). The Hamiltonian (1) provides coherent
exchange by a single quantum between the DQD and the cavity.
Therefore, the DQD-cavity state vector can be expressed as

|�〉 = cA0,1 exp[−iϕA0(t) − iωct]|A0,1〉
+ cB0,1 exp[−iϕB0(t) − iωct]|B0,1〉
+ cA1,0 exp[−iϕA1(t)]|A1,0〉
+ cB1,0 exp[−iϕB1(t)]|B1,0〉. (2)

In this expression, cA0,1, cB0,1, cA1,0, and cB1,0 are the time-
dependent probability amplitudes of the electron-photon states
|k,n〉 (n = 0,1) and ϕk = ∫ t

0 εk(t ′)dt ′ are the corresponding
phases. By substitution of Eq. (2) into the Schrödinger
equation, i∂t |�〉 = H |�〉, one obtains following system for
the probability amplitudes:

i∂t

⎛
⎜⎜⎜⎝

cA0,1

cB0,1

cA1,0

cB1,0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 gA exp(iδϕA) 0

0 0 0 gB exp(iδϕB)

g∗
A exp(−iδϕA) 0 0 −V exp(iδ�)

0 g∗
B exp(−iδϕB) −V exp(−iδ�) 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

cA0,1

cB0,1

cA1,0

cB1,0

⎞
⎟⎟⎟⎠ . (3)

Here, we introduce the phase differences δϕA(B) = ∫ t

0 δA(B)(t ′)dt ′ and δ� = ∫ t

0 �(t ′)dt ′ through the detuning δA(B)(t) = ωc −
ωA(B)(t) of the resonant frequency ωA(B)(t) = εA(B)1(t) − εA(B)0(t) of the QD A (B) from the cavity mode frequency ωc and
the difference �(t) = εA1(t) − εB1(t) of excited state energies, respectively. The DQD energy diagrams, Fig. 2, visualize those
parameters.
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The changes in the QD energies and in the interdot
tunneling can be produced by variation of the QD confining
potential with the help of the bias voltage applied across the
DQD [5,19,20,29]. We assume such voltage-driven pulses to
have square form with Gaussian wings characterized by the
envelope function

fg(t,τ0,τp) = {
1 − exp

( − t2
/
τ 2

0

) − exp
[ − (t − τp)2

/
τ 2

0

]}
× [�(t) − �(t − τp)], (4)

where τ0 is the pulse elevation and drop time, τp � τ0

is the pulse duration time, and �(t) is the Heaviside

function. Let us choose the frequencies of both QDs be far
detuned from the cavity frequency at the beginning and at
the end of the pulse: |δA(B)m| = |ωc − ωA(B)m| � |gA(B)|,
where ωA(B)(0) = ωA(B)(τp) ≡ ωA(B)m. This means that the
coupling between the QDs and the cavity is negligible and
the DQD evolves freely. Otherwise, if τ0 � t � τp − τ0, the
QD A(B) becomes coupled to the cavity field with some
detuning δA(B)0. In this case, the detuning as a function
of time can be given by the formula δA(B)(t) = δA(B)0 +
[δA(B)m − δA(B)0][1 − fg(t,τ0,τp)], and we obtain following
expression for the phase difference δϕA(B):

δϕA(B) =
{

δA(B)0t +
√

π

2

[
δA(B)m − δA(B)0

]
τ0

[
�

(
t
τ0

) + �
( τp

τ0

) + �
( t−τp

τ0

)]
, 0 � t � τp

δA(B)0τp + √
π [δA(B)m − δA(B)0]τ0�

( τp

τ0

) + δA(B)m(t − τp), t > τp,
(5)

where �(x) = 2√
π

∫ x

0 exp(−ξ 2)dξ is the error function. In a similar way, the tunneling and the energy difference are given by the
formulas V (t) = V0 + (Vm − V0)[1 − fg(t,τ0,τp)] and �(t) = �0 + (�m − �0)[1 − fg(t,τ0,τp)], respectively, where V0(m) and
�0(m) are the corresponding values when the pulse is switched on (off). The phase accumulated due to the excited state energy
difference behaves as

δ� =
{

�0t +
√

π

2 (�m − �0)τ0
[
�

(
t
τ0

) + �
( τp

τ0

) + �
( t−τp

τ0

)]
, 0 � t � τp

�0τp + √
π (�m − �0)τ0�

( τp

τ0

) + �m(t − τp), t > τp.
(6)

In order to simplify our model, we suppose that the
electrostatic control does not change the couplings gA and
gB . The next serious assumption concerns the excited state

FIG. 2. Energy profiles of DQD for (a) symmetric and
(b) asymmetric voltage driving (see text for details).

energy difference, which can be also expressed as � = δA −
δB + εA0 − εB0. As it follows from the perturbation theory, the
energy shift is proportional to the zero-order energy. Therefore,
for deep QDs, the voltage-induced shifts of delocalized excited
states are expected to be much greater than that of localized
ground states. This allows us to set εA0 ≈ εB0 and to replace
� by the detuning difference, � ≈ δA − δB . Of course, in the
general DQD model one should take into account the ground-
state energy difference as an additional independent parameter.

An analytical solution of Eq. (3) was found in Ref. [27]
for the case of identical QDs A and B subjected to the laser-
driven ramp pulses (τ0 → 0). Here, we study this equation
numerically for the voltage-driven pulses with the envelope
given by Eq. (4). Below we show how the pulse and structure
parameters have to be chosen to organize the desired quantum
evolution of the qubits.

III. QUANTUM OPERATIONS

First, we check the robustness of our DQD being used as
a quantum memory cell. This means that the electron state
vector should conserve its initial state over quite a long time
interval. In analogy to Refs. [22–27], we identify the logical
qubit states with the DQD ground states: |0〉 ≡ |A0〉 and
|1〉 ≡ |B0〉. In order to protect the qubit in the absence of
the pulse from unwanted evolution (optical transition and/or
level shift) caused by the cavity photon one has to choose
(i) the frequency detunings to be large compared to the
coupling coefficients, |gA(B)| 	 |δA(B)m|, and (ii) the tunneling
to be small compared to the excited state energy difference,
Vm 	 |�m|. In this case, the DQD dynamics is reduced
to the nonresonant evolution of independent QDs [27] that
amounts only to negligible electron excitation from the ground
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FIG. 3. (Color online) The minimum of the population pA0 of
stored DQD state |A0〉 at different detunings and tunnelings. The
value of minimum is calculated over the time interval 0 � t � �−1

c .
All parameters in the plot are given in units of ωc.

states and to small phase accumulation. To illustrate the
ability of information storage, we plot the minimum of the
population pA0 = |cA0|2 of the initial state |A0〉 (cA0(0) = 1)
as a function of the detuning δAm at fixed detuning δBm

for several values of tunneling Vm. The amplitude error
is concerned with population leakage from given state via
cavity-stimulated excitation processes. Therefore, it is enough
to consider the qubit parasite evolution during the photon
lifetime. For this purpose, Eq. (3) was numerically integrated at
the time interval 0 � t � �−1

c = Q/ωc, where we have used
an optimistic value Q = 106 for the resonator quality. The
results of simulations are visualized in Fig. 3 for the equal
coupling case, gA = gB ≡ g = 6 × 10−4ωc.

One sees that for highly symmetric DQD (i.e., for which
δAm ≈ δBm) the population pA0 is fully squeezed to other
states even at large detunings (here, δBm = 0.015ωc) due to
the off-resonant electron excitation. With that, the tunneling
suppression (Vm < 10−4ωc) brings about the localization of
the population in the initial state with probability pA0 > 0.99
for almost all detunings except for the narrow interval around
the symmetry point. For very small tunnelings, the storage
reliability is well characterized by the single-QD ground-
state population pA0 = δ2

Am/(4|gA|2 + δ2
Am) (dashed curve in

Fig. 3). On other hand, the cavity produces phase shifts

δθA(B) = −|gA(B)|2t
/
δA(B)m (7)

of the logical states. Those phase errors can be neglected for
symmetric DQD where δθA = δθB and relative phase shift,
δθ = δθA − δθB , is zero. However, as we have just seen,
the symmetry amounts to the growth of amplitude error at
moderate Vm. Thus, we may recommend to keep δθA ≈ δθB

at small tunnelings Vm < 10−4ωc in order to suppress the
quantum errors of both types during the information storage.

Next, we consider the single-qubit rotations around polar
and azimuth axes of the Bloch sphere (population inversion
and phase shift, respectively). The inversion of population of
logical states is equivalent to the NOT operation. Its successful
implementation in a single-electron DQD requires meeting
several conditions, as was found earlier [22–27]. First, it is
necessary to tune the energies of excited states |A1〉 and |B1〉

close to each other or, more generally, to minimize their energy
difference relative to the tunnel coupling, |�0| 	 V0. Second,
the interdot dynamics (tunneling) of the excited electron
should prevail over the intradot dynamics (excitation) in order
to form the stable transport DQD states via hybridization of the
excited states of isolated QDs: |gA(B)| 	 V0. Two hybridized
eigenstates are presented by even and odd superpositions
of the states |A1〉 and |B1〉 with eigenenergies ε− and ε+
shifted down and up by V0, respectively, relative to the
unperturbed energies εA1 ≈ εB1, as shown in Fig. 2(a). New
transition frequencies are ω± = ωA(B) ± V0 (in the case of
equal frequencies ωA and ωB). Third, by soft variation of
the frequency detunings δA(t) and δB(t) between the DQD
and the cavity, one should be able to set the appropriate
regime of the optical driving. The resonant regime for which
|δ−| = |ωc − ω−| 	 |gA(B)| or |δ+| = |ωc − ω+| 	 |gA(B)|
assures fast population inversion of the qubit states through the
optically induced electron transfer via one of the hybridized
states. However, in that regime the electron demonstrates
stroboscopic behavior being localized in the logical subspace
at a discrete set of times only. On the other hand, the
off-resonant regime for which |δ±| >> |gA(B)| provides rather
slow but nearly continuous evolution of the qubit state vector
and, as a consequence, gives the possibility of its arbitrary
in-plane rotation.

Numerical solutions of Eq. (3) for both regimes are
presented in Fig. 4 for a given set of parameters: ck(0) =
δk,A0, gA = gB ≡ g = 6 × 10−4ωc, δAm = 0.03ωc, δBm =
0.015ωc, V0 = 0.008ωc, Vm = 0, and τ0 = 50ω−1

c (δk,A0

is the Kronecker δ symbol). Choosing δA0 = δB0 = V0, we
tune the upper hybridized DQD state to the exact reso-
nance with the cavity, ωc = ω+, and realize the three-level
(or �) resonant scheme, as shown in Fig. 4(a). In this case,
the voltage pulse duration required for the qubit inversion
(or, equivalently, the operation time) is τp = 5.16 × 103ω−1

c .
Otherwise, if one sets δA0 = δB0 = 0, the cavity frequency
falls just in the middle of the doublet of the hybridized
state energies giving rise to the off-resonant electron transfer
[see Fig. 4(b)] where now τp = 3.5 × 104ω−1

c that is by one
order of magnitude longer than in the resonant case. As
was expected, the time dependencies of the probabilities pk

resemble those obtained elsewhere for ramp pulses (cf., Ref.
[27]). The transfer frequencies are given with good accuracy by
the expressions �res = |g|/√2 and �off-res = |g|2/V0, while
the pulse times are calculated according to the simple formulas
τp = π

√
2/�res and τp = π/2�off-res for resonant and off-

resonant cases, respectively. However, as long as the photon
still populates the cavity after the transfer is completed,
our qubit undergoes some unwanted perturbation at t � τp.
Its influence on the qubit dynamics is manifested in weak
off-resonant oscillations of the populations pB0 and pB1. The
amplitude of those oscillations, as in the storage case, is defined
by the detuning. Besides, it also depends on the tunneling
V0 that gives a possibility to optimize the transfer for some
values of V0. In Fig. 5, we plot the minima and maxima of
pB0 as functions of V0 for the resonant scheme taken over
the time interval 0 � t � 5 × 104ω−1

c . As was mentioned
above, the excited electron does not penetrate in the QD B

for small tunnelings, V0 � |gA(B)|, and the population of the
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FIG. 4. (Color online) The NOT realizations in the DQD in
(a) resonant and (b) off-resonant cases. The pulse and structure
parameters are gA(B) = 6 × 10−4ωc, V0 = 8 × 10−3ωc, and τ0 =
50ω−1

c . The time t is given in units of 103ω−1
c . The NOT pulse

durations are τp = 5.16 × 103ω−1
c for (a) and τp = 3.5 × 104ω−1

c for
(b).

state |B0〉 remains close to zero. At larger V0, both functions
oscillate in phase slightly below unity. Obviously, choosing
the tunneling value for which those functions simultaneously
achieve their maxima, one may concentrate the population
pB0 close to the unity. For example, for V0 = 6.7 × 10−3ωc

one has 0.974 � pB0 � 0.994 over the whole time domain. In
the off-resonant scheme, as usual, the amplitude error is very
small and additional optimization is not required.

The second gate we are going to simulate is the phase shift
of one of the logical states relative to another one. As we have
mentioned, the cavity photon produces slow phase evolution
of the qubit in the off-resonant regime according to Eq. (7).
To generate a relative phase shift and to accelerate phase
dynamics one may apply the voltage pulses with nonequivalent
detunings, δA0 �= δB0, which are smaller than δAm and δBm

but still large compared to the tunneling V0 to suppress the
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FIG. 5. (Color online) The dependencies of upper and lower
bounds of the final state probability pB0 for the inversion |A0〉 →
|B0〉 on the tunneling V0 given in units of 10−3ωc. The pulse and
structure parameters are the same as in the Fig. 4(a).

interdot electron transfer. Such off-resonant phase evolution
brings about a continuous accumulation of the relative phase at
moderate rates. Besides, the resonantly driven phase rotations
are also possible. As an example of the fast phase dynamics
we demonstrate the phase shift by π of the state |B0〉 relative
to the state |A0〉. This operation can be performed via the
resonant cyclic electron transition from the state |B0〉 to
the state |B1〉 and back. Unlike for the inversion, there we
apply strongly asymmetric driving [Fig. 2(b)] with negligible
interdot tunneling, |�0| >> V0. As is known from the theory
of two-level systems, the state |B0〉 gains in this case the
relative phase multiplier exp(−iπ ). At the same time, the
equivalent optical transition in the QD A should be suppressed.
Numerical simulation of the phase dynamics for the initial
DQD state 2−1/2(|A0〉 + |B0〉) with the system parameters
δAm = δBm = 0.03ωc, δA0 = 0.03ωc, δB0 = 0, V0 = 10−4ωc,
and τp = 5.28 × 103ω−1

c (remaining values are taken as for
the NOT operation) is shown in Fig. 6. At the end of the
pulse, the relative phase of the state |B0〉 achieves a value of
3.1416 that means very accurate realization of the phase gate.
With that, residual population redistribution caused by the
finite tunneling amounts to the final probabilities pA0 = 0.507
and pB0 = 0.493 slightly different from their ideal values
pA0 = pB0 = 0.5. Again, the amplitude correction can be
performed by the tunneling suppression. Namely, the lowering
of V0 by one order of magnitude results in negligible amplitude
error of about 10−4 only.

Apart from the two main regimes considered above, several
important quantum operations can be efficiently realized under
the intermediate regime with moderate detunings. We illustrate
it by the Hadamard rotation (h pulse or π/4 pulse) performed in
two steps. At the first step, the initial state |A0〉 is transformed
into the state 2−1/2(|A0〉 − i|B0〉) (the operating parameters
are given in Fig. 7). At the second step, the fast relative phase
shift δθ = π/2 of the state |B0〉 compensating the multiplier
exp(−iπ/2) is achieved according to the scheme described
above.
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FIG. 6. (Color online) The resonant phase evolution of the qubit
being in the equally-weighted superposition of logical states. The
slow off-resonant phase shifts, Eq. (7), are seen as small identical
linear drops in both curves. The time t is given in units of 103ω−1

c .

The considered gates (i.e., NOT, phase shift and Hadamard
gates) form the so-called universal set, enabling one to approx-
imate arbitrary single-qubit rotation. In order to implement
arbitrary quantum operation, one is to add to the universal
set a nontrivial two-qubit gate like the controlled NOT(CNOT)
[2]. Let the control qubit be presented by the ground states
|A0〉, |B0〉 of the first DQD while the ground states |A0′〉,
|B0′〉 of the second DQD (whose parameters are supplied
with prime) encode the target qubit. The DQDs are supposed
to be placed at large distance from each other so that the
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FIG. 7. (Color online) The first step of the Hadamard gate
implementation amounting to the formation of the equally-weighted
superposition of logical states. The pulse and structure parameters
are gA = gB = 6 × 10−4ωc, δA0 = δB0 = 5.6 × 10−3ωc, V0 = 8 ×
10−3ωc, and τ0 = 50ω−1

c . The pulse duration is τp = 9.36 × 103ω−1
c .

At the second step, the relative phase shift δθ = −π/2 should be
removed. The time t is given in units of 103ω−1

c .

direct electron-electron interaction is negligible. The two-qubit
cavity system starts at t = 0 from its general state

|�(0)〉 = cA0,A0′,1|A0,A0′,1〉 + cA0,B0′,1|A0,B0′,1〉
+ cB0,A0′,1|B0,A0′,1〉 + cB0,B0′,1|B0,B0′,1〉. (8)

The Hamiltonian governing the evolution of the two-qubit
state is H2q = Hq + H ′

q + Hc. At first glance, there are
no apparent terms responsible for the correlations between
qubits since we neglect the Coulomb repulsion between DQD
electrons. Nevertheless, the single-qubit Hamiltonians Hq and
H ′

q contain two common parameters (viz., the photon operators
a and a†). The influence of these operators on the two-qubit
dynamics becomes crucial in the single-photon case. Formally,
the presence (n = 1) or the absence (n = 0) of the photon
in the cavity mode means the driving field for qubits to be
switched on or off, respectively, due to the multiplier

√
n in

the expression for a. Therefore, if the first (control) qubit
being in the defined logical state absorbs the photon from the
cavity, transforming n from 1 to 0, the second (target) qubit
cannot be driven. This observation can be applied to construct
conditional two-qubit operations.

Using the principle outlined above, we have developed the
following algorithm for the CNOT gate on a pair of the DQD
qubits coupled to the same cavity mode. Initially, we convert
the ground state |A0〉 of the first DQD (or the logical state
|0〉 of the control qubit) to its auxiliary excited state |A1〉 to
achieve the required photon absorption. The performance of
this step is completed by the choice of the detuning dynamics
that we call the a pulse (in fact, π/2 pulse). Namely, we
drive the resonant transition |A0〉 ↔ |A1〉 while keeping the
transition |B0〉 ↔ |B1〉 far from the resonance with the cavity
as it was already done for the fast phase rotation. As a result,
the electron staying in the state |A0〉 goes to the auxiliary state
|A1〉 via full photon absorption by the control DQD

|A0,A0′,1〉 a→ |A1,A0′,0〉, |A0,B0′,1〉 a→ |A1,B0′,0〉. (9)

With that, if the electron occupies the state |B0〉 of the first
DQD (or the logical state |1〉 of the control qubit), the a pulse
does not excite it because the transition |B0〉 ↔ |B1〉 is largely
detuned from the cavity

|B0,A0′,1〉 a→ |B0,A0′,1〉, |B0,B0′,1〉 a→ |B0,B0′,1〉. (10)

Thus, at the end of the single a pulse we obtain an entan-
gled state of the electron-photon system that includes two
components (i.e., excited control DQD + empty cavity and
nonexcited control DQD + one-photon cavity). Next, we make
the target DQD close to the resonance with the cavity to realize
the NOT gate, as it is described above. The state components
(9) with n = 0 do not evolve since the empty cavity cannot
drive the population inversion in the target DQD. In contrast,
the state components (10) with n = 1 undergo the action of
the π pulse that inverts the target qubit

|B0,A0′,1〉 π ′→ |B0,B0′,1〉, |B0,B0′,1〉 π ′→ |B0,A0′,1〉. (11)

Finally, we apply the second a pulse to disentangle the control
qubit from the cavity by returning the photon from the control
DQD back to the cavity mode. The result of the action of
the above a-π ′-a pulse sequence on the two-qubit basis is
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summarized below:

|A0,A0′,1〉 a→ |A1,A0′,0〉 π ′→ |A1,A0′,0〉 a→ |A0,A0′,1〉,
|A0,B0′,1〉 a→ |A1,B0′,0〉 π ′→ |A1,B0′,0〉 a→ |A0,B0′,1〉,
|B0,A0′,1〉 a→ |B0,A0′,1〉 π ′→ |B0,B0′,1〉 a→ |B0,B0′,1〉,
|B0,B0′,1〉 a→ |B0,B0′,1〉 π ′→ |B0,A0′,1〉 a→ |B0,A0′,1〉,

(12)

that is just the CNOT gate. In the expressions (9)–(12) we
have omitted phase multipliers assuming that those will be
compensated by appropriate timing and/or by auxiliary single-
qubit phase shifts.

We check the proposed scheme by numerical solution of the
Schrödinger equation with the Hamiltonian H2q in the basis
of two four-level DQDs: |A0,A0′,1〉, |A0,B0′,1〉, |B0,A0′,1〉,
|B0,B0′,1〉, |A0,A1′,0〉, |A0,B1′,0〉, |B0,A1′,0〉, |B0,B1′,0〉,
|A1,A0′,0〉, |B1,A0′,0〉, |A1,B0′,0〉, and |B1,B0′,0〉, where
we have omitted the states corresponding to double excitations
since there is only one photon in the cavity. In this truncated
basis, the Hamiltonian 12×12 matrix has the following
form:

Hq =

⎛
⎜⎝

O G′ G

Ḡ′ W ′ O

Ḡ O W

⎞
⎟⎠ , (13)

where

G =

⎛
⎜⎜⎜⎝

gAeiδϕA 0 0 0

0 0 gAeiδϕA 0

0 gBeiδϕB 0 0

0 0 0 gBeiδϕB

⎞
⎟⎟⎟⎠ , G′ =

⎛
⎜⎜⎜⎝

g′
Aeiδϕ′

A 0 0 0

0 g′
Beiδϕ′

B 0 0

0 0 g′
Aeiδϕ′

A 0

0 0 0 g′
Beiδϕ′

B

⎞
⎟⎟⎟⎠ ,

W = −

⎛
⎜⎜⎜⎝

0 V eiδ� 0 0

V e−iδ� 0 0 0

0 0 0 V eiδ�

0 0 V e−iδ� 0

⎞
⎟⎟⎟⎠ , W ′ = −

⎛
⎜⎜⎜⎝

0 V ′eiδ�′
0 0

V ′e−iδ�′
0 0 0

0 0 0 V ′eiδ�′

0 0 V ′e−iδ�′
0

⎞
⎟⎟⎟⎠

and O is the 4×4 zero matrix (the bar denotes Hermitian
conjugation). The parameters of the matrix entries are defined
in complete analogy with those in Eq. (3).

Taking into account the results of the single-qubit simu-
lations we design the detuning and tunneling pulses for the
CNOT gate as follows. The positions, envelopes, and durations
of each pulse are defined by Eq. (4) where the transformation
t → t − t0 (t0 � 0 is the start time of a given pulse) has
to be done. For the control DQD we set the parameters of
the a pulse, δAm = 0.03ωc, δA0 = 0, δBm = δB0 = 0.03ωc,
Vm = 10−5ωc, V0 = 10−4ωc, τp = 2.64 × 103ω−1

c , and fix
the delay time between the first and the second a pulses
as τdelay = 5.25 × 103ω−1

c . The resonant π pulse on the
target qubit is performed given δ′

Am = δ′
Bm = 0.03ωc, δ′

A0 =
δ′
B0 = V ′

0, V ′
m = 1.5 × 10−5ωc, V ′

0 = 8 × 10−3ωc, and τp =
5.16 × 103ω−1

c . The delay time is taken slightly longer than
the inversion time in order to avoid the overlapping of the
pulses (τ0 = 50ω−1

c for all types of pulses). The populations
of four logical two-qubit states found numerically are plotted
in Fig. 8 in the upper panel as functions of time. The middle
and bottom panels in Fig. 8 reproduce the detuning and
tunneling pulse profiles, respectively. As is clearly seen, the
proposed scheme works with high accuracy (pCNOT � 0.99).
Besides, it is surprising that the phase accumulation is zero,
and additional correction is not required. Thus, the total gate
time is τCNOT ≈ 1.044 × 104ω−1

c that is of the same order as
for the intermediate single-qubit gates.

Note, that close strategy was developed for conditional
two-qubit rotations of the atomic qubits traveling via the

Fabry-Perot cavity [31]. In that case, however, the photon
exchange between the atom and the cavity directly results
in the NOT operation. This was possible because the qubit
logical states were ground and excited atomic states. Here,
we need a more complex approach involving the auxiliary
state since the logical states are both ground states of the
DQD. Proposed conditionality can be classified as that based
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on the control-qubit-state-dependent switching of the driving
source for target qubit. In this case, the driver (cavity field)
cannot be considered as an external substance independent
from the qubits, as it was for the classical laser field containing
many photons. Otherwise, the influence of the control qubit
defines the photonic state of the cavity via strong quantum
electrodynamics correlations between the matter and the
field.

As an example of a quantum operation with larger qubit
number we present the Shor’s encoding realization involving
nine DQD qubits [2]. Earlier, we exploited for that purpose a
sequence of conditional probe electron transpositions caused
by laser-induced excitations in an auxiliary QD structure [32].
Here, the probe electron is replaced by the cavity photon.
As above, the logical qubit state |0(1)〉 is associated with
the DQD state |A(B)0〉. At the beginning of the encoding
procedure, the qubit (say, first) whose state we wish to protect
is loaded in arbitrary superposition |�〉 = c0|0〉 + c1|1〉 of its
logical states. The remaining eight qubits are initialized in zero
state. The encoding means the transformation of the state of a
given qubit into highly entangled state |�〉S = c0|0〉S + c1|1〉S
spanned by the Shor code states (code words) |0(1)〉S =
2−3/2(|000〉 ± |111〉)(|000〉 ± |111〉)(|000〉 ± |111〉) of a nine-
qubit cluster. The pulse sequence performing this transforma-
tion includes three types of gates considered above (viz., h

pulse, a pulse, and π pulse). We supply them by subscripts
indicating the site index of the qubit to which that gate should
be applied. The desired sequence of gates has the form

US = U0U1U4U7, (14)

where U0 = a1π4π7a1, Uk = hkakπk+1πk+2ak (k = 1,4,7),
and the operators act from the left to the right. The first operator
U0 realizes two subsequent CNOT gates with the first qubit as
the control qubit and with the fourth and seventh qubits as the
target qubits to entangle these head cluster qubits. Next, the
operators Uk (k = 1,4,7) generate entanglement among kth,
k + 1th, and k + 2th qubits via CNOT gates using the kth (head)
qubit as the control qubit and the k + 1th and k + 2th qubits as
the target qubits. Note that the application of Hadamard gates
before CNOT gates in Uk establishes the required Shor’s form
of the code states; otherwise we would obtain the generalized
nine-qubit GHZ (or Schrödinger cat) states.

Using the approach described, one may accomplish ar-
bitrary quantum gate. For example, the three-qubit Toffoli
gate (CCNOT) implementation requires the pulse sequence
UCCNOT = a1a2π3a2a1 that inverts the third (target) qubit if
and only if the first and the second (control) qubits are both
loaded in the logical states one. The standard decomposition
of the CCNOT into the sequence of universal gates includes ten
single-qubit rotations and six CNOT operations [2]. Here, only
five fast manipulations provide the realization of this important
gate. This fact enables one to characterize our scheme as
versatile and economic.

IV. DISCUSSION

In this section, we briefly discuss the feasibility of the
proposed qubit taking into account the latest experimental
breakthroughs in given areas of research. In recent years,
noticeable progress was achieved in placement of the QDs in

the body of semiconductor microcavities and nanocavities. To
optimize the qubit-cavity coupling, it is necessary to achieve
high spatial matching of the QD and a cavity field antinode.
Against routine Stranski-Krastanow strain-induced stochastic
condensation of disordered QD assemblies in InGaAs/GaAs
heterostructures [1,11,12], the advanced methods of site-
controlled QD nucleation [14–18] bring about the formation
of regular arrays of the QDs. In those methods, the position
of the QD (and partially its geometry) is determined (e.g.,
by adatom surface diffusion [14] or via selective surface
patterning by lithographic means [15–17]). An alternative
framework uses the optical identification of a single QD
in the substrate followed by cavity formation around the
QD [18]. The characteristic size of obtained QDs is varied
from several to several tens of nanometers. Corresponding
electron intrasubband transition frequencies lie in the range
from several hundreds to several tens of meV. Note, that the
conduction band mismatch for InGaAs/GaAs heterostructures
(and, consequently, the QD potential depth) is about 250 meV.
The cavity mode region is usually confined to several hundreds
of nanometers in photonic crystal defects. This enables one to
consider the quantized field strength (and, consequently, the
coupling value) as uniform over the QD volume given the QD
is accurately placed in the field antinode. Further, the QDs in
the second InGaAs layer of heterostructure are formed strictly
above the QDs in the first InGaAs layer [16]. Moreover, the
upper QD will closely reproduce the form and the size of
the bottom one. Thus, combining all those techniques, one
can synthesize the highly symmetric DQD structure studied
in this work as a vertical stack of two nearly identical single
QDs, as shown in Fig. 1. The single-electron injection in the
DQD [30] together with fine manipulation of its frequency (and
tunneling) can be realized by the electrostatic gate(s) [19,20].
As was demonstrated in the work [19], the parameters of QDs
in different layers are tuned independently thus making the
control over qubit dynamics more flexible.

Let us estimate the working parameters of our qubit. The
DQD transition frequency ωA(B)m can be evaluated from
the difference �ε10 = 3π2h̄2/2m∗a2 ≈ (me/m

∗)a−2 (in eVs)
between the ground and first excited state energies of the
single cubic QD, where me is the free electron mass, m∗
is the effective electron mass, and the cubic side length a

is taken in nanometers. It defines the resonator frequency as
ωc ≈ ωA(B)m ≈ �ε10/h̄. For a = 15 nm (the mean value of a

in experiments) and m∗ ≈ 0.067me in InxGa1−xAs (x < 0.5)
we obtain h̄ωc ≈ 80 meV. On other hand, the Rabi frequency
is g ∼ eaEc,0, where the antinode field strength Ec,0 is defined
by the cavity material and geometry. Using Ec,0 = 10 V/cm,
one has the following estimation for the coupling coefficient,
g ≈ 1.5 × 10−5 eV. In our simulations, we have used g =
6 × 10−4ωc or 4.8×10−5 eV for obtained ωc that agrees well
with the value just found. Further, the switch-on tunneling
used in the paper is V0 = 0.008ωc ≈ 0.64 meV and also
corresponds to the values measured in experiments. Since V0

depends on both the width l and the height �U of the potential
barrier separating QD A and QD B this particular tunneling
choice describes a lot of possible structure realizations. The
δA(B)m and δ′

A(B)m of electrostatic detuning pulses are equal to
0.03ωc or 2.4 meV thus requiring application of gate voltages
of several volts [20]. Finally, the fast single-qubit rotations
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FIG. 9. (Color online) The schematics of the quantum register based on the array of DQD charge qubits. Each qubit is placed inside
individual cavity. The interdot distance in DQD is l and the distance between neighboring qubits is L. All cavities are coupled to the waveguide
formed in parallel to the qubit array. Both cavities and waveguide are photonic crystal defects which boundaries are marked by dashed lines.
The overlapping between cavity and waveguide modes that results in the formation of the auxiliary hybridized mode is also shown.

(inversion and phase shift) are performed during the pulse time
τp ≈ 40 ps while the two-qubit CNOT gate consumes the time
τp ≈ 100 ps.

The scaling of our qubit can be achieved through manufac-
turing of ordered DQD arrays where each qubit is coupled to
the cavity antinode and integrated with the voltage gates for
its individual control. In Fig. 9 we present schematically one
possible scalable design of the quantum register composed
of our DQD charge qubits. The base of the register (i.e.,
some number of equally spaced DQDs) can be grown in
InGaAs/GaAs heterostructure according to the technique
described in Ref. [16]. Next, the photonic crystal lattice is
lithographically patterned on the base by hole milling with
cavities (missing hole defects) around each of DQDs and with
waveguide (long line defect) near cavity array. We suppose
that the cavity-waveguide coupling is much larger than the
DQD-cavity coupling. Therefore, a stationary bus mode is
formed via photon hopping between isolated cavity modes
and waveguide mode [33]. We identify this hybridized mode
with the resonator mode introduced in Secs. II and III.

There exist several decoherence sources that degrade the
robustness of quantum gates in semiconductor DQD charge
qubits. In our case, the most important among them are
(i) phonon-induced qubit relaxation and dephasing, (ii) gate-
induced qubit dephasing, (iii) dephasing caused by uncontrol-
lable interaction between qubits, (iv) evolution errors produced
by pulse imperfections, and (v) photon relaxation from the
cavity (perhaps enforced by gates and other circuitry). Below
we give estimations on the decoherence times for each of them.

(i) According to the Ref. [34] the phonon relaxation time
τ1,ph ∼ γ −1 in self-assembled QDs varies from 10−9 s to
10−8 s and depends strongly on structure parameters. Phonon
dephasing is usually characterized by the time τ2,ph ∼ 10−9 s at
liquid helium temperature. The number of quantum operations
is defined through the ratio min{τ1,ph,τ2,ph}/τp. One sees
that for τp � 10−10 s only several gates can be performed
with high fidelity. However, mentioned decoherence times
were found for bulk semiconductors. One may expect that
in lithographically patterned thin slabs the phonon spectrum
will be modified. To date, the experiments enable us to say
that phonons do not prohibit observations of excitonic Rabi

oscillations in QDs [9], so at least amplitude coherence is
conserved at moderate level.

(ii) The influence of metallic gate electrodes on charge
dynamics in DQD was studied theoretically in Refs. [35]
and [36] under different assumptions. Authors conclude that
the electrostatic interaction between gate(s) and qubit results in
rather slow dephasing of the latter. Provided that the distance
between the gate and the qubit is large (�100 nm) and the
interdot barrier width is small (�50 nm) the dephasing time
τg ranges from 10−8 s to 10−7 s. This time is too long when
compared with phonon-dephasing time τ2,ph so one may safely
neglect gate influence on the qubit at the given stage of
research. For future applications the detrimental effects of the
register circuitry including strong surface scattering in metallic
gates should be studied in detail.

(iii) To suppress unwanted Coulomb correlations among
the DQD electrons, the neighboring qubits should be located at
the distance L � l from each other. For example, the interdot
distance l in [16] was approximately 10 nm and, therefore, L

should be of the order of several microns. At large distance
L, two DQD qubits interact mainly as two point charges.
Coulomb repulsion energy of two electrons in neighbor DQD
qubits (ith and i + 1th) is written Ue−e

k,l = e2/κ|ri,k − ri+1,l |,
where ri,k is the radius vector of electron in ith DQD,
κ is the dielectric constant, and k,l = A,B are single-QD
indices. The small difference �Ue−e = Ue−e

AA − Ue−e
AB between

interaction energies corresponding to different two-electron
configurations results in dephasing process [37]. Given L � l

it is easy to see that �Ue−e/Ue−e
AA ≈ l2/2L2. For example, if

L = 3 μm and l = 30 nm, we obtain for GaAs Ue−e
AA = 2 ×

10−5 eV and �Ue−e = 10−9 eV. It corresponds to dephasing
time τe−e ∼ h̄/�Ue−e of hundreds of nanoseconds that is by
three orders of magnitude slower than our operation times
τp � 10−10 s.

(iv) Previously (see, e.g., Refs. [24] and [27]) we derived
the analytical expression for the electron transfer probability
in DQD as a function of pulse imperfections. In particular,
resonant transfer error scales with frequency detuning δ

as δ2/g2 while phase error behaves as δ/g. Despite the
preserved coherence of the qubit in the presence of the
detuning and timing uncertainties, we suppose these types of
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errors to be quite serious especially for the resonant driving.
Successful implementation of proposed operations requires
fine electrostatic tuning of QD frequency with accuracy of
10−7 eV. The voltage pulse duration should be controlled with
accuracy higher than 10−12 s.

(v) To date, the highest quality of Q = 25 000 has been
reported for the QD-doped nanobeam cavity against calculated
quality Q > 107 for the undoped cavity [13]. Besides, the
authors of Ref. [13] achieved the highest value of 2.1 of the
ratio of the coupling coefficient g to the photon decay rate �c

and observed the vacuum Rabi splitting. At the same time, this
value is too small for quantum computer applications. Here, we
use the quality factor of Q = 106 that is by almost two orders
of magnitude larger than that has been achieved in Ref. [13].
Currently, it remains an optimistic value for experimental
realization. With that, we may say that it is a very expectable
value in the near future in view of rapid technological progress
in manufacturing of high-quality semiconductor resonators.
A possible solution to quality improvement should consist in
both material purification and geometry optimization of given
system. We should also mention that introduced gates will
diminish the quality factor so their design has to be carefully
elaborated as well. For frequencies used in the paper (ωc ≈
80 meV) we obtain the photon relaxation time τc = �−1

c =
Q/ωc ∼ 10−8 s. Keeping in mind that estimated operation
times τp for quantum gates lie in the range of 10−11–10−10 s,
several tens of quantum operations could be performed with the
help of given localized photon before it will dissipate from the
cavity. This is enough for proof-of-principle demonstrations.
An alternative approach is to use single photon per single gate.
In this case, the fidelity of the quantum operation will be much
higher but the scheme will become more complex because of
the need of controlled photon channelling in and out of the
cavity before and after each operation. Here, we restrict our
consideration by the first case as the simplest one. However,
the formalism developed in Secs. II and III is valid for both
cases.

The next serious challenge may arise in the selective
population of resonant mode if one uses a structured waveguide
composed of large number of elementary cavities [38]. This
waveguide looks more suitable for interqubit coupling in
comparison with nonmodified line-defect waveguides [33].
With that, the number of hybridized waveguide modes will
increase with the number of cavities while the defect band-
width depending only on the intercavity photon hopping
strength will remain unchanged. As a result, the density of
waveguide modes grows and the selective addressability of
the photon mode used in our scheme becomes quite low. The
authors of Ref. [38] demonstrated satisfactory resolution over
waveguides composed of up to several hundreds of cavities.
To overcome this general problem of hopping particles in a
linear chain of identical sites one may destroy the identity to
split the auxiliary mode from other ones [39].

Very recently, the experimental realization of two QD-
doped cavities formed in the heterostructure-based photonic
crystal and coupled by the waveguide has been reported by
Thon et al. [40]. The QD excitonic spectra were independently
tuned by electrostatic gates. The distance between cavities

(i.e., between working QDs) was about 3 μm. The given result
substantiates the viability of our design. Being combined with
the QD placement control [16], this technique can be directly
used in the manufacturing of the large-scale quantum register
proposed in this paper. Even now the experiment of Ref. [40]
confirms many assumptions made in our model. Several of
them still remain optimistic, namely those concerned with
cavity properties and voltage pulse robustness.

As a final remark, we adopt the general secondary-
quantized framework for qubits in the cavity instead of the
description of driven DQDs under some microscopic model
in the coordinate-time space. Such an approach is becoming
more and more popular transforming into a routine and
commonly applied tool for the qubit analysis. All of the
relevant parameters in Eq. (1) are extracted from experimental
testing of concrete structure. Thus, the couplings gA,B can
be identified with the vacuum Rabi splitting in photon trans-
mission experiments; the QD frequencies ωA,B and interdot
tunnelings V0,m are found in luminescence observation; the
values of the dissipation coefficients γ and �c follow from
emission studies. The voltage-induced detuning and tunneling
dynamics can be tabulated in similar fashion.

Here, we don’t examine the detrimental effects on the quan-
tum operations such as those caused by the electron continuum
and the DQD asymmetry. Also, we obtain our results under
coherent approximation neglecting the dissipative channels in
the photon dynamics. Moreover, we restrict ourselves by the
simple case when only one qubit interacts with the cavity. The
situation where two or more qubits are simultaneously brought
in resonance with the cavity looks much more complex and
interesting and may allow alternative realizations of multiqubit
gates. All of those questions are topics for future treatments.

V. CONCLUSION

In this paper, we have considered a mechanism of the
charge qubit state control using the quantum field in the
semiconductor cavity. Apart from accurate QD positioning
inside the cavity, it is based on the ability to engineer the
voltage pulse sequences needed for robust electrostatic tuning
of the qubit frequency in resonance with the cavity. Modern
techniques have already approached the level at which the
given scheme may be realized. It would drastically simplify
the electron-state rotation in comparison with other schemes of
optically controlled charge qubits because it does not require
the laser’s application.

At this moment, the strong-coupling regime for single-
electron charge qubits has not yet been demonstrated. How-
ever, the observation of the successful development of existing
QD exciton qubits in cavities allows us to consider the perspec-
tive of building up of their charge analog as an achievable,
interesting, and attractive aim. We hope that our proposal
encourages experimenters to explore this problem further.

ACKNOWLEDGMENTS

The author wishes to thank Professor A. A. Orlikovsky and
I. Y. Kateev for interesting and stimulating discussions.

012331-10



PHOTON-ASSISTED CONDITIONALITY FOR DOUBLE-DOT . . . PHYSICAL REVIEW A 85, 012331 (2012)

[1] B. A. Joyce, P. C. Kelires, A. G. Naumovets, and D. D.
Vvedensky, Quantum Dots: Fundamentals, Applications, and
Frontiers (Springer, Dordrecht, 2003).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information. (Cambridge University Press,
Cambridge, 2000).

[3] S. Laurent et al., Appl. Phys. Lett. 87, 163107 (2005).
[4] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett.

74, 4083 (1995).
[5] L. Fedichkin, M. Yanchenko, and K. A. Valiev, Nanotechnology

11, 387 (2000).
[6] J. M. Taylor et al., Nature Phys. 1, 177 (2005).
[7] W. G. wan der Wiel et al., New J. Phys. 8, 28 (2006).
[8] H. J. Krenner et al., New J. Phys. 7, 184 (2005).
[9] S. M. de Vasconcellos et al., Nature Photon. 4, 545 (2010).

[10] S. Noda, M. Fujita, and T. Asano, Nature Photon. 1, 449 (2007).
[11] T. Yoshie et al., Nature (London) 432, 200 (2004).
[12] W. C. Stumpf et al., Appl. Phys. Lett. 90, 231101 (2007).
[13] R. Ohta et al., Appl. Phys. Lett. 98, 173104 (2011).
[14] Z. G. Xie and G. S. Solomon, Appl. Phys. Lett. 87, 093106

(2005).
[15] P. Gallo et al., Appl. Phys. Lett. 92, 263101 (2008).
[16] C. Schneider et al., Appl. Phys. Lett. 94, 111111 (2009).
[17] N. L. Dias et al., Appl. Phys. Lett. 98, 141112 (2011).
[18] S. M. Thon et al., Appl. Phys. Lett. 94, 111115 (2009).
[19] H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, Appl.

Phys. Lett. 95, 243107 (2009).
[20] A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic,

Phys. Rev. Lett. 104, 047402 (2010).
[21] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang,

T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys.
Rev. Lett. 95, 013904 (2005).

[22] L. A. Openov, Phys. Rev. B 60, 8798 (1999).

[23] J. H. Oh, D. Ahn, and S. W. Hwang, Phys. Rev. A 62, 052306
(2000).

[24] A. V. Tsukanov and L. A. Openov, Fiz. Tekh. Poluprovodn.
(St. Petersburg) 38, 94 (2004); Semiconductors 38, 91 (2004).

[25] E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, Phys. Rev.
B 69, 155316 (2004).

[26] A. M. Basharov and S. A. Dubovis, Opt. Spektrosk. 99, 802
(2005); Opt. Spectrosc. (Russia) 99, 770 (2005).

[27] A. V. Tsukanov, Phys. Rev. B 73, 085308 (2006).
[28] M. S. Sherwin, A. Imamoglu, and T. Montroy, Phys. Rev. A 60,

3508 (1999).
[29] X.-Y. Lu, J. Wu, L.-L. Zheng, and Z.-M. Zhan, Phys. Rev. A 83,

042302 (2011).
[30] E. T. Croke et al., Appl. Phys. Lett. 96, 042101

(2010).
[31] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,

565 (2001).
[32] A. V. Tsukanov, J. Phys. Condens. Matter 21, 055501

(2009).
[33] A. Faraon et al., Appl. Phys. Lett. 90, 073102 (2007); New J.

Phys. 13, 055025 (2011).
[34] E. A. Zibik et al., Nature Mater. 8, 803 (2009).
[35] S. R. Woodford, A. Bringer, and K. M. Indlekofer, Phys. Rev. B

76, 064306 (2007).
[36] S. Filippov, V. Vyurkov, and L. Fedichkin, Physica E 44, 501

(2011).
[37] V. Vyurkov, S. Filippov, and L. Gorelik, Phys. Lett. A 374,

3285 (2010).
[38] M. Notomi, E. Kuramochi, and T. Tanabe, Nature Photon. 2, 741

(2008).
[39] L. A. Openov and A. V. Tsukanov, Fiz. Tekh. Poluprovodn.

(St. Petersburg) 39, 235 (2005); Semiconductors 39, 251 (2005).
[40] S. M. Thon et al., Appl. Phys. Lett. 99, 161102 (2011).

012331-11

http://dx.doi.org/10.1063/1.2103397
http://dx.doi.org/10.1103/PhysRevLett.74.4083
http://dx.doi.org/10.1103/PhysRevLett.74.4083
http://dx.doi.org/10.1088/0957-4484/11/4/339
http://dx.doi.org/10.1088/0957-4484/11/4/339
http://dx.doi.org/10.1038/nphys174
http://dx.doi.org/10.1088/1367-2630/8/2/028
http://dx.doi.org/10.1088/1367-2630/7/1/184
http://dx.doi.org/10.1038/nphoton.2010.124
http://dx.doi.org/10.1038/nphoton.2007.141
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1063/1.2746059
http://dx.doi.org/10.1063/1.3579535
http://dx.doi.org/10.1063/1.2034111
http://dx.doi.org/10.1063/1.2034111
http://dx.doi.org/10.1063/1.2952278
http://dx.doi.org/10.1063/1.3097016
http://dx.doi.org/10.1063/1.3579253
http://dx.doi.org/10.1063/1.3103885
http://dx.doi.org/10.1063/1.3275002
http://dx.doi.org/10.1063/1.3275002
http://dx.doi.org/10.1103/PhysRevLett.104.047402
http://dx.doi.org/10.1103/PhysRevLett.95.013904
http://dx.doi.org/10.1103/PhysRevLett.95.013904
http://dx.doi.org/10.1103/PhysRevB.60.8798
http://dx.doi.org/10.1103/PhysRevA.62.052306
http://dx.doi.org/10.1103/PhysRevA.62.052306
http://dx.doi.org/10.1134/1.1641139
http://dx.doi.org/10.1103/PhysRevB.69.155316
http://dx.doi.org/10.1103/PhysRevB.69.155316
http://dx.doi.org/10.1134/1.2135854
http://dx.doi.org/10.1103/PhysRevB.73.085308
http://dx.doi.org/10.1103/PhysRevA.60.3508
http://dx.doi.org/10.1103/PhysRevA.60.3508
http://dx.doi.org/10.1103/PhysRevA.83.042302
http://dx.doi.org/10.1103/PhysRevA.83.042302
http://dx.doi.org/10.1063/1.3280368
http://dx.doi.org/10.1063/1.3280368
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1088/0953-8984/21/5/055501
http://dx.doi.org/10.1088/0953-8984/21/5/055501
http://dx.doi.org/10.1063/1.2472534
http://dx.doi.org/10.1088/1367-2630/13/5/055025
http://dx.doi.org/10.1088/1367-2630/13/5/055025
http://dx.doi.org/10.1038/nmat2511
http://dx.doi.org/10.1103/PhysRevB.76.064306
http://dx.doi.org/10.1103/PhysRevB.76.064306
http://dx.doi.org/10.1016/j.physe.2011.09.028
http://dx.doi.org/10.1016/j.physe.2011.09.028
http://dx.doi.org/10.1016/j.physleta.2010.06.023
http://dx.doi.org/10.1016/j.physleta.2010.06.023
http://dx.doi.org/10.1038/nphoton.2008.226
http://dx.doi.org/10.1038/nphoton.2008.226
http://dx.doi.org/10.1134/1.1864206
http://dx.doi.org/10.1063/1.3651491

