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Cluster-state generation using van der Waals and dipole-dipole interactions in optical lattices
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We present a scalable method for generation of a cluster state for measurement-based quantum computing
using van der Waals or dipole-dipole interactions between neutral atoms or polar molecules in an optical lattice.
Nearest neighbor entanglement is accomplished by performing a phase gate using interaction of atoms in Rydberg
states or molecules in large dipole moment states. All nearest neighbors are sequentially entangled in a finite
number of operations, independent of the number of qubits, producing a one-dimensional (1D) cluster state.
A universal two-dimensional (2D) cluster state can be generated in several milliseconds in a 2D optical lattice
by producing a series of 1D cluster states in one lattice direction, followed by application of the entangling
operations in another lattice direction. We discuss the viability of the scheme with Rb Rydberg atoms.
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I. INTRODUCTION

Entanglement plays a major role in quantum computing [1],
quantum communication [2], and quantum metrology [3]. A
special type of a multipartite entangled state, cluster state,
represents a universal resource for the measurement-based
quantum computing (MBQC) paradigm [4]. In measurement-
based quantum computing, quantum computations are carried
out on the cluster state through individual qubit measurements
in adaptive bases (|0〉 ± eiφ|1〉)/√2. The primary advantage of
MBQC over other register-based architectures rests in the fact
that all interactions, required, for example, for two-qubit gates,
are performed in the initialization stages of the resource state.
The computation may then be performed through simultaneous
measurement of many individual qubits as warranted by the
specific program being implemented. Any one- and two-qubit
gate can be realized by appropriate measurements, making
MBQC equivalent to the standard quantum circuit model [5].
Moreover, since the actual computation is done by local
measurements, it can be faster compared to the equivalent
gates in the circuit model.

The cluster state is realized by preparing individual qubits
in an eigenstate |+〉 = (|0〉 + |1〉)/√2 of the Pauli spin
operator σx , and letting the nearest neighbor qubits interact
via (up to local operations) an Ising Hamiltonian Hint =
g(t)

∑
〈a,a′〉

1−σ
(a)
z

2
1−σ

(a′ )
z

2 during a time τ so that
∫ τ

0 g(t)dt = π .
It clearly shows that the cluster state can be generated by
applying a phase gate UPG = diag(1,1,1, − 1) between all
nearest neighbor qubits.

A cluster state was experimentally realized with photons [6]
using linear optics, but this approach is difficult to scale to a
large number of qubits. Schemes to generate a cluster state
using atom-cavity entanglement in the framework of cavity
QED [7], cold ions via phonon-mediated spin-spin interactions
[8], and distributed networks of collectively excited atomic
ensembles [9] have also been proposed. A naturally highly
scalable system is neutral atoms in an optical lattice, where
a 1D cluster state has been produced via ultracold s-wave
collisions of atoms in a spin-dependent lattice [10]. Neutral
atoms can also be entangled via long-range van der Waals
(vdW) or dipole-dipole interaction when excited to Rydberg

states. Atoms in Rydberg states can have huge dipole moments
of several kilo-Debyes and interact strongly with each other
[11], which was suggested as a tool to produce two-qubit
gates in neutral-atom based quantum computing [12,13].
Recently, in a series of experiments [14] Rydberg (dipole)
blockade between two atoms has been observed, followed by
the demonstrations of a blockade-assisted CNOT gate [15]
and entanglement between two atoms [16]. It is interesting
to explore the possibility of using the strong interaction
in Rydberg states to generate a cluster state. Moreover, it
would offer a way to produce a cluster state with polar
molecules, coupled via dipole-dipole interaction, for which
collision-based interactions can result in undesirable inelastic
or chemical reaction losses. For simplicity we primarily
discuss in this work neutral atoms interacting in Rydberg
states, the same scheme can be applied to molecules.

We propose to realize a cluster state by applying a phase
gate to all pairs of nearest neighbor atoms in an optical lattice.
The phase gate can be realized using either direct or blockaded
interaction in Rydberg states. This can be accomplished in a
scalable way, that is, in a finite number of operations, not
depending on the number of atoms in the lattice. In fact, to
make pair excitation controllable and to minimize errors due
to interactions of multiple atoms in Rydberg states, it already
suffices to excite every other pair: (a) To produce a 1D cluster
state, four iterations are required and would be implemented
as follows: using a periodic entangler, such as a standing wave,
entangle positions 1 with 2, 4n + 1 with 4n + 2, etc.; in the
second step, entangle positions 3 with 4, 4n − 1 with 4n, etc.;
in the third step entangle positions 2 and 3, 4n − 2 and 4n − 1,
etc; and in the last step entangle positions 4 and 5, 4n and
4n + 1, etc. (b) For 2D cluster state generation, first the rows in
the x direction are entangled, then the entangling operations are
applied to columns in the y direction. This can be done using
optical standing wave excitation as is illustrated in Fig. 1(a) in
the case of a 1D optical lattice. Pairs of atoms at the maxima of
the standing wave intensity will get entangled, while those at
the minima will not. Changing the phase of the standing wave
fields, that is, shifting the position of the intensity maxima and
minima, will allow us to perform the phase gate between all
nearest neighbors, producing a cluster state.
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FIG. 1. (Color online) (a) An optical lattice described by the
potential V = V0 cos2(kx), along with an excitation pulse in the form
of a standing wave with Rabi frequency �L = �L0 cos2(kx/4 + φ),
where φ = π/4. (b) Atoms are conditionally transferred from, for
example, a qubit state |1〉 to a Rydberg state |r〉 by optical one- or
two-photon π pulses.

The paper is organized as follows. In Sec. II we describe
how a 1D cluster state can be realized using interaction in
Rydberg states. In Sec. III we show how to generalize the
technique used for the 1D cluster state generation to produce a
universal 2D cluster state. Finally, we discuss the main features
of the scheme and conclude in Sec. IV.

II. 1D CLUSTER STATE GENERATION

We start by analyzing how a 1D cluster state can be
generated by applying the phase gate between all neighboring
atoms in a 1D optical lattice.

A. Phase gate without individual addressing of atoms in a pair
(no dipole blockade)

1. Gate analysis

We assume that initially atoms are loaded into the ground
motional state of an optical lattice described by a potential
V (x) = V0 cos2(kx), shown in Fig. 1(a), which can be done
using a superfluid-Mott insulator transition. Two ground state
hyperfine sublevels |F,mF 〉 encode qubit states |0〉, |1〉.
As a final preliminary step atoms are transferred into the
|+〉 = (|0〉 + |1〉)/√2 superposition by applying a π/2 pulse,
resonant with the qubit transition. A phase gate between atoms
in neighboring sites can be implemented using strong vdW or
dipole-dipole interaction in Rydberg states.

There are two ways to perform the phase gate depending
on whether atoms are individually addressable or not [12].
Standard Rydberg blockade requires individual addressing of
the atoms. Individual addressing in an optical lattice has been
demonstrated recently using a tightly focused laser beam and
a spin-dependent lattice [17]. However, sequential application
of the phase gate to each pair of atoms is not scalable to a large
number of qubits. In a good scalable approach the cluster state
has to be generated in a finite number of operations which
does not depend on the size of the system. Below we analyze
the possibility of generating the 1D cluster state assuming that
atoms in each pair are not addressed individually.

If one uses a standing wave excitation pulse with the Rabi
frequency �L = �L0 cos2(kx/4 + φ), one has the maxima at,
for example, even and minima at odd pairs sites [see Fig. 1(a)].
The atoms at the maxima are transferred from the qubit state
|1〉 to the Rydberg state |r〉 either directly or by a two-photon
excitation, as shown in Fig. 1(b), below we assume two-photon
excitation. The phase gate is then realized in the limit �L �
Vint (Vint is the interaction strength in the Rydberg state |rr〉)
as follows: (1) a π pulse resonant to the |1〉 − |r〉 transition is
applied simultaneously to both atoms, exciting each to the |r〉
state since the shift of the doubly excited state |rr〉 is smaller
than the Rabi frequency; (2) atoms in the |rr〉 state interact
during time Tint and accumulate a π phase shift VintTint =
π ; and (3) a second π pulse deexcites atoms back to their
original qubit states. The standing wave therefore allows us
to control the Rydberg excitation pattern, which would be
more difficult if a spatially homogeneous excitation pulse is
used. We also note that vdW and dipole-dipole interactions
of Rydberg atoms are long range. As a result, when atoms
are excited to |r〉, the interaction strength between atoms in
neighboring pairs is comparable to the interaction strength
between atoms within a pair, which will result in a phase
error. The error is considerably reduced by exciting atoms only
in every other pair using the standing wave. The interaction
strength between atoms in closest excited even pairs is then
smaller by a factor of δVint/Vint = 1/36 ≈ 10−3 for vdW and
δVint/Vint = 1/33 ≈ 3.7 × 10−2 for dipole-dipole interaction
than the interaction strength within a pair. Here Vint is the
interaction strength between atoms in a pair and δVint is the
interaction strength between atoms in closest exited pairs.

Excitation to Rydberg states of alkali atoms is typically
a two-photon process via intermediate p1/2, p3/2 states.
Using the level scheme shown in Fig. 2(a) we can write the
Schrödinger equation for the amplitudes of the qubit states. If
the qubit is initially in the |11〉 state, the corresponding system
of equations is

i
da11

dt
= −2�2

1

�
a11 −

√
2�1�2

�
a+,

i
da+
dt

= −�2
1 + �2

2

�
a+ −

√
2�1�2

�
a11 −

√
2�1�2

�
arr ,

i
darr

dt
=

(
Vint − 2�2

2

�

)
arr −

√
2�1�2

�
a+, (1)

where a11, a+, and arr are the amplitudes of the states |11〉,
|+〉 = (|1r〉 + |r1〉)/√2 and |rr〉 (other states are far detuned
and not populated provided that � � �1,�2; � is the detuning
from the intermediate state, �1,2 are the Rabi frequencies of the
excitation pulses). Assuming �1 = �2 = � and Vint � �2/�

the solution of this system is given by

|	〉 = e2i�2t/�

( |11〉 − |rr〉
2

+ |11〉 − √
2|+〉 + |rr〉
4

e−2i�2t/�

+ |11〉 + √
2|+〉 + |rr〉
4

e2i�2t/�

)
, (2)
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FIG. 2. (Color online) (a) Two-photon excitation from the |11〉 to
the |rr〉 state in alkalis. (b) Level scheme of 87Rb showing qubit |0〉,
|1〉 and Rydberg |r〉 states.

which shows that for a pulse duration T such that �2T/� =
π/2 the state evolves into |	〉 = |rr〉. Next, the excitation
pulses are switched off and the atoms interact in the doubly
excited state for time Tint so that VintTint = π , and the state
flips sign |	〉 = −|rr〉. Finally, we apply the same π pulse for
time T , bringing the system into a state |	〉 = −|11〉.

If the initial state is |01〉 the system evolution is governed
by equations (similar for the |10〉 state)

i
da01

dt
= −�2

1

(
1

�
+ 1

� + �hf

)
a01 − �1�2

�
a0r ,

(3)

i
da0r

dt
= −

(
�2

2

�
+ �2

1

� + �hf

)
a0r − �1�2

�
a01,

which in the case � � �hf gives the solution

|	〉 = e2i�2t/�

( |01〉 − |0r〉
2

e−i�2t/�

+ |01〉 + |0r〉
2

ei�2t/�

)
, (4)

where �hf is the hyperfine splitting of the atomic ground state.
One can see that for �2T/� = π the system returns to the
state |	〉 = −|01〉.

Finally, if the system is initially in the |00〉 state, the wave
function evolves as

|	〉 = e2�2t/(�+�hf )|00〉, (5)

bringing the system into |	〉 = |00〉 for �2T/� = π if � �
�hf . As a result, the phase gate |ε1ε2〉 → −eiπ(1−ε1)(1−ε2)|ε1ε2〉
is implemented.

To proceed with cluster state generation the phase gate has
now to be performed with odd pairs of atoms, that is, atoms 3
and 4, 4n − 1 with 4n, etc. For that the phase φ of the excitation
pulse is shifted by π/2 to become φ = 3π/4. At this point all
atoms in even and odd pairs become entangled. As a next step
the phase gate has to be applied to neighboring atoms, where
one atom belongs to an even and another to an odd pair, that
is, to atoms 2 and 3, 4n − 2 and 4n − 1, etc. and atoms 4 and
5, 4n and 4n + 1, etc. which can be done by setting φ = π/2
and, finally, to φ = π . This will result in the phase gate applied
to all nearest neighbors.

In Fig. 2(b) we show the level scheme of 87Rb which we
use as an example. A qubit can be encoded into |0〉 = |F =
1,mF = 0〉 and |1〉 = |F = 2,mF = 0〉 states, providing long
coherence lifetimes due to small sensitivity to magnetic field
fluctuations [18]. A Rydberg state ns1/2 with |F = 2,mF = 2〉
can be used as |r〉, in this case atoms will interact via isotropic
vdW Vint = C6/r6 interaction. Atoms can be excited to |r〉
using two σ+ polarized pulses via intermediate p1/2 |F =
1,2,mF = 1〉 states.

2. Phase gate errors

The fidelity of the phase gate averaged over all initial two-
qubit states is calculated in Appendix A in detail and is given
by

F = 1
4 [|〈00|ÛPG|00〉|2 + | − 〈01|ÛPG|01〉|2
+ | − 〈10|ÛPG|10〉|2 + | − 〈11|ÛPG|11〉|2], (6)

where the state after the imperfect phase gate ÛPG is compared
to the state after the ideal gate |11〉 → −|11〉, |01〉 → −|01〉,
|10〉 → −|10〉, |00〉 → |00〉. In Appendix A we calculate
several types of intrinsic errors and find that the main errors
of this type of phase gate are caused by the finite width of the
ground motional state wave function of each atom in a lattice
site. This results in a finite spread of the Rabi frequency of the
standing wave excitation pulse. Other significant errors are due
to the finite ratio of the interaction strength to the two-photon
Rabi frequency and the decay of population in Rydberg states.
The corresponding gate fidelity is

F = 1 − ε = 1 − 2π2〈(δ�/〈�〉)2〉
−V 2

int/[8(�2/�)2] − 2πγ/Vint − πγ/(�2/�),

where ε is the corresponding gate error, and averaging is
over the motional ground state wave function. In the fidelity
calculation equal Rabi frequencies of the pulses �1 = �2 = �

were assumed and a decay of a Rydberg state with the rate γ

was introduced.
In order to find the error due to the finite width of the ground

state motional wave function we approximate the potential
at each site as harmonic with the oscillation frequency ω =
k
√

2V0/m and the corresponding wave function width a =
(ER/V0)1/4/k ≈ 0.316/k for V0 = 100ER , which we use for
an estimate. Here ER = h̄2k2/2m is the atomic recoil energy
and m is the atomic mass. We assume the Rabi frequencies
of the excitation pulses �1 = �2 = � ∼ cos(kx/4 + π/4),
where x varies around potential minima of the nth even pair of
sites xn = 5π/2(7π/2) + 4πn with the Gaussian probability
distribution p(x) = exp[−(x − xn)2/a2]/

√
πa.

The contribution of the first error term is

ε� var = 2π2〈(δ�/〈�〉)2〉 = π2(ka/4)2 tan2(kxn/4 + π/4)

≈ 1.05 × 10−2.

Choosing Vint = 3 MHz and �2/� = 30 MHz, the
second, third, and fourth error terms are εimp exc =
1/8(Vint/�2/�)2 ≈ 1.25 × 10−3, εRyd decay1 = 2πγ/Vint ≈
6.7 × 10−4 and εRyd decay2 = πγ/(�2/�) ≈ 3 × 10−5 for the

012328-3
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Rydberg state lifetime 500 μs, that is, the total error is of the
order of ε ≈ 1.25 × 10−2. The high value of the two-photon
Rabi frequency �2/� = 30 MHz can be achieved using a
two-photon excitation path 5s1/2 → 6p1/2 → ns1/2 with 422
and 1004 nm lasers, respectively, due to the larger dipole
moment of the 6p1/2 → ns1/2 transition [19], allowing us to
reach a high Rabi frequency �2. At the same time the decay
time of the 6p1/2 state (125 ns) allows us to minimize the error
due to the decay of the intermediate state. The probability
of the decay during the gate is pse = πγ6p1/2/�. Choosing
� = 40 GHz the probability of the intermediate state decay is
pse ∼ 10−4.

There is also an error due to the undesirable interaction
of atoms belonging to different excited pairs, εdif pairs =
(3π2/16)(1/8 + 19π2/256)(δVint/Vint)[Vint/(�2/�)]3 (see
Appendix A 1). Assuming that interacting atoms belong to the
closest excited pairs, we have δVint/Vint = 1/36 ≈ 10−3 for
vdW and δVint/Vint = 1/33 ≈ 3.7 × 10−2 for dipole-dipole
interaction. As a result, the error is εdif pairs ≈ 1.6 × 10−6

for vdW and εdif pairs ≈ 5.9 × 10−5 for dipole-dipole
interaction.

This analysis assumes that the excitation from |1〉 to |r〉
and back is adiabatic with respect to the lattice motional fre-
quency and there is no uncertainty in the interaction strength,
analyzed in Appendix A 3. If the excitation-deexcitation is
nonadiabatic, there is an additional gate error due to the uncer-
tainty in the interaction strength εnonadiab = (π2/4)(a/R)2 −
(π2/4)(a/R)4(Vint/ω)2, where R is the distance between
nearest neighbors in the lattice. This error was derived
assuming Vint � ω, which is not the case in our estimates.
If Vint > ω the error will be higher, and we use the first
term εnonadiab = (π2/4)(a/R)2 ≈ 2.5 × 10−2 as a lower bound
for this type of error. The error derivation assumes that the
trapping potential for the ground and Rydberg state is the same,
providing the same motional frequency. This can be achieved
in a blue-detuned optical lattice at a “magic” wavelength, at
which ground and Rydberg state polarizabilities are equal [20].
On the other hand, the error can be avoided if the trapping
lattice is switched off when atoms are excited to Rydberg states
and the gate pulses are much shorter than the motional period.
In this case atoms move only a small fraction of the ground
motional state width during the gate and will be recaptured in
the ground motional state once the trapping lattice is switched
back on.

Finally, there is a finite probability to excite atoms in
“inactive” lattice sites, sitting in minima of the standing wave
excitation pulse. The probability that the pair of atoms stays
in the initial state after the gate, averaged over four possible
initial states, is calculated in Appendix A 5. For a two-photon
excitation the averaged probability 〈P 〉 ≈ 0.75.

The error analysis shows that first, vdW interaction results
in smaller errors caused by the interaction of atoms in different
excited pairs compared to the dipole-dipole one. Second, the
excitation to Rydberg states has to be adiabatic to avoid errors
due to the uncertainty of the interaction strength. On the other
hand, these errors could be avoided altogether if excitation to
the |rr〉 state is not required. Next we therefore analyze the
phase gate based on Rydberg (dipole) blockade, where only
one atom is excited to a Rydberg state, provided individual
addressing of atoms in a pair is possible.

B. Phase gate with “individual” addressing: Dipole blockade

1. Gate analysis

If individual addressing of atoms in a pair is possible, one
can use standard dipole blockade [12], and the phase gate is
realized in the limit �L � Vint as follows: (1) a control atom is
excited from one of the qubit states, for example, a qubit state
|1〉 to a Rydberg state |r〉 by a π pulse. (2) A 2π pulse of the
same frequency is applied to a target atom. Dipole-dipole or
vdW interaction shifts the energy of the doubly excited state
|rr〉, as a result the 2π pulse has no effect on the target atom
(the excitation is blockaded) since the Rabi frequency of the
pulse is much smaller than the energy shift. (3) The control
atom is deexcited back to its original qubit state. We stress that
we do not require individual addressing of atoms in the lattice,
we only need atoms in each pair to be separately addressable,
this is why we call it individual addressing.

Individual addressing in a pair can be realized using a polar-
ization gradient optical lattice [21], where not only the intensity
of the lattice field but also its polarization changes periodically
in space. A lattice of double wells was demonstrated in [22]
with the polarization being linear in one site and elliptical in the
neighboring site of each well. The elliptical polarization results
in a nonzero contribution from a vector part of polarizability,
producing a state-dependent shift ∼αv( �E∗

L × �EL) �F , where αv

is the vector part of the polarizability, �F is the atomic angular
momentum, and �EL is the positive frequency part of the total
electric field �E = �ELe−iωt + c.c. The contribution from the
vector part can, therefore, be viewed as a fictitious magnetic
field �Bfict ∼ αv( �E∗

L × �EL).
Atoms can be loaded into a double-well optical lattice,

formed by two standing wave fields of different polarizations.
Let us consider the lattice field

�EL = E0�eye
ikx+iφ + E0�eye

−ikx−iφ

+ iE1�eze
2ikx + iE1�eze

−2ikx .

This lattice can be produced by two pairs of laser beams, inter-
secting at π and π/3 angles [23]. The corresponding lattice po-
tential is a sum of scalar and vector parts V = −αs | �EL|2/4 +
iαv( �E∗

L × �EL) �F/4 = Vs + Vv , where αs is the scalar polar-
izability. The scalar part Vs = V0 cos2(kx + φ) + V1 cos2 2kx

(where V0 = −αsE
2
0 and V1 = −αsE

2
1), represents a double-

well lattice, with a spatial period a = π/k; the minima of the
nth double well are at (kxmin)n = [arcsin(V0/4V1)/2 + π/4 +
πn, − arcsin(V0/4V1)/2 + π/4 + π (2n + 1)/2]. The vector
part is given by

Vv = −2αv

√
V0V1 cos(2kx)cos(kx)Fx/αs, (7)

and at the minima of a double well Vv =
±αv

√
V0V1(1 − V0/4V1)/2V0Fx/2V1αs . Here Fx is the

projection of the total angular momentum �F on the direction
of the fictitious magnetic field �Bfict (x direction), that is,
Fx = mF ; the ± signs refer to the left and right sites of the
well. The scalar part of the potential is typically larger than the
vector part since the vector polarizability is about an order of
magnitude smaller than the scalar part for alkalis. Assuming
αv/αs ∼ 0.1, V0 = V1, and V0 = 100ER the vector shift at the
well’s minima is Vv ≈ ±3ERFx . We can encode a qubit into
the states |0〉 = |F = 1,mF = −1〉, |1〉 = |F = 2,mF = 1〉,
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FIG. 3. (Color online) (a) Double-well lattice described by the po-
tential V = V0 cos2 kx + V1 cos2 2kx (V1 = V0) along with a standing
wave excitation pulse with Rabi frequency �L = �L0 cos2(kx/2 +
π/4). (b) Shift of qubit states |0〉 = |F = 1,mF = −1〉 and |1〉 =
|F = 2,mF = 1〉 in left and right sites of a double well in a
polarization gradient lattice described in the text.

this qubit transition is insensitive to magnetic field fluctuations
at a bias magnetic field Bbias = 3.23 G [18]. As a result, if a
magnetic field is applied, the |0〉 and |1〉 states will shift by
the same amount preserving the qubit frequency. The Vv term,
acting as a fictitious magnetic field, will then shift states |0〉,
|1〉 in the right site with respect to the qubit states in the left
site of the well [24] [see Fig. 3(b)], allowing us to selectively
excite only one atom in each pair, while having another atom
unaffected by the excitation pulse. For 87Rb ER = 3.5 kHz
at the lattice wavelength λ = 810 nm, and the shifts for the
|0〉, |1〉 states are Vv ∼ ±10 kHz. Larger shifts of the order of
50–100 kHz [24] can be realized with optimized parameters
of the lattice.

If the two-photon excitation Rabi frequency is much smaller
than the vector shift �vec = 2|Vv|, the atoms in the left and
right sites can be excited to the |r〉 state selectively. The phase
gate then can be realized using dipole blockade as: (1) a π

pulse resonant to the |1〉 − |r〉 transition of a control atom is
applied, exciting it to the |r〉 state; a target atom is off-resonant
by �vec, which is the relative shift of the qubit state |1〉 in left
and right site, and is not excited. (2) A 2π pulse resonant to the
|1〉 − |r〉 transition of the target atom is applied. The doubly
excited |rr〉 state is shifted by the large interaction energy
Vint and is not populated. The control atom is off-resonant by
�vec and is not affected. (3) Finally, a π pulse resonant to the
control atom brings it back to its original qubit state. These
steps are analyzed in detail in Appendix B and are summarized
in the table below, which shows the evolution of the two-qubit
states:

|00〉 πc→ −|00〉 2πt→ −|00〉 πc→ |00〉,
|01〉 πc→ −|01〉 2πt→ |01〉 πc→ −|01〉,

(8)
|10〉 πc→ −i|r0〉 2πt→ −ieiθ |r0〉 πc→ −eiθ |10〉,
|11〉 πc→ −i|r1〉 2πt→ −ieiθ |r1〉 πc→ −eiθ |11〉,

where θ = π�vec/�2/�, the first qubit corresponds to the
control and the second to the target atom. One can see that the
phase gate can be realized provided that θ = 2πn.

2. Phase gate errors

The averaged fidelity of the phase gate with dipole blockade
was calculated in Appendix B and is given by

F = 1 − ε = 1 − 2π2〈(δ�/〈�〉)2〉 − 7πγ/(4�2/�)

− (�2/�)2/
(
2�2

vec

)
.

The error terms are due to the spread of the two-photon Rabi
frequency experienced by each atom

ε� var = 2π2〈(δ�/�)2〉

= π2(ka)2 1 − √
(1 + V0/4V1)/2

1 + √
(1 + V0/4V1)/2

≈ 0.15,

decay of Rydberg states εRyd decay = 7πγ/(4�2/�) ≈ 4.38 ×
10−2, and the imperfect frequency selectivity between the
control and target atoms εimp block = (�2/�)2/(2|�vec|2) ≈
0.02. Here we assumed Vint � �vec � �2/�, V0 = V1, a =
(ER/V0)1/4/k ≈ 0.316/k for V0 = 100ER , 1/γ = 500 μs,
the two-photon Rabi frequency �2/� = 40 kHz, and the
vector shift of the qubit states �vec = 200 kHz. It shows that
the total error of the phase gate in this case is ε ≈ 0.21 and the
phase gate time is TPG = 2π/�2/� ≈ 25 μs.

Let us also discuss the error due to undesirable excitation
of atoms in “inactive” wells, where the Rabi frequency is close
to a minimum. It was calculated in detail in Appendix B 4, and
the probability to find the pair of atoms in the initial state after
the gate, averaged over all four initial states, is 〈P 〉 ≈ 0.998
in the case of two-photon excitation to Rydberg states.

By changing the phase of the standing wave so that intensity
maxima shift to odd double wells the phase gate can be
realized in odd pairs. At this stage all pairs in double wells
are entangled. In the next subsection we describe how the
phase gate can be realized with neighboring atoms belonging
to different double wells.

3. Lattice manipulation

In the previous subsection we showed how a phase gate can
be applied to pairs of atoms in double wells. To proceed with
the cluster-state generation the phase gate has to be realized
with the neighboring atoms in different double wells, that is,
between each atom in a right site of the nth double well and
an atom in a left site of the (n + 1)th double well. The phase
gate operations described in the previous subsection can be
applied if the atoms are brought to the same double well. This
can be achieved by adiabatically manipulating the lattice in the
following way: (i) decreasing V0 [Fig. 4(b), left panel] which
raises the barrier in each double well, (ii) ramping the phase φ

from 0 to π/2 [Fig. 4(c), left panel], and (iii) finally increasing
V0 back to its initial value. As a result, the atoms that were in
the right and left sites of neighboring double wells end up in
the same double well [Fig. 4(d), left panel].

The lattice manipulation has to be adiabatic to avoid
motional excitation of atoms. Modeling the evolution of
the atomic motional state during the lattice manipulation
requires calculation of Bloch bands and Bloch functions for
every configuration of the lattice. These are the eigenstates
and eigenfunctions of the single-particle atomic Hamiltonian,
which can be found by solving the Schrödinger equation with
the potential V (x,t). The potential V (x,t) is periodic, and can
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FIG. 4. (Color online) Left panel: (a) Double-well lattice de-
scribed by the potential V = V0 cos2(kx + φ) + V1 cos2(2kx), V1 =
V0, φ = 0. (b) V0 is ramped down to V0 = 0.2V1. (c) The lattice
phase is shifted from 0 to φ = π/2, V0 = 0.2V0. (d) V0 is ramped
up to V0 = V1. Right panel: populations of the four lowest motional
states during the V0 and φ manipulations.

be written as a discrete Fourier sum, containing terms with
wave vectors kx = ±k, ± 2k, in the following way:

V (x,t) = (V0 + V1)/2 + V0(e2ikx+2iφ + e−2ikx−2iφ)/2

+V1(e4ikx + e−4ikx)/2,

allowing one to write the solutions of the Schrödinger equation
in the form of Bloch functions ψ (n)

q (x) = eiqxuq(x). Here q is
the quasimomentum (restricted to the first Brillouin zone), n

is the band index, and

uq(x) =
Nmax∑

n=−Nmax

cn(q)e2inkx, (9)

FIG. 5. (Color online) Left panel: Bloch bands of the double-well
lattice V = V0 cos2(kx + φ) + V1 cos2(2kx), (a) V1 = V0 = 100ER ,
φ = 0; (c) V0 = 0.2V1, φ = 0; (e) V0 = 0.2V0, φ = π/2; Right panel:
Double-well potential along with lowest Bloch energies, where V0

and φ in (b), (d), and (f) are the same as in the left panel for (a), (c),
and (e).

with Nmax a suitable cutoff number. The resulting system of
equations for the cn coefficients and eigenenergies E(n)(q),

h̄2(q + 2nk)2

2m
cn + V0

2
(cn+1e

−2iφ + cn−1e
2iφ)

+V1

2
(cn+2 + cn−2) =

[
E(n)(q) − V0 + V1

2

]
cn

is solved numerically by truncating the sum in Eq. (9) at some
Nmax providing a necessary precision for the eigenenergies.
We used Nmax = 10 to calculate the lowest Bloch energies and
functions. Different configurations of the double-well potential
and the corresponding band structures are shown in Fig. 5. The
left panel demonstrates Bloch bands corresponding to the three
stages of lattice manipulation, while in the right panel of the
figure the energies of the q = 0 eigenstates of several lowest
bands are shown. The energies of the lowest bands weakly
depend on q, as can be seen from Figs. 5(a), 5(c), and 5(e),
and the energies and Bloch wave functions corresponding to
q = 0 can be used. Given the Bloch functions ψ (n)

q , which are
delocalized over the entire lattice, one can construct Wannier
functions which are localized at lattice sites xi ,

w(n)(x − xi) = 1√
N

∑
q

e−iqxi ψ (n)
q (x). (10)

In a double-well lattice the two lowest bands are separated
in energy by much less (�0.1ER) than the typical motional
excitation energy ∼√

4V0ER . As a result, even at ultracold
temperatures both bands are going to be populated. In this
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FIG. 6. (Color online) (a) Bloch functions ψ1 (green dot-dashed
curve) and ψ2 (red dashed curve) of the first and second Bloch bands
along with the lattice potential 10−2V . (b) Wannier functions centered
in the left ψL,i = (ψ1,i − ψ2,i)/

√
2 and right ψR,i = (ψ1,i + ψ2,i)/

√
2

sites of a double well.

situation to obtain a correct description of the system evolution
generalized Wannier functions are introduced [25], which are
superpositions of the Wannier functions of different energy
bands. In our case the Bloch functions for the first two bands
are symmetric (ground band) and antisymmetric (second band)
around the center of a double well [shown in Fig. 6(a)]. Com-
bining the Wannier functions corresponding to the two bands
as ψL,i = (ψ1,i − ψ2,i)/

√
2 and ψR,i = (ψ1,i + ψ2,i)/

√
2, one

can obtain generalized Wannier functions localized in the left
and right well, respectively [see Fig. 6(b)].

The lattice parameters have to be changed adiabatically
to avoid undesirable motional excitations of the atoms, that is,
slow compared to the lattice motional energies. We checked the
adiabaticity of lattice manipulation by numerical modeling of
the system evolution. We took into account the first four Bloch
states to simplify the analysis and assumed that initially atoms
are in the ground Bloch state. As we already mentioned, the
lowest Bloch bands weakly depend on the quasimomentum
q, and, as a result, one can approximate the corresponding
Wannier functions by the Bloch functions ψL,i and ψR,i ,
restricted to a single site. The population evolution is shown
in the right panel of Fig. 4, along with the time dependence of
the amplitude V0 and phase φ. By optimizing the manipulation
time we found that 99.92% of the population stays in the
ground Bloch band. We note that this value can be further
increased by using more complex (optimized) functions V0(t)
and φ(t). The total time required for the manipulation is
≈600 μs.

We can now estimate the time required to generate a 1D
cluster state. In the case considered in Sec. II A, when atoms are
not addressed individually, the phase gate has to be performed
adiabatically with the gate time TPG � 1/ω ≈ 1 μs, as a result,
the excitation-deexcitation pulses have to be longer than 10 μs.
We can assume the phase gate duration TPG ≈ 20 μs. The
resulting time of cluster state generation, including four phase
gate sequences, is then T1D ≈ 80 μs. If atoms in a pair are
individually addressable, the gate duration was found to be
≈25 μs in Sec. II B. The total time including the lattice
manipulation is then T1D ≈ 700 μs.

III. 2D CLUSTER STATE GENERATION

The scheme described in the previous section can be
extended to generate a 2D cluster state, which is required for

universal quantum computation. First, atoms can be loaded
in a 2D lattice with V = V0 cos2(k1x + φ) + V1 cos2(2k1x) +
V2 cos2(2k2y), which produces a regular lattice with a period
π/k2 in the y direction and a regular or double-well lattice
in the x direction. The y-lattice period is assumed sufficiently
large so that atoms in neighboring x chains do not interact when
excited to Rydberg states. In this way, following the steps of
Secs. II A or II B, we can produce a series of 1D cluster states
in the x direction. As a next step we adiabatically reduce V1

to get a regular lattice in the x direction with a period π/2k1

(in the case of a double-well lattice), followed by stretching of
the x lattice. Next, the y-lattice period is reduced to bring
the x chains closer and the regular or double-well lattice
V = V2 cos2(2k2y + φ) + V3 cos2(k2y + φ) is switched on in
the y direction. Next, the entanglement operations of Secs. II
A or II B can be repeated for 1D chains in the y direction,
producing a 2D cluster state.

Let us estimate the time required to generate the 2D state.
As we showed in the end of Sec. II C a 1D cluster state in the
x direction requires T1D ≈ 80 μs without and T1D ≈ 700 μs
with individual addressing in a pair to be realized. Adiabatic
reduction of V0 will take ≈250 μs, as can be seen from Fig. 4(e)
in the right panel. Next, we need to estimate the time required
to stretch the x lattice. The stretch has to be adiabatic for
atoms to remain in the ground motional state of the lattice. We
modeled the stretch of the lattice V = V1 cos2(kx) so that the k

vector was adiabatically changed from 2k1 to 0.4k1. The period
of the lattice 5π/2k1 at the end of the stretch is comparable
to the distance 3π/2k1 between atoms which belong to every
other excited pair in the double well. As a result, the error due
to the interaction of atoms in neighboring x chains is smaller
than the error due to the interaction of atoms in neighboring
excited pairs in the same chain.

We modeled the evolution of the system by calculating
the Bloch bands and Bloch functions, and used the latter to
construct single-site Wannier functions of the lattice V (x,t)
during the stretch. We again took into account four lowest
Bloch bands, assumed that initially the population was in the
ground Bloch band, and monitored the excitation to higher-
energy bands. We found that the stretch can be performed
rather fast in ∼16/ER ∼ 730 μs, where ER = 3.5 kHz for
87Rb, while retaining 99.55% of the population in the ground
Bloch band. The populations of the lowest four bands during
the lattice stretch are shown in Fig. 7.

Finally, we can estimate the total time required to generate
the 2D cluster state in the blockaded case. The time required
for 1D state generation T1D ≈ 700 μs; ramping down the V0

lattice takes ≈250 μs and the lattice stretch in the x direction
takes ≈730 μs; the total time is ≈1.7 ms. Next, the lattice
period in the y direction has to be adiabatically reduced, which
will similarly take ≈730 μs, followed by ramping up the V3

lattice in ≈250 μs, and a sequence of phase gate operations
applied to the y chains will take T1D ≈ 700 μs. Therefore, the
total time of the 2D cluster state generation in the blockaded
case is T2D ≈ 3.4 ms. The time required for 2D cluster state
generation in the no-blockade case can be found summing
the time required to produce 1D states in the x direction,
T1D ≈ 80 μs, the time required to stretch the lattice in the x

direction and shrink it in y direction ≈2 × 730 μs = 1.46 ms,
followed by application of the phase gate sequence in the y

012328-7
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FIG. 7. (a)–(d) Populations of the four lowest Bloch bands during
the lattice stretch. (e) The k vector is linearly reduced from 2k1 to
0.4k1.

direction, requiring time T1D ≈ 80 μs. The total time needed to
produce a 2D cluster state is therefore T2D ≈ 1.62 ms. These
times are much smaller than the qubit coherence times ∼1
s [18], achievable in optical lattices.

IV. DISCUSSION AND CONCLUSIONS

In Secs. II A 2 and II B 2 we showed that the phase
gate between two neighboring atoms can be realized with an
error ε ≈ 1.25 × 10−2 and ε ≈ 0.21 without and with dipole

blockade in the pair, respectively, if two-photon excitation to
Rydberg states is used. The major contribution to the error
in both cases comes from the variation of the two-photon
Rabi frequency experienced by each atom due to the spatial
variation of the excitation field. This error can be reduced to
ε� var = (π2/2)〈(δ�/〈�〉)2〉, that is, four times, if a single-
photon excitation is used instead of a two-photon one. Then,
ε� var ≈ 2.63 × 10−3 and ε� var ≈ 3.75 × 10−2 in the cases
without and with dipole blockade, respectively. It will reduce
the total gate error to ε ≈ 4.3 × 10−3 without and ε ≈ 0.16
with dipole blockade. The error of the blockaded phase gate
can be further reduced by increasing the relative qubit energy
shift �vec between left and right sites in a double well. Namely,
the error term εimp block = (1/2)(�/�vec)2 (here one-photon
excitation is assumed) can be reduced by increasing �vec.
One possible way to increase �vec is to use hyperfine states
|F,mF 〉 with large |mF | for qubit encoding since �vec ∼ mF .
For example, if Cs |F = 4,mF = 4〉 and |F = 3,mF = 3〉
states are used as qubit states |1〉 and |0〉, this will allow
the increase up to �vec ∼ 200 kHz × (mF = 4) ∼ 800 kHz.
The �vec can be increased even further using atoms with
large hyperfine quantum numbers F , such as the rare-
earth Ho, having 4 � F � 11 in the ground 4f 116s2(4I15/2)
state [26], which will allow the increase up to �vec ∼
1 MHz. Choosing one-photon Rabi frequency � ∼ 100 kHz,
the blockaded gate errors become εimp block = �2/(2�2

vec) ≈
5 × 10−3 and εRyd decay = 7πγ/4� ≈ 1.75 × 10−2. The error
due to Rabi frequency variation ε� var = (π2/2)〈(δ�/�)2〉 =
(π2/4)(ka)2 1−√

(1+V0/4V1)/2
1+√

(1+V0/4V1)/2
is harder to reduce since it pretty

much depends only on the ratio V0/V1, which cannot be
increased much beyond V0 ∼ V1 in order to have motional
states localized in left and right sites of a double well. Using
a very deep optical lattice with V0 = 200ER and V0 = 2V1,
which still results in motional states localized in left and right
wells, allows us to reduce the error to ε� var ≈ 1.13 × 10−2.
The transition between |F = 4,mF = 4〉 and |F = 3,mF =
3〉 states of Cs is sensitive to magnetic field at all field
values, meaning that the qubit will experience decoherence
in these states. To reduce its effect one can keep the qubit in
field insensitive |F = 4,mF = 0〉 and |F = 3,mF = 0〉 states
during storage and lattice manipulation time and transfer it to
the |F = 4,mF = 4〉, |F = 3,mF = 3〉 only when the phase
gate is applied. This will result in an additional phase gate
error due to magnetic field fluctuations εMF fluct ∼ (δωTPG)2,
where δω ≈ geμBδB is the fluctuation of the qubit transition
frequency due to the fluctuating magnetic field δB and ge

is the electron’s gyromagnetic ratio. In a recent study [27]
suppression of magnetic field fluctuations down to δB ∼
50 μG was demonstrated, resulting in δω ∼ 103 s−1. One
phase gate operation requires TPG ≈ 25 μs in our setup,
resulting in the dephasing error per gate εMF fluct ∼ 6 × 10−4.
As a result, the total gate error in the blockaded case can be
reduced to ε ≈ 3.44 × 10−2.

At the same time there are errors due to the excitation
of atoms in “inactive” lattice sites, situated at the minima
of the standing wave. With a two-photon excitation, the
probability to find the pair of inactive atoms in the initial
two-qubit state after the gate, averaged over all four initial
states, is 〈P 〉 ≈ 0.75 and 〈P 〉 ≈ 0.998 in the cases without
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and with blockade, respectively. The probability in the former
case can be increased using multiphoton, for example, four-
photon excitation to the Rydberg states. With a four-photon
excitation, the probability increases up to 〈P 〉 ≈ 0.994 in
the no-blockade case. At the same time the error due to the
variation of the Rabi frequency increases four times up to
ε� var = 8π2〈(δ�/〈�〉)2〉 ≈ 4.2 × 10−2, giving the total gate
error ε ≈ 4.4 × 10−2 in the no-blockade case. On the other
hand, single-photon excitation which reduces the gate error in
the blockaded case, leads to the reduced probability to leave
atoms in inactive sites unaffected 〈P 〉 ≈ 0.87.

We can conclude from this analysis that in no-blockade case
the multiphoton excitation, for example, four-photon, leads to
the optimal combination of the phase gate error (ε ≈ 4.4 ×
10−2) and the error due to the excitation of atoms in inactive
lattice sites (εinact exc = 1 − 〈P 〉 ≈ 6.5 × 10−3). At the same
time, in the blockaded case one-photon excitation seems to
provide the optimal error combination: phase gate error ε ≈
3.44 × 10−2 which can be achieved in deep optical lattices
and with atoms having large vector shifts. It is combined with
the probability to have inactive atoms unaffected 〈P 〉 ≈ 0.87.
We give an error summary for the no-blockade and blockaded
cases in Table I.

It was shown in [28] that fault-tolerant MBQC can be
realized with a 3D cluster state using topologically protected
gates. In particular, an error threshold for an entangling
two-qubit gate during the preparation of the cluster state has
been calculated as ε ≈ 7.5 × 10−3. Recently the threshold
was increased to 1.1%–1.4% [29]. Unfortunately, we cannot
directly compare the gate errors in our scheme with this
threshold since in [28,29] the error was assumed to be
partially depolarizing with the phase gate acting as ÛPG =
(1 − ε)[Îa Îb] + (ε/15)([ÎaX̂b] + · · · + [ẐaẐb]). In our case
the errors are due to leakage out of the computational subspace.
We note, however, that the errors of the phase gate without
and with blockade are higher than the threshold, but not too
far from it.

Our analysis shows that the no-blockade and blockaded
case have similar phase gate errors, but it requires a very
deep lattice and atoms with large hyperfine numbers in the
latter case. Additionally, the probability to have inactive
atoms unaffected is higher in the no-blockade compared to
the blockaded case. On the other hand, the optimal error
combination in the no-blockade case requires a four-photon
excitation, while in the blockaded case one-photon excitation
gives the optimal error combination. Generation of a 1D cluster
state in the no-blockade case requires almost an order of
magnitude less time (80 μs) compared to the blockaded case
(700 μs) due to the lattice change involved in the latter case.
The times required to produce a 2D cluster state are, however,
comparable: 1.62 ms without and 3.4 ms with dipole blockade.
From the overall experimental complexity (deep double-well
lattice, lattice manipulation required) the blockaded scheme
seems more difficult to realize.

The same scheme can be applied to generate the cluster
state with polar molecules. For example, molecular states
with small dipole moments can be used to encode a qubit
while for the phase gate molecules can be excited to a
state with a large dipole moment, such that in this state
molecules can interact via dipole-dipole interaction. A good

candidate is 13CO [30], where the ground electronic state
has a rather small permanent dipole moment ≈0.1 D and
long-lived nuclear spin sublevels can be used to encode a
qubit. It also has a metastable a 3�0 state with a significant
permanent dipole moment ≈1.4 D, in which molecules can
interact via dipole-dipole interaction. Polar molecules that
currently or in the near future can be cooled to ultracold
temperatures and placed in an optical lattice are limited to
alkali di-atoms, having permanent dipole moments of μ < 6
D (1 D = 10−18 esu cm). It limits the dipole-dipole interaction
strength μ2/R3 ∼ 100 kHz between nearest neighbors with
R ∼ 500 nm. The rather small interaction strength makes
the no-blockade phase gate preferable for polar molecules.
As an example, we can estimate the gate error for 13CO.
Assuming two-photon excitation to the large dipole moment
state, the error due to the variation of the Rabi frequency
ε� var = 2π2〈(δ�/〈�〉)2〉 ≈ 1.1 × 10−2, with the lattice depth
V0 = 100ER . The error due to the finite ratio of the interaction
strength to the Rabi frequency εimp exc = V 2

int/8(�2/�)2 ≈
8 × 10−5 assuming μ = 1.4 D, R = 500 nm, resulting in
Vint ≈ 2.5 kHz and �2/� ∼ 100 kHz. The large dipole mo-
ment molecular state is metastable with the lifetime ∼500 ms,
giving γ = 2 s−1 and the decay-induced errors εRyd decay 1 =
2πγ/Vint ≈ 8 × 10−4, εRyd decay 2 = πγ/(�2/�) ≈ 10−5, re-
sulting in the total gate error ε ≈ 1.14 × 10−2. As we discussed
above for atoms, the gate pulses affect molecules in inactive
sites if two-photon excitation is used. The probability to
have the inactive molecules unaffected can be increased
using multiphoton, for example, four-photon excitation. In
this case the error due to the Rabi frequency variation is
four times larger, and the total gate error becomes ε ≈
4.3 × 10−2, while the probability for inactive atoms to stay
in the initial qubit states becomes 〈P 〉 ≈ 0.994. This analysis
shows that gate errors for molecules and for atoms are
comparable.

In conclusion, we propose and analyze generation of a
cluster state for measurement-based quantum computing with
neutral atoms and polar molecules in an optical lattice using
van der Waals and dipole-dipole interactions. We consider two
schemes for implementation of a phase gate between pairs of
nearest neighbors required to generate the cluster state: without
and with individual addressing within a pair. We show that in
the former case the gate error ε ≈ 1.25 × 10−2 is feasible
with two-photon excitation to Rydberg states, provided the
excitation-deexcitation to interacting states is adiabatic with
respect to motional frequency of the lattice. Two-photon
excitation, however, leads to high error due to excitation of
atoms in inactive wells at the minima of the standing wave. The
optimal combination of the gate error and the inactive atoms
excitation error can be realized using four-photon excitation to
Rydberg states, giving the gate error ε ≈ 4.4 × 10−2 and the
probability to have inactive atoms unaffected 〈P 〉 ≈ 0.994.
In the second scheme individual addressing within a pair
allows us to implement the phase gate using Rydberg (dipole)
blockade. Addressing of atoms within a pair can be realized in a
polarization-gradient double-well lattice. The gate error in this
case is ε ≈ 0.21, but can be reduced to ε ≈ 3.44 × 10−2 using
one-photon excitation to Rydberg states, atoms with large
hyperfine quantum numbers, such as cesium and holmium,
and a very deep optical lattice. With one-photon excitation

012328-9
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TABLE I. Main errors in the no-blockade and blockaded cases.

Two-photon excitation No blockade Four-photon excitation

ε� var = (2π 2)〈(δ�/〈�〉)2〉 ≈ 1.05 × 10−2 ε� var = (8π 2)〈(δ�/〈�〉)2〉 ≈ 4.2 × 10−2

εimp exc = 1/8(Vint/�2/�)2 ≈ 1.25 × 10−3 εimp exc = 1/8(Vint/�4/�3)2 ≈ 1.25 × 10−3

εRyd decay1 = 2πγ/Vint ≈ 6.7 × 10−4 εRyd decay1 = 2πγ/Vint ≈ 6.7 × 10−4

εRyd decay2 = πγ/(�2/�) ≈ 3 × 10−5 εRyd decay2 = πγ/(�4/�3) ≈ 3 × 10−5

εnonadiab = (π 2/4)(a/R)2 ≈ 2.5 × 10−2 εnonadiab = (π 2/4)(a/R)2 ≈ 2.5 × 10−2

ε ≈ 1.25 × 10−2 a ε ≈ 4.4 × 10−2 a

εinact exc = 1 − 〈P 〉 ≈ 0.25 εinact exc = 1 − 〈P 〉 ≈ 6.5 × 10−3

With blockade
Two-photon excitation One-photon excitation
ε� var = (2π 2)〈(δ�/〈�〉)2〉 ≈ 0.15 ε� var = (π 2/2)〈(δ�/〈�〉)2〉 ≈ 1.13 × 10−2

εimp block = (�2/�)2/(2|� vec|2) ≈ 2 × 10−2 εimp block = (�2/�)2/(2|� vec|2) ≈ 5 × 10−3

εRyd decay = 7πγ/(4�2/�) ≈ 4.38 × 10−2 εRyd decay = 7πγ/(4�) ≈ 1.75 × 10−2

εMF fluct ∼ (δωTPG)2 ∼ 6 × 10−4 εMF fluct ∼ (δωTPG)2 ∼ 6 × 10−4

ε ≈ 0.21a ε ≈ 3.44 × 10−2 a

εinact exc = 1 − 〈P 〉 ≈ 2 × 10−3 εinact exc = 1 − 〈P 〉 ≈ 0.13

aNot including εinact exc and εnonadiab.

the probability of inactive atoms to stay in their initial state is
〈P 〉 ≈ 0.87.

We also analyze the lattice manipulation required in the
latter case to realize the phase gate between all nearest
neighbors and show under which conditions the manipulation
is adiabatic. The total time required to produce a 1D cluster
state T1D ≈ 80 μs without and T1D ≈ 700 μs with individual
addressing in a pair, where parameters of 87Rb were used for
the estimate.

Finally, we show how the scheme for 1D cluster state
generation can be extended to realize a universal 2D cluster
state and estimate the total time required T2D ≈ 1.62 ms
without and T2D ≈ 3.4 ms with individual addressing in a pair.
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APPENDIX A: CALCULATION OF THE AVERAGED
FIDELITY OF THE PHASE GATE WITHOUT INDIVIDUAL

ADDRESSING

We calculate the fidelity of the phase gate ÛPG averaged
over all initial two-qubit states |00〉, |01〉, |10〉, and |11〉 as
follows:

F = 1
4 [|〈00|ÛPG|00〉|2 + | − 〈01|ÛPG|01〉|2
+ | − 〈10|ÛPG|10〉|2 + | − 〈11|ÛPG|11〉|2],

where we project the final state after the phase gate ÛPG|ε1ε2〉
(ε1,2 = 0,1) on the state, expected after the ideal phase gate
|11〉 → −|11〉, |01〉 → −|01〉, |10〉 → −|10〉, and |00〉 →
|00〉. We assume that errors due to different mechanisms are
small and can be analyzed separately and added together.
We limit our analysis to intrinsic gate errors assuming that
technical errors can be in principle eliminated.

1. Error due to a finite ratio of the interaction strength to the
two-photon Rabi frequency Vint/(�2/�)

In this subsection we calculate the errors due to imperfect
excitation from the |11〉 to the |rr〉 state. In Sec. II A we derived
a system of equations for the amplitudes a11, a+, and arr of
the two-qubit states |11〉, |+〉 = (|1r〉 + |r1〉)/√2, and |rr〉
in the case when the initial state is |11〉 [see Eq. (1)]. The
corresponding Hamiltonian is

H/h̄ =

⎛
⎜⎜⎝

− 2�2
1

�
−

√
2�1�2
�

0

−
√

2�1�2
�

−�2
1+�2

2
�

−
√

2�1�2
�

0 −
√

2�1�2
�

Vint − 2�2
1

�

⎞
⎟⎟⎠ . (A1)

Assuming �1 = �2 = � for the simplicity of the analysis
and Vint � �2/� we can calculate the eigenvalues of the
Hamiltonian:

λ1 = −2�2

�
+ Vint

2
− 1

32

V 3
int

(�2/�)2
,

λ2 = 1

4
Vint + 5

64

V 2
int

�2/�
,

λ3 = −4�2

�
+ 1

4
Vint − 5

64

V 2
int

�2/�
,

with the corresponding eigenfunctions

|	1〉 = 1√
2

[
1 + 1

32

(
Vint

�2/�

)2
]

|11〉 − Vint

4�2/�
|+〉

− 1√
2

[
1 − 3

32

(
Vint

�2/�

)2
]

|rr〉,

|	2〉 = −1

2

[
1 − 3

16

Vint

�2/�
− 25

512

V 2
int

(�2/�)2

]
|11〉

+ 1√
2

[
1 − 1

16

Vint

�2/�
− 17

512

V 2
int

(�2/�)2

]
|+〉

− 1

2

[
1 + 5

16

Vint

�2/�
+ 23

512

V 2
int

(�2/�)2

]
|rr〉,
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|	3〉 = 1

2

[
1 + 3

16

Vint

�2/�
− 25

512

V 2
int

(�2/�)2

]
|11〉

+ 1√
2

[
1 + 1

16

Vint

�2/�
− 17

512

V 2
int

(�2/�)2

]
|+〉

+ 1

2

[
1 − 5

16

Vint

�2/�
+ 23

512

V 2
int

(�2/�)2

]
|rr〉

up to the second order in Vint/(�2/�).
The state |11〉 evolves as

|	〉 = a1|	1〉e−iλ1t + a2|	2〉e−iλ2t + a3|	3〉e−iλ3t ,

where the coefficients ai are determined from the condition
|	(t = 0)〉 = |11〉 and are given by

a1 = 1√
2

[
1 + 1

32

(
Vint

�2/�

)2
]

,

a2 = −1

2

[
1 − 3

16

Vint

�2/�
− 25

512

(
Vint

�2/�

)2
]

,

a3 = 1

2

[
1 + 3

16

Vint

�2/�
− 25

512

(
Vint

�2/�

)2
]

.

The phase gate is realized in three steps: first, a π pulse is
applied to both atoms during the time T such that �2T/� =
π/2. Next, atoms interact in the |rr〉 state and accumulate
the phase VintTint = π . Finally, a second π pulse of the same
duration T deexcites atoms back to the −|11〉 state. The wave
function at the end of the gate is as follows:

|	〉 = a1|	1〉e−i π
2

Vint
�2/� + a2|	2〉e−i π

4
Vint

�2/�
− 5πi

64 ( Vint
�2/�

)2

+ a3|	3〉e−i π
4

Vint
�2/�

+ 5πi
64 ( Vint

�2/�
)2

+ 2

{
1

2

[
1 − 1

16

(
Vint

�2/�

)2
]

e
−i π

4
Vint

�2/�

+ 1

4

[
1 + 1

8

Vint

�2/�
− 1

16

(
Vint

�2/�

)2
]

× e
−i π

8
Vint

�2/�
− 5πi

128 ( Vint
�2/�

)2

+ 1

4

[
1 − 1

8

Vint

�2/�
− 1

16

(
Vint

�2/�

)2
]

× e
−i π

8
Vint

�2/�
+ 5πi

128 ( Vint
�2/�

)2
}

×
{

− 1√
2

[
1 − 3

32

(
Vint

�2/�

)2
]

|	1〉e−i π
4

Vint
�2/�

+ 1√
2

[
1 + 5

16

Vint

�2/�
+ 23

512

(
Vint

�2/�

)2
]

|	2〉

× e
−i π

8
Vint

�2/�
− 5πi

128 ( Vint
�2/�

)2

− 1√
2

[
1 − 5

16

Vint

�2/�
+ 23

512

(
Vint

�2/�

)2
]

|	3〉

× e
−i π

8
Vint

�2/�
+ 5πi

128 ( Vint
�2/�

)2
}
.

Expanding the exponents in Vint/(�2/�) and keeping terms
up to the second order we get

〈11|	〉 = −1 +
(

1

4
+ 9π2

128

) (
Vint

�2/�

)2

+ 3πi

8

Vint

�2/�
.

As a result, | − 〈11|	〉|2 = 1 − V 2
int

2(�2/�)2 , with the correspond-

ing error V 2
int

2(�2/�)2 . This error is present only for the initial state
|11〉, since for the initial states |01〉, |10〉, and |00〉 as is seen
from Eqs. (3) and (5) the state |rr〉 is not populated and no
interaction is involved. The averaged over all initial states error

is therefore V 2
int

8(�2/�)2 .
This analysis also allows to calculate the error due to

the unwanted interaction of atoms belonging to different
excited pairs. If we assume that VintTint = π (1 + δVint/Vint),
where δVint is due to the interaction between closest pairs,
the corresponding error averaged over all initial states is
(3π2/16)(1/8 + 19π2/256)(δVint/Vint)[Vint/(�2/�)]3.

2. Error due to decay of Rydberg states

In this subsection we calculate the error due to decay of
Rydberg states. We can calculate this error using Eq. (2) for
the |11〉 initial state assuming that the |r〉 state decays with the
rate γ . Then the |11〉 state at the end of the gate becomes

|	〉 = −|11〉e−γπ/(�2/�)−2γπ/Vint

≈ −|11〉
(

1 − γπ

�2/�
− 2γπ

Vint

)
,

where we expanded the exponent using the smallness of
γ /(�2/�), γ /Vint. As a result, | − 〈11|	〉|2 = 1 − 2γπ

�2/�
−

4γπ

Vint
, giving the error 2γπ

�2/�
+ 4γπ

Vint
.

If the initial state is |01〉 the system evolves according to
Eq. (4). At the end of the gate |	〉 = −|01〉e−γπ/(2�2/�)−γπ/Vint .
The overlap with the desired −|01〉 state is then | − 〈01|	〉|2 =
e−γπ/(�2/�)−2γπ/Vint , resulting in the error γπ/(�2/�) +
2γπ/Vint. Similar result is obtained for the |10〉 state. There
is no error due to the Rydberg state decay for the |00〉 initial
state. The averaged over all initial states error is according to
Eq. (6) given by γπ/(�2/�) + 2γπ/Vint.

3. Error due to nonadiabatic excitation to the |r r〉 state

When two atoms in the |11〉 internal state and in the
ground motional states of the lattice |g1g2〉 are transferred to
a doubly excited Rydberg state |rr〉, the state |rr〉 ⊗ |g1g2〉 is
no longer the eigenstate of the total Hamiltonian, including
vdW or dipole-dipole interaction. The interaction admixes
higher-energy motional states to the original ground state as
well as other Rydberg states to a much smaller extent. As a
result, new eigenstates are superpositions of several motional
states. Let us call the new ground motional state of two atoms
in the presence of vdW or dipole-dipole interactions |g̃〉, while
|ẽk〉 are the higher-energy motional states. If the interaction is
not very strong only closest in energy states are admixed, |g̃〉 ≈
|g1g2〉 + α(|g1e

(1)
2 〉 + |e(1)

1 g2〉) in the first order perturbation
theory, where |e(j )

i 〉 is the j th excited motional state of
the ith atom, and α = 〈g1g2|V̂int|g1e

(1)
2 〉/(Eg1g2 − Eg1 − E

e
(1)
2

)
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(assuming 〈g1g2|V̂int|g1e
(1)
2 〉 = 〈g1g2|V̂int|e(1)

1 g2〉). If the atoms
are excited to |rr〉 adiabatically with respect to the energy
separation between |g̃〉 and higher-energy states (which is of
the order of the motional energy splitting), the state |g1g2〉
gradually evolves into |g̃〉 and there is no uncertainty in the
interaction strength. If, however, the excitation is nonadiabatic,
the state |g1g2〉 does not change during the excitation, that
is, it is now a superposition of the new eigenstates |g1g2〉 ≈
|g̃〉 + β|ẽ1〉, where β ≈ −α. As a result, after the first π pulse

|11〉 ⊗ |g1g2〉 → |rr〉 ⊗ |g1g2〉 = |rr〉 ⊗ (|g̃〉 + β|ẽ1〉).
During the interaction time the state |ẽ1〉 acquires a phase
factor exp(−i�ETint/h̄), where �E is the energy difference
between the |ẽ1〉 and |g̃〉 states. After the interaction time the
system is in the state

|rr〉 ⊗ (|g̃〉 + βe−iπ�E/Vinth̄|ẽ1〉).
The second π pulse brings the system back to the |11〉 state
without changing the motional state. As a result, after the
second π pulse the state looks as follows:

−|11〉 ⊗ (|g̃〉 + βe−iπ�E/Vinth̄|ẽ1〉)
= −|11〉 ⊗ [|g1g2〉 + β(e−iπ�E/Vinth̄ − 1)|ẽ1〉].

The projection to the ideal −|11〉 ⊗ |g1g2〉 is
then given by 1 + |β|2(e−iπ�E/Vinth̄ − 1) ≈ 1 +
|α|2[−iπ�E/Vinth̄ − (π2/2)(�E/Vinth̄)2]. Since �E ≈ h̄ω,
and 〈g1g2|V̂int|g1e

(1)
2 〉 ∼ (a/R)〈g1g2|V̂int|g1g2〉 = (a/R)Vint,

the perturbation theory gives |α| ∼ (a/R)(Vint/ω). As
a result, the projection to the ideal final state is
1 + (a/R)2(Vint/ω)2(−iπω/Vint − π2ω2/2V 2

int), which
gives the error π2(a/R)2 − π2(a/R)4(Vint/ω)2. Since this
error is present only for the |11〉 initial state the averaged error
is (π2/4)(a/R)2 − (π2/4)(a/R)4(Vint/ω)2.

4. Error due to the variation of the Rabi frequency

In this subsection we calculate the error caused by the
variation of the Rabi frequency experienced by each atom
due to the finite width of the ground motional state. If the
initial state is |11〉, the effect of the Rabi frequency spread
can be calculated from Eq. (2), where the Rabi frequency � =
〈�〉 + δ�, and we again assume �1 = �2 = �. Assuming
also that for the two π pulses 〈�〉2T/� = π/2, the state at the
end of the gate is given by

|	〉 = e4πiδ�/〈�〉+2πi(δ�/〈�〉)2

[ |11〉 − |rr〉
2

+ |11〉 − √
2|+〉 + |rr〉
4

e−4πiδ�/〈�〉−2πi(δ�/〈�〉)2

+ |11〉 + √
2|+〉 + |rr〉
4

e4πiδ�/〈�〉+2πi(δ�/〈�〉)2

+
(

1 + 1

2
e−2πiδ�/〈�〉−πi(δ�/〈�〉)2

+ 1

2
e2πiδ�/〈�〉+πi(δ�/〈�〉)2

)

×
(

−|11〉 − |rr〉
2

− |11〉 − √
2|+〉 + |rr〉
4

× e−2πiδ�/〈�〉−πi(δ�/〈�〉)2

− |11〉 + √
2|+〉 + |rr〉
4

e2πiδ�/〈�〉+πi(δ�/〈�〉)2

)]
.

Expanding the exponents up to the second order in δ�/〈�〉
we have |	〉 = −|11〉e4πiδ�/〈�〉+2πi(δ�/〈�〉)2

, which gives
the projection to the desired −|11〉 state | − 〈11|	〉|2 ∼
O((δ�/〈�〉)3).

If the initial state is |01〉 the wave function is given by
Eq. (4),

|	〉 = e
i�2( 1

�
+ 1

�+�hf
)t

( |01〉 − |0r〉
2

e−i�2t/�

+ |01〉 + |0r〉
2

ei�2t/�

)
.

Assuming again � = 〈�〉 + δ� and 〈�〉2T/� = π after the
two π pulses, the wave function becomes

|	〉 = −e4πiδ�/〈�〉+2πi(δ�/〈�〉)2−iπ�hf/�

×{|01〉 cos[2πδ�/〈�〉 + π (δ�/〈�〉)2]

+ i|0r〉 sin[2πδ�/〈�〉 + π (δ�/〈�〉)2]}.
The projection to the ideal −|01〉 state is then

−〈01|	〉 = e−iπ�hf/�+4πiδ�/〈�〉+2πi(δ�/〈�〉)2

×
[

1 − 2π2

(
δ�

〈�〉
)2

]
,

giving the error 4π2(δ�/〈�〉)2. A similar result is obtained
for the |10〉 state.

Finally, if the initial state is |00〉, it evolves according
to Eq. (5). After the phase gate the state turns into |	〉 =
|00〉e2πiδ�/〈�〉+iπ(δ�/〈�〉)2

. The overlap with the desired |00〉
state is |〈00|	〉|2 = 1.

The averaged over all initial states according to Eq. (6) error
is then 2π2〈(δ�2/〈�〉)2〉, where the averaging in the error
expression is over the ground motional state wave function.

5. Excitation of atoms in minima of standing wave
excitation pulse

We also need to estimate the probability that the atoms in
inactive lattice sites, that is, at the minima of the standing
wave excitation pulse, are not affected. Let us denote �̃2/�

the two-photon Rabi frequency at these sites. Now, as can be
seen from Eq. (2), the |11〉 initial state after the gate becomes

|	〉 = e
2πi �̃2

�2

{ |11〉
4

[
cos

(
2π

�̃2

�2

)
+ 4 cos

(
π

�̃2

�2

)
− 1

]

+ |rr〉
4

[
cos

(
2π

�̃2

�2

)
− 1

]

+ i
√

2|+〉
4

[
sin

(
2π

�̃2

�2

)
+ sin

(
π

�̃2

�2

)]}
.
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The overlap with the initial |11〉 state is then

〈11|	〉 = e2πi�̃2/�2

2
[cos2(π�̃2/�2)−1 + 2 cos(π�̃2/�2)].

The initial |01〉 state (the same for |10〉 state), according to
Eq. (4) after the gate becomes

|	〉 = e
2πi �̃2

�2

[
|01〉 cos

(
π

�̃2

�2

)
+ i|0r〉 sin

(
π

�̃2

�2

)]
,

which results in the overlap with the initial |01〉 state 〈01|	〉 =
e2πi�̃2/�2

cos(π�̃2/�2).
The initial state |00〉 becomes |	〉 = |00〉e2iπ�̃2/�2

after the
gate, according to Eq. (5).

The Rabi frequency at the minima of the standing wave
�̃ = �0 cos(3π/8), at the maxima � = �0 cos(7π/8), as a
result, the ratio �̃2/�2 ≈ 0.17. The probability to find the
pair of atoms in the initial state after the gate, averaged over
all initial states, is then 〈P 〉 = (1/4)(|〈11|	〉|2 + |〈01|	〉|2 +
|〈10|	〉|2 + |〈00|	〉|2) ≈ 0.75.

APPENDIX B: CALCULATION OF THE AVERAGED
FIDELITY OF THE PHASE GATE WITH INDIVIDUAL

ADDRESSING (BLOCKADED CASE)

Next we calculate the errors of the phase gate with
individual addressing in a pair of atoms. We start by calculating
the error due to the finite ratio of the two-photon Rabi
frequency to the vector shift �vec between atoms in the left and
right wells and between the Rabi frequency and the interaction
strength Vint, resulting in imperfect individual addressing.

1. Error due to a finite ratio of the Rabi frequency to the vector
shift (�2/�)/�vec and interaction strength (�2/�)/Vint

a. |11〉 initial state

First we consider the |11〉 initial state. The phase gate is
implemented in the following way: a π pulse resonant to the
|1〉 − |r〉 transition of the control, for example, the left atom is
applied. The states |11〉, |1r〉, |r1〉, and |rr〉 (other states are far
detuned and have much smaller amplitudes) evolve according
to the Hamiltonian:

H/h̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−( �2
1

�+�vec
+ �2

2
�

) − �1�2
�+�vec

−�1�2
�

0

− �1�2
�+�vec

(
�vec − �2

1
�+�vec

− �2
2

�+�vec

)
0 − �1�2

�+�vec

−�1�2
�

0 −( �2
1

�+�vec
+ �2

2
�

) − �1�2
�+�vec

0 − �1�2
�+�vec

− �1�2
�+�vec

(
Vint + �vec − �2

2
�+�vec

− �2
2

�+�vec

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(B1)

We assume �1 = �2 = �, Vint � �vec � �2/�, and � � �vec, Vint. In the analysis we will, therefore, keep terms up to the
first order in (�2/�)/Vint and up to the second order in (�2/�)/�vec. Neglecting a1r ∼ (�2/��vec)a11 and arr ∼ (�2/�Vint)ar1

as small, we have a system of equations for a11 and ar1 governed by the Hamiltonian:

H/h̄ =
⎛
⎝ −[

2�2

�
+ (�2/�)2

�vec−2�2/�

] −�2

�

[
1 + (�2/�)2

Vint(�vec−2�2/�)

]
−�2

�

[
1 + (�2/�)2

Vint(�vec−2�2/�)

] −[
2�2

�
+ (�2/�)2

Vint

]
⎞
⎠ . (B2)

The corresponding eigenstates and eigenfunctions are

λ1,2 = −2�2

�
− (�2/�)2

2�vec

(
1 + 2�2/�

�vec

)
− (�2/�)2

2�vec
± �2

�

[
1 + (�2/�)2

8�2
vec

]
(B3)

and

|	1〉 = − 1√
2

[
1 − �2/�

4�vec
+ �2/�

4Vint
− 17(�2/�)2

32�2
vec

]
|11〉 + 1√

2

[
1 + �2/�

4�vec
− �2/�

4Vint
+ 15(�2/�)2

32�2
vec

]
|r1〉,

|	2〉 = 1√
2

[
1 + �2/�

4�vec
− �2/�

4Vint
+ 15(�2/�)2

32�2
vec

]
|11〉 + 1√

2

[
1 − �2/�

4�vec
+ �2/�

4Vint
− 17(�2/�)2

32�2
vec

]
|r1〉. (B4)

The initial state |11〉 evolves as

|	〉 = e
2i�2 t

�
+ i(�2/�)2 t

�vec
(1+ 2�2/�

�vec
)+ i(�2/�)2 t

2Vint

×
(

a1|	1〉e−i �2 t
�

(1+ �2/�

8�vec
) + a2|	2〉ei �2 t

�
(1+ �2/�

8�vec
)
)

,
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where

a1 = − 1√
2

[
1 − �2/�

4�vec
+ �2/�

4Vint
− 17(�2/�)2

32�2
vec

]
,

(B5)

a2 = 1√
2

[
1 + �2/�

4�vec
− �2/�

4Vint
+ 15(�2/�)2

32�2
vec

]
.

After the first π pulse the wave function, therefore, turns into

|	〉 = −e
iπ�2/�

4�vec
(1+ 2�2/�

�vec
)+ iπ�2/�

4Vint

{[
i�2/�

2�vec
− π�2/�

16�vec
− i�2/�

2Vint
+ i(�2/�)2

�2
int

]
|11〉

+ i

[
1 −

(
1

8
+ π2

512

)
(�2/�)2

�2
vec

]
|r1〉

}
.

Next, a 2π pulse resonant to the target, that is, the right atom is applied. The system of equations for the amplitudes a11, a1r ,
ar1, and arr is the same as Eqs. (B1) with �vec → −�vec. The system of equations for a11 and a1r is also the same as Eqs. (B2)
with �vec → −�vec. As a result, during the 2π pulse the state evolves as

|	〉 = e
2i�2 t

�
− i(�2/�)2 t

�vec
(1− 2�2/�

�vec
)+ i(�2/�)2 t

2Vint

(
a1|	1〉e− i�2 t

�
(1+ �2/�

8�vec
) + a2|	2〉e

i�2 t
�

(1+ �2/�

8�vec
)
)

,

where |	1,2〉 are given by Eqs. (B4) with �vec → −�vec and |r1〉 → |1r〉, a1,2 are given by Eqs. (B5). After the 2π pulse the
states |11〉 and |r1〉 change as

|11〉 → −e
− iπ�2/�

2�vec
(1− 2�2/�

�vec
)+ iπ�2/�

2Vint

[
|11〉 + iπ

8

(
�2/�

�vec

)2

|1r〉
]

,

|r1〉 → e
iπ �vec

�2/�
−iπ

�2/�

�vec
(1+ 2�2/�

�vec
)−iπ

�2/�

Vint |r1〉.

As a result, after the 2π pulse the state becomes

|	〉 → −e
iπ�2/�

4�vec
(1+ 2�2/�

�vec
)+ iπ�2/�

4Vint

{
−

[(
i

2
− π

16

)
�2/�

�vec
− i�2/�

2Vint
+ i

(�2/�)2

�2
vec

]

× e
− iπ�2/�

2�vec
(1− 2�2/�

�vec
)+ iπ�2/�

2Vint |11〉 + i

[
1 −

(
1

8
+ π2

512

)
(�2/�)2

�2
vec

]

× e
iπ �vec

�2/�
− iπ�2/�

�vec
(1+ 2�2/�

�vec
)− iπ�2/�

Vint |r1〉
}

,

where we neglected the small (�2/�)3

�3
vec

|1r〉 term.
Finally, after the second π pulse resonant to the left atom, the states |11〉 and |r1〉 evolve as

|11〉 → a1|	1〉e−iλ1t + a2|	2〉e−iλ2t ,

|r1〉 → a2|	1〉e−iλ1t − a1|	2〉e−iλ2t .

At the end of the phase gate the initial |11〉 state evolves into

|	〉 → −e
i

π�2/�

�vec
(1+ 2�2/�

�vec
)+i

π�2/�

Vint

{[
1 − iπ

�2/�

�vec
− iπ

�2/�

Vint
−

(
33iπ

16
+ π2

2

)
(�2/�)2

�2
vec

]
|11〉

−
[
�2/�

�vec
− �2/�

Vint
+

(
π2

32
+ 3πi

4
− 2

)
(�2/�)2

�2
vec

]
|r1〉

}
.

The projection on the desired −|11〉 state is then

−〈11|	〉 = e
i

π�2/�

�vec
(1+ 2�2/�

�vec
)+i

π�2/�

Vint

[
1 − iπ

�2/�

�vec
− iπ

�2/�

Vint
−

(
33πi

16
+ π2

2

)
(�2/�)2

�2
vec

]
.

The error can be found from | − 〈11|	〉|2 ∼ 1 + O((�2/�)2/�vecVint).

012328-14



CLUSTER-STATE GENERATION USING VAN DER WAALS . . . PHYSICAL REVIEW A 85, 012328 (2012)

b. |01〉 initial state

Now we analyze the evolution of the |01〉 state. During the first π pulse, resonant to the left atom, the amplitudes of the states
|01〉 and |0r〉 (other amplitudes are much smaller) evolve according to the Hamiltonian

H/h̄ =
⎛
⎝− 2�2

1
�+�hf

− �1�2
�+�hf

− �1�2
�+�hf

(
�vec − �2

1
�+�hf+�vec

− �2
2

�+�vec

)
⎞
⎠ . (B6)

The initial state |01〉 changes as

|	〉 = e
−i�vect+i �2 t

�
+i �2 t

�+�hf

{
−�2/�

�vec
|	+〉e−i �vec t

2 [1+2 (�2/�)2

�2
vec

] +
[

1 − 1

2

(�2/�)2

�2
vec

]
|	−〉ei �vec t

2 [1+2 (�2/�)2

�2
vec

]
}

,

where the eigenstates are given by

|	+〉 = −�2/�

�vec
|01〉 +

[
1 − (�2/�)2

�2
vec

]
|0r〉,

(B7)

|	−〉 =
[

1 − (�2/�)2

�2
vec

]
|01〉 + �2/�

�vec
|0r〉.

After the first π pulse the state turns into

|	〉 → ie
i π�

2(�+�hf)

{[
1 + i

π�2/�

�vec
+

(
e−iπ�vec/(�2/�) − 1 − π2

8

)
(�2/�)2

�2
vec

]
|01〉

+ �2/�

�vec

[
1 + i

π�2/�

2�vec
−

(
1 − iπ�2/�

�vec

)
e
−i π�vec

�2/�

]|0r〉
}

.

During the 2π pulse resonant to the right atom, the |01〉 and |0r〉 states evolve as

|01〉 → e
i �2 t

�+�hf
+i �2 t

� 1
2

[
(|01〉 − |0r〉)e−i�2t/� + (|01〉 + |0r〉)ei�2t/�

]
,

|0r〉 → e
i �2 t

�+�hf
+i �2 t

� 1
2

[
(|01〉 + |0r〉)ei�2t/� − (|01〉 − |0r〉)e−i�2t/�

]
.

As a result, after the 2π pulse

|01〉 → |01〉eiπ�/(�+�hf), |0r〉 → |0r〉eiπ�/(�+�hf).

During the second π pulse the states |01〉 and |0r〉 change in the following way:

|01〉 → ia+|	+〉e−i π�vec
2�2/�

+i π�
�+�hf

−i
π�2/�

�vec + ia−|	−〉ei π�
�+�hf

+i
π�2/�

�vec ,

|0r〉 → ia−|	+〉e−i π�vec
2�2/�

+i π�
�+�hf

−i
π�2/�

�vec − a+|	−〉ei π�
�+�hf

+i
π�2/�

�vec ,

where |	±〉 are given by Eqs. (B7) and a+ = −(�2/�)/�vec, a− = 1 − (�2/�)2

2�2
vec

. After the second π pulse the initial |01〉 state
becomes

|	〉 → −e−2πi�hf/�

{[
1 + iπ

�2/�

�vec
+

(
e
−iπ �vec

�2/� − 2 − π2

2

)
(�2/�)2

�2
vec

]
|01〉

+
[
�2/�

�vec

(
1 − e

−i π�vec
�2/�

) + iπ
(�2/�)2

�2
vec

(
1 + e

−iπ �vec
�2/�

)] |0r〉
}

.

The projection on the −|01〉 state is then

−〈01|	〉 = e−2πi�hf /�

[
1 + iπ

�2/�

�vec
+

(
e
−i π�vec

�2/� − 2 − π2

2

)
(�2/�)2

�2
vec

]
.

Assuming π�vec/(�2/�) = 2πn we have | − 〈01|	〉|2 = 1 − 2 (�2/�)2

�2
vec

, and the resulting error is 2 (�2/�)2

�2
vec

.
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c. |10〉 initial state

During the first π pulse the amplitudes a10 and ar0 (other states are far detuned and their amplitudes are much smaller) change
according to the Hamiltonian

H/h̄ =
(

−(�2
1

�
+ �2

1
�+�hf

) −�1�2
�

−�1�2
�

−(�2
2

�
+ �2

1
�+�hf

)
)

. (B8)

During the first π pulse the states |01〉 and |0r〉 evolve as

|10〉 → e
i �2 t

�+�hf
+i �2 t

�
1

2

[
(|10〉 − |r0〉)e−i �2 t

� + (|10〉 + |r0〉)ei �2 t
�

]
,

|r0〉 → e
i �2 t

�+�hf
+i �2 t

�
1

2

[
(|10〉 + |r0〉)ei �2 t

� − (|10〉 − |r0〉)e−i �2 t
�

]
.

After the first π pulse the states |10〉, |r0〉 become

|10〉 → −ie−i
π�hf

2� |r0〉 , |r0〉 → −ie−i
π�hf

2� |10〉 .

During the 2π pulse resonant to the right atom, the amplitudes a10 and ar0 are governed by the Hamiltonian

H/h̄ =
(

−( �2
1

�−�vec
+ �2

1
�+�hf

) − �1�2
�−�vec

− �1�2
�−�vec

−(
�vec + �2

1
�+�hf−�vec

+ �2
2

�−�vec

)
)

. (B9)

As a result, the state |r0〉 evolves as

|r0〉 → e
i �2 t

�
+i �2

�+�hf

{
−�2/�

�vec

∣∣	+〉
e−i

(�2/�)2 t

�vec +
[

1 − (�2/�)2

2�2
vec

]
|	−〉ei�vect+i

(�2/�)2 t

�vec

}
,

where

|	+〉 =
[

1 − (�2/�)2

�2
vec

]
|10〉 − �2/�

�vec
|r0〉 , |	−〉 = �2/�

�vec
|10〉 +

[
1 − (�2/�)2

�2
vec

]
|r0〉 .

After the second π pulse the initial state |10〉 evolves into

|	〉 → −e−2πi
�hf
�

{(
1 + iπ

�2/�

�vec

)
e
iπ �vec

�2/� +
[

1 − e
iπ �vec

�2/�

(
1 + π2

2

)
(�2/�)2

�2
vec

]
|10〉

+
[
e
iπ �vec

�2/�
�2/�

�vec

(
1 + iπ

�2/�

�vec

)
− �2/�

�vec

(
1 − iπ

�2/�

�vec

) ]
|r0〉

}
.

The overlap with the desired −|10〉 state is then

−〈10|	〉 = e−2πi
�hf
�

{
(�2/�)2

�2
vec

+ e
iπ �vec

�2/�

[
1 + iπ

�2/�

�vec
−

(
1 + π2

2

)
(�2/�)2

�2
vec

]}
.

If π�vec/(�2/�) = 2πn,

−〈10|	〉 = e−2πi�hf/�

[
1 + iπ

�2/�

�vec
− π2

2

(�2/�)2

�2
vec

]
,

resulting in | − 〈10|	〉|2 = 1 + O((�2/�

�vec
)4).

Finally, the |00〉 state evolves into |00〉 → |00〉 e2iπ�/(�+�hf)

after the gate and |〈00|	〉|2 = 1.
The error averaged over all initial states is then ε = (�2/�)2

2�2
vec

.

2. Error due to the decay of Rydberg states

We again start the analysis from the initial state |11〉. After
the first π pulse resonant to the left atom it becomes

|	〉 → −ie−γπ/(2�2/�)|r1〉.

At the end of the 2π pulse resonant to the right atom the
state |r1〉 is given by

|r1〉 → eiπ�vec/(�2/�)−γπ/(�2/�)|r1〉.
Finally, after the second π pulse resonant to the left atom,

|r1〉 → −ie−πγ/(2�2/�)|11〉.
As a result, at the end of the gate

|	〉 → −eiπ�vec/(�2/�)−2πγ/(�2/�)|11〉.
From the overlap | − 〈11|	〉|2 = e−4πγ/(�2/�) the error is
4πγ/(�2/�).

The initial state |	〉 = |01〉 after the first π pulse turns
into |	〉 → −|01〉. After the 2π pulse |	〉 → e−iπ�hf/�|01〉.
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Finally, after the second π pulse |	〉 → −e−iπ�hf /�|01〉,
giving | − 〈01|	〉|2 = 1.

The initial state |	〉 = |10〉 after the first π pulse
evolves into |	〉 → −ie−γπ/(2�2/�)|r0〉. After the 2π

pulse |r0〉 → e−iπ�hf/�+iπ�vec/(�2/�)−γπ/(�2/�)|r0〉. The
state |r0〉 turns into |r0〉 → −ie−iπ�hf/�|10〉 after
the second π pulse. As a result, at the of the gate
|	〉 → −e−2πi�hf /�+iπ�vec/(�2/�)−3πγ/(2�2/�)|10〉. This gives
| − 〈10|	〉|2 = e−3πγ/(�2/�) resulting in the error
3πγ/(�2/�). Finally, the initial state |00〉 → |00〉 after
the gate and there is no error due to the Rydberg state decay.

The error averaged over all initial qubit states is then
7πγ/(4�2/�).

3. Error due to the variation of the Rabi frequency

a. |11〉 initial state

First, we analyze the |11〉 initial state. During the first π

pulse, resonant to the left atom, the state evolves as

|	〉 = e2i�2t/�

( |11〉 − |r1〉
2

e−i�2t/� + |11〉 + |r1〉
2

ei�2t/�

)
.

Again, we assume that � = 〈�〉 + δ� and 〈�〉2T/� = π/2
during a π pulse. As a result, after the first π pulse

|	〉 → − i

2
e2πiδ�/〈�〉+iπ(δ�)2/〈�〉2

×
(

2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2 0

0 2 − π2 (δ�)2

〈�〉2

) ( |11〉
|r1〉

)
.

During the 2π pulse resonant to the right atom, the states |11〉
and |r1〉 evolve as

|11〉 → e2i�2t/�

( |11〉 − |1r〉
2

e−2i�2t/�

+ |11〉 + |1r〉
2

e2i�2t/�

)
,

|r1〉 → |r1〉ei�vect−2πi�2t/�,

so that at the end of the 2π pulse

|11〉 → −1

2
e4πiδ�/〈�〉+2πi(δ�)2/〈�〉2

×
(

2 − 4π2 (δ�)2

〈�〉2 0

0 4πi δ�
〈�〉 + 2πi (δ�)2

〈�〉2

)( |11〉
|1r〉

)
.

The initial state |11〉 after the 2π pulse becomes

|	〉 → −1

2
e6πiδ�/〈�〉+3iπ(δ�)2/〈�〉2

×

⎛
⎜⎝

−[
2πi δ�

〈�〉 + πi (δ�)2

〈�〉2

]
0 0

0 4π2 (δ�)2

〈�〉2 0

0 0 eiπ�vec/(�2/�)−4πiδ�/〈�〉−2πi(δ�)2/〈�〉2[
2 − 8πi δ�

〈�〉 − (4πi + 17π2) (δ�)2

〈�〉2

]
⎞
⎟⎠ .

⎛
⎝ |11〉

|1r〉
|r1〉

⎞
⎠

After the second π pulse resonant to the left atom the states |11〉, |r1〉, and |1r〉 become( |11〉
|r1〉

)
→ − i

2

(
2πi δ�

〈�〉 + iπ (δ�)2

〈�〉2 2 − π2 (δ�)2

〈�〉2

2 − π2 (δ�)2

〈�〉2 2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2

)( |11〉
|r1〉

)

×|1r〉 → |1r〉e−iπ�vec/(�2/�)−4πiδ�/〈�〉−2πi(δ�)2/〈�〉2
.

If π�vec/(�2/�) = 2πn the wave function after the 2π pulse is given by

|	〉 → − i

2
e2πiδ�/〈�〉+iπ(δ�)2/〈�〉2

⎛
⎜⎝

− i
2

[
4 − 16πi δ�

〈�〉 − (8πi + 32π2) (δ�)2

〈�〉2

]
0 0

0 4π2 (δ�)2

〈�〉2 0

0 0 −16π2i (δ�)2

〈�〉2

⎞
⎟⎠

⎛
⎝ |11〉

|1r〉
|r1〉

⎞
⎠ . (B10)

The projection to the desired −|11〉 state is then

−〈11|	〉 = e2πiδ�/〈�〉+iπ(δ�)2/〈�〉2 ×
[

1 − 4πi
δ�

〈�〉 − (2πi + 8π2)
(δ�)2

〈�〉2

]
,

giving | − 〈11|	〉|2 = 1 + O(( δ�
〈�〉 )4).

b. |01〉 initial state

Next, the initial |01〉 state during the first π pulse evolves
as |	〉 = e2i �2 t

�
−i �2 t

�

�hf
� |01〉.

After the π pulse

|	〉 → −e
2πi δ�

〈�〉 +iπ
(δ�)2

〈�〉2 − iπ�hf
2� |01〉.

During the 2π pulse resonant to the right atom, the |01〉
state changes as

|01〉 → e2i �2 t
�

−i �2 t
�

�hf

�
1

2

[
(|01〉 − |0r〉)e−i�2t/�

+ (|01〉 + |0r〉)ei�2t/�
]
.
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After the 2π pulse the initial state becomes

|	〉 → e
6πi δ�

〈�〉 +3πi
(δ�)2

〈�〉2 − 3πi�hf
2�

×
(

1 − 2π2 (δ�)2

〈�〉2 0

0 2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2

) ( |01〉
|0r〉

)
.

(B11)

During the second π pulse resonant to the left atom, the states
|01〉 and |0r〉 evolve as

|01〉 → e2i �2 t
�

− i�2 t
�

�hf
� |01〉,

|0r〉 → e−i�vect+2i �2 t
�

−i �2 t
�

�hf
� |0r〉.

As a result, at the end of the gate the initial state |01〉 turns into

|	〉 → −e
8πi δ�

〈�〉 +4πi
(δ�)2

〈�〉2 −2πi
�hf
�

×
(

1 − 2π2 (δ�)2

〈�〉2 0

0 2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2

) ( |01〉
|0r〉

)
.

From | − 〈01|	〉|2 = 1 − 4π2 (δ�)2

〈�〉2 the error is

4π2(δ�)2/〈�〉2.

c. |10〉 initial state

The initial state |10〉 during the first π pulse evolves as

|	〉 = e2i �2 t
�

−i �2 t
�

�hf

�
1

2

[
(|10〉 − |r0〉)e−i�2t/�

. + (|10〉 + |r0〉)ei�2t/�
]
.

After the π pulse

|	〉 → − i

2
e

2πi δ�
〈�〉 +iπ

(δ�)2

〈�〉2 − iπ�hf
�

×
(

2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2 0

0 2 − π2 (δ�)2

〈�〉2

)( |10〉
|r0〉

)
.

During the 2π pulse resonant to the right atom the states |10〉
and |r0〉 change as

|10〉 → e2i �2 t
�

−i �2 t
�

�hf
� |10〉 ,

|r0〉 → ei�vec+2i �2 t
�

−i �2 t
�

�hf
� |r0〉 ,

that is, after the 2π pulse

|10〉 → e
4πi δ�

〈�〉 +2πi
(δ�)2

〈�〉2 −iπ
�hf
� |10〉 ,

|r0〉 → e
iπ �vec

(�2/�)
+4πi δ�

〈�〉 +2πi
(δ�)2

〈�〉2 −iπ �hf
� |r0〉 .

At the end of the 2π pulse the initial state becomes

	 → − i

2
e

6πi δ�
〈�〉 +3πi

(δ�)2

〈�〉2 − 3πi�hf
2�

×
(

2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2 0

0 e
iπ �vec

�2/�

[
2 − π2 (δ�)2

〈�〉2

]
)( |10〉

|r0〉
)

.

After the second π pulse the states |10〉 and |r0〉 turn into( |10〉
|r0〉

)
→ − i

2
e

2πi δ�
〈�〉 +iπ

(δ�)2

〈�〉2 − iπ�hf
2�

×
(

2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2 2 − π2 (δ�)2

〈�〉2

2 − π2 (δ�)2

〈�〉2 2πi δ�
〈�〉 + iπ (δ�)2

〈�〉2

)( |10〉
|r0〉

)
.

If π�vec/(�2/�) = 2πn, the state |10〉 at the end of the gate
becomes

|	〉 → − i

2
e

8πi δ�
〈�〉 +4πi

(δ�)2

〈�〉2 − πi�hf
�

×
(

1 − 2π2 (δ�)2

〈�〉2 0

0 2πi δ�
〈�〉 + iπ2 (δ�)2

〈�〉2

) ( |10〉
|r0〉

)
.

From | − 〈10|	〉|2 = 1 − 4π2(δ�)2/〈�〉2 the error is
4π2(δ�)2/〈�〉2.

Finally, the |00〉 state at the end of the gate becomes |00〉 →
e8πiδ�/〈�〉+4πi(δ�)2/〈�〉2−4πi�hf/�|00〉, giving |〈00|	〉|2 = 1.

The error due to the variation of the Rabi frequency aver-
aged over all initial two-qubit states is then 2π2〈(δ�)2/〈�〉2〉,
where the averaging in the error expression is over the ground
motional atomic state.

4. Excitation of atoms in minima of standing
wave excitation pulse

Finally, we analyze the undesirable excitation of atoms in
inactive wells, situated at the minima of the standing wave
excitation pulse.

a. |11〉 initial state

The initial state |11〉 after the first π pulse turns into

|	〉 → eiπ�̃2/�2

2

[
(|11〉 − |r1〉)e−iπ�̃2/2�2

+ (|11〉 + |r1〉)eiπ�̃2/2�2]
,

where �̃ and � are the Rabi frequencies at the lattice
sites, corresponding to the minima and the maxima of
the standing wave, and �̃/� = [1 − √

(1 + V1/4V0)/2]/[1 +√
(1 + V1/4V0)/2]. After the 2π pulse resonant to the right

atom, the states |11〉 and |r1〉 evolve as

|11〉 → e2iπ�̃2/�2 × [cos(π�̃2/�2)|11〉
+ i sin(π�̃2/�2)|r1〉],

|r1〉 → eiπ�vec/(�2/�)−2πi�̃2/�2 |r1〉.
During the second π pulse, resonant to the right atom, the
states |11〉, |r1〉, and |1r〉 change as( |11〉

|r1〉
)

→ eiπ�̃2/�2

×
(

cos(π�̃2/�2) i sin(π�̃2/�2)
i sin(π�̃2/�2) cos(π�̃2/�2)

)( |11〉
|r1〉

)
.

At the end of the gate the state |11〉 becomes

|	〉 = e4πi�̃2/�2
cos2(π�̃2/2�2) cos(π�̃2/�2)|11〉

− eiπ�vec/(�2/�) sin2(π�̃2/2�2)|11〉
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+ ie4πi�̃2/�2

4
sin2(2π�̃2/�2)|r1〉

+ ieiπ�vec/(�2/�)

2
sin(π�̃2/�2)|r1〉

+ ie2πi�̃2/�2−iπ�vec/(2�2/�)

× cos(π�̃2/2�2) sin(π�̃2/�2)|1r〉.
As a result, the overlap with the initial |11〉 state is

〈11|	〉 = e4πi�̃2/�2
cos2(π�̃2/2�2) cos(π�̃2/�2)

− eiπ�vec/(�2/�) sin2(π�̃2/2�2).

The probability that after the gate the atoms stay in |11〉 is

|〈11|	〉|2 = cos4(π�̃2/2�2) cos2(π�̃2/�2)+ sin4(π�̃2/2�2)

− 1
2 sin2(π�̃2/�2) cos(π�̃2/�2) cos(4π�̃2/�2),

where we assumed π�vec/(�2/�) = 2πn.
The ratio �̃/� ≈ 0.117 for V1 = V0, giving |〈11|	〉|2 ≈

0.996.

b. |01〉 initial state

If the initial state is |01〉, it evolves into

|	〉 = eiπ�̃2/2�2+iπ�̃2/(2�2)(�/�+�hf)|01〉
after the first π pulse resonant to the left atom. After the
2π pulse resonant to the right atom the |01〉 state turns
into

|01〉 → eiπ�̃2/�2+iπ(�̃2/�2)[�/(�+�hf)]

× [cos(π�̃2/�2)|01〉 + i sin(π�̃2/�2)|0r〉].
During the second π pulse resonant to the left atom, the states
|01〉 and |r0〉 change as

|01〉 → eiπ�̃2/2�2+iπ(�̃2/2�2)[�/(�+�hf)]|01〉,
|0r〉 → e−iπ�vec/(2�2/�)+iπ�̃2/2�2+iπ(�̃2/2�2)[�/(�+�hf)]|0r〉.

At the end of the gate

|	〉 = e2iπ�̃2/�2+2iπ(�̃2/�2)[�/(�+�hf)] × cos(π�̃2/�2)|01〉
+ ie−iπ�vec/(�2/�)+2iπ�̃2/�2+2iπ(�̃2/�2)[�/(�+�hf)]

× sin(π�̃2/�2)|0r〉.
The overlap with the initial |01〉 state is then 〈01|	〉 =
e2iπ�̃2/�2+2iπ(�̃2/�2)[�/(�+�hf)] cos(π�̃2/�2), resulting in the

probability to find the atomic pair in the initial state after the
gate |〈01|	〉|2 = cos2(π�̃2/�2) ≈ 0.998.

c. |10〉 initial state

The initial state |10〉 during the first π pulse resonant to the
left atom evolves into

|	〉 = eiπ�̃2/2�2+iπ(�̃2/2�2)[�/(�+�hf)]

× [cos(π�̃2/2�2)|10〉 + i sin(π�̃2/2�2)|r0〉].
During the 2π pulse, resonant to the right atom, the states |10〉
and |r0〉 change as

|10〉 → eiπ�̃2/�2+iπ(�̃2/�2)[�/(�+�hf)]|10〉,
|r0〉 → eiπ�vec/(�2/�)+iπ�̃2/�2+iπ(�̃2/�2)[�/(�+�hf)]|r0〉.

During the second π pulse the states |10〉 and |r0〉 evolve as( |10〉
|r0〉

)
→ eiπ�̃2/2�2+iπ(�̃2/2�2)(�/�+�hf)

×
(

cos(π�̃2/2�2) i sin(π�̃2/2�2)
i sin(π�̃2/2�2) cos(π�̃2/2�2)

)(|10〉
|r0〉

)
.

At the end of the gate the initial state |10〉 becomes

|	〉 = e2πi�̃2/�2+2πi(�̃2/�2)[�/(�+�hf)] × cos2(π�̃2/2�2)|10〉
− 1

4
eiπ�vec/(�2/�)+2πi�̃2/�2+2πi(�̃2/�2)[�/(�+�hf)]

× sin2(π�̃2/2�2)|10〉
+ i

2
e2πi�̃2/�2+2πi(�̃2/�2)(�/�+�hf)

× sin(π�̃2/�2)(1 + eiπ�vec/(�2/�))|r0〉,
which gives the overlap with the initial |10〉 state

〈10|	〉 = e2iπ�̃2/2�2+2πi(�̃2/�2)(�/�+�hf)

× [cos2(π�̃2/2�2)−eiπ�vec/(�2/�) sin2(π�̃2/2�2)],

resulting in the probability to find the pair of atoms in the
initial state |〈10|	〉|2 = cos2(π�̃2/�2), where we assumed
that π�vec/(�2/�) = 2πn.

The state |00〉 after the gate becomes |	〉 =
|00〉e4πi(�̃2/�2)(�/�+�hf), giving |〈00|	〉|2 = 1. The probability
to find the pair of atoms in the initial state after the gate,
averaged over all four initial states, is 〈P 〉 = 0.998.
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