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Private and quantum capacities of more capable and less noisy quantum channels
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Two classes of quantum channels, which we call more capable and less noisy, are introduced. The more capable
class consists of channels such that the quantum capacities of the complementary channels to the environments
are zero. The less noisy class consists of channels such that the private capacities of the complementary channels
to the environment are zero. For the more capable class, it is clarified that the private capacity and quantum
capacity coincide. For the less noisy class, it is clarified that the private capacity and quantum capacity can be
single letter characterized.

DOI: 10.1103/PhysRevA.85.012326 PACS number(s): 03.67.Dd, 89.70.−a

I. INTRODUCTION

One of the most important problem in quantum information
theory is to determine the quantum capacity of a noisy quantum
channel. The capacity is defined as the transmission rate
optimized over all possible quantum error correcting codes
such that decoding errors vanish in the limit of asymptotically
many uses of the channel.

Mathematically, a quantum channel can be described by
the trace-preserving completely positive (TPCP) map from the
input system to the output system. By using the Stinespring
dilation of the TPCP map, we can naturally define a comple-
mentary channel to an environment system, and we can regard
the noisy quantum channel as a wiretap channel [1,2] from
the sender to the legitimate receiver and the eavesdropper,
who can observe the environment system of the channel
(e.g., see [3]). Then we can define the private capacity of
the noisy quantum channel as the transmission rate optimized
over all possible wiretap codes such that decoding errors and
information leakage vanish in the limit of asymptotically many
uses of the channel.

The private capacity and quantum capacity of noisy
quantum channels were established in [4–7]. However, unlike
the capacity formula of a classical noisy channel or the private-
capacity formula of a classical wiretap channel, the private-
capacity and quantum-capacity formulas are not single letter
characterized; i.e., the formulas involve the limit with respect
to the number of channel uses, and they are not computable.
Indeed, some numerical evidence clarified that the expressions
in the capacity formulas are not additive [8–11], and the
single-letter characterization is not possible in general, at least
by using the same expressions.

A quantum channel is called degradable if there exists
another degrading channel such that the conjunction of the
channel to the legitimate receiver and the degrading channel
coincide with the complementary channel to the eavesdropper.
In such a case, the single-letter characterizations of the private
capacity and quantum capacity were established [3,12].

A quantum channel is called conjugate degradable if there
exists another degrading channel such that the conjunction
of the channel to the legitimate receiver and the degrading
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channel coincide with the complementary channel to the
eavesdropper up to complex conjugation. In such a case, the
single-letter characterizations were also established [13].

To date, all quantum channels whose capacities are single
letter characterized are degradable or conjugate degradable,
and it is important to clarify a broader class of quantum
channels such that the single-letter characterizations are
possible.1

Aside from the possibility of the single-letter character-
izations, there is also another interesting problem. In the
quantum information theory, the private information trans-
mission and the quantum information transmission are closely
related [4,14–16], and the possibility of the latter implies the
possibility of the former. However, the private information
transmission and the quantum information transmission are not
exactly equivalent. Indeed, although the private capacity and
quantum capacity coincide for degradable quantum channels
[17], the former can be strictly larger than the latter in general.
Particularly, the private capacity can be positive even if the
quantum capacity is zero [18]. Thus it is important to clarify a
condition on quantum channels such that the private capacity
and quantum capacity either do or do not coincide.

To shed light on the two above-mentioned problems,
we introduce two classes of quantum channels, which we
call more capable and less noisy. The more capable class
consists of channels such that the quantum capacities of
the complementary channels are zero. The less noisy class
consists of channels such that the private capacities of the
complementary channels are zero. Later, these definitions turn
out to be natural analogies of the partial orderings, more
capable and less noisy, between classical channels [19].

The inclusive relation of the degradable, the conjugate
degradable, the less noisy, and the more capable classes
is summarized in Fig. 1. In this paper, we show that the
private capacity and quantum capacity coincide for channels
in the more capable class. Furthermore, we also show that
the private capacity and quantum capacity can be single
letter characterized for channels in the less noisy class. These

1There are also channels called antidegradable or conjugate an-
tidegradable. The capacities of those channels are also single letter
characterized, but the capacities are equal to zero.
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FIG. 1. The inclusive relation of the degradable, the conjugate
degradable, the less noisy, and the more capable classes of quantum
channels.

results provide partial solutions to the two above-mentioned
problems.

The rest of the paper is organized as follows. In Sec. II,
we review some known results on the private capacity and
quantum capacity of quantum channels. In Sec. III, the more
capable and less noisy classes are introduced, and we state
our main results. In Sec. IV, we summarize certain properties
implied by the more capable and less noisy classes and show
proofs of our main results. We finalize the paper with a
conclusion in Sec. IV.

II. PRELIMINARIES

Let NB be a quantum channel from an input system HA to
an output system HB . By using the Stinespring dilation (e.g.,
see [3]), there exist an environment systemHE and an isometry
UBE from HA to the joint system HB ⊗ HE such that

NB(ρ) = TrE[UBEρU ∗
BE]

for every input ρ, where TrE is the partial trace with respect to
the environment system. By using this representation, we can
naturally define another channel:

NE(ρ) = TrB[UBEρU ∗
BE],

which is usually called the complementary channel of NB .
Although the Stinespring dilation is not unique, the following
arguments do not depend on the choice of the dilation because
two dilations can be converted to each other by applying a
local unitary to the environment systems.

Throughout the paper, we basically follow the notations
from [3,20]. The von Neumann entropy of a density matrix
ρ is defined by H (ρ) = −Trρ log2 ρ, and the quantum
relative entropy between ρ and σ is defined by D(ρ‖σ ) =
Trρ(log2 ρ − log2 σ ). For input state ρA to the channelNB , the
coherent information is defined by Ic(A〉B)ρ = H (NB(ρA)) −

H (NE(ρA)). When the input state is clear from the context,
we omit the subscript and denote Ic(A〉B). The quantum
mutual information of ρXB on the joint system is defined
by I (X; B) = H (ρX) + H (ρB) − H (ρXB). Particularly, when
ρXB is classical with respect to X, i.e., ρXB is of the form

ρXB =
∑

x

PX(x)|x〉〈x| ⊗ ρx
B,

then the quantum mutual information can be written as

I (X; B) = H (ρB) −
∑

x

PX(x)H (ρx
B).

When the legitimate receiver can observe the output of NB

and the eavesdropper can observe the output of NE , the private
capacity is characterized by [4,5]

Cp(NB) = lim
n→∞

1

n
C(1)

p

(
N⊗n

B

)
, (1)

where

C(1)
p (NB) := max

PU ,{ρu
A}

[I (U ; B) − I (U ; E)],

where {ρu
A} are states (not necessarily pure states) on HA

indexed by u ∈ U and PU is a probability distribution on a
finite set U .

On the other hand, when the sender wants to transmit
quantum information to the receiver through channel NB , the
quantum capacity is characterized by [4,6]

Q(NB) = lim
n→∞

1

n
Q(1)(N⊗n

B

)
, (2)

where

Q(1)(NB) := max
ρA

Ic(A〉B)ρ.

Neither Eq. (1) nor Eq. (2) can be single letter characterized;
i.e., Cp(NB) > C(1)

p (N ) and Q(N ) > Q(1)(N ) in general [8–
11]. Furthermore, the private capacity can be strictly larger
than the quantum capacity; i.e., Cp(NB) > Q(NB) for some
channels [18].

Channel NB is said to be degradable if there exists a TPCP
map D such that D ◦ NB = NE . This is a quantum analog of
a degraded broadcast channel [21]. When NB is degradable,
then it is known [3,12] that the single-letter formulas hold; i.e.,
Cp(NB) = C(1)

p (NB) and Q(NB) = Q(1)(NB). Furthermore, it
is also known that Cp(NB) = Q(NB) for degradable channel
NB [17].

Let C denote entrywise complex conjugation with respect to
a fixed basis of HE . Then, channel NB is said to be conjugate
degradable if there exists a TPCP map D such that D ◦ NB =
C ◦ NE . When NB is conjugate degradable, it is known that
Q(NB) = Q(1)(NB) [13]. Later, it will turn out that Cp(NB) =
Q(NB) = Q(1)(NB) also holds.

III. MAIN STATEMENTS

In this section, we introduce two classes of quantum
channels and show our main results.

Definition 1. The quantum channel NB is said to be
more capable than the environment, or just more capable,
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if the quantum capacity of the complementary channel to the
environment is zero, i.e.,

Q(NE) = 0. (3)

Definition 2. The quantum channel NB is said to be less
noisy than the environment, or just less noisy, if the private
capacity of the complementary channel to the environment is
zero, i.e.,

Cp(NE) = 0. (4)

Since Cp(NE) � Q(NE), less noisy implies more capable.
By using the eigenvalue decomposition

ρAn =
∑

xn∈X n

PXn (xn)|ψxn〉〈ψxn |

of ρAn , we can rewrite the coherent information as

Ic(An〉Bn) = I (Xn; Bn) − I (Xn; En), (5)

where we set |X | = dimHA. Thus, by noting Eq. (2), the
quantum channel NB is more capable if and only if

I (Xn; Bn) � I (Xn; En),∀(PXn{|ψxn〉}), (6)

holds for every n � 1. Furthermore, by noting Eq. (1), the
quantum channel NB is less noisy if and only if

I (Un; Bn) � I (Un; En),∀(
PUn

{
ρun

An

})
, (7)

holds for every n � 1. Equations (6) and (7) resemble the
definitions of more capable and less noisy for classical
channels [19], and it is justified to call quantum channels
satisfying Eq. (3) or Eq. (4) more capable or less noisy.

In [19], an alternative description of less noisy, less diver-
gence contracting, was introduced, and we can also extend such
a description to the quantum channel. The quantum channel
NB is said to be less divergence contracting if

D
(
N⊗n

B (ρAn)‖N⊗n
B (ρ̂An)

)

� D
(
N⊗n

E (ρAn)‖N⊗n
E (ρ̂An)

)
, ∀ρAn,ρ̂An (8)

holds for every n � 1. Later, we will show that the quantum
channel is less noisy if and only if it is less divergence
contracting (Proposition 4). This alternative description plays
a crucial role when we prove Theorem 2.

The following are our main results.
Theorem 1. Suppose that the quantum channel NB is more

capable. Then, we have

Cp(NB) = Q(NB).

Theorem 2. Suppose that the quantum channel NB is less
noisy. Then, we have

Cp(NB) = Q(NB) = Q(1)(NB).

When NB is conjugate degradable, we can show that
Cp(NE) = 0 as follows. Suppose that the sender sends a state
ρi that corresponds to the message i and the eavesdropper uses

a positive operator-valued measure (POVM) {Mi}.2 Then, for
the entrywise complex conjugate POVM {M̄i}, we have

Tr
[
M̄iD⊗n ◦ N⊗n

B (ρi)
] = Tr

[
M̄iC⊗n ◦ N⊗n

E (ρi)
]

= Tr
[
MiN⊗n

E (ρi)
]
,

where the last equality follows because M̄T
i = Mi and [C⊗n ◦

N⊗n
E (ρi)]T = N⊗n

E (ρi). Thus, the legitimate receiver can get
exactly the same information as the eavesdropper, and private
information transmission to the eavesdropper is impossible.
From this argument, conjugate degradable implies less noisy.

When the quantum capacity of the channel is 0 but it
can be used to share bound entanglement, then the channel
is called a binding-entanglement channel [22]. Particularly,
when the channel produces a positive partial transpose
(PPT) bound entanglement, the channel is called a PPT
binding-entanglement channel. If a complementary channel
is a binding-entanglement channel, then the main channel
obviously belongs to the more capable class. Since the
complementary channel of the conjugate degradable channel
can only produce a PPT bipartite state [13], if there exists
a conjectured negative partial transpose (NPT) binding-
entanglement channel, the complementary of such a channel
belongs to the more capable class but not to the conjugate
degradable class.

It is known that there exists a channel such that the quantum
capacity is zero (PPT binding-entanglement channel) but the
private capacity is strictly positive [18]. Let the complementary
channel NE be such a channel. Then channel NB is more
capable but not less noisy.3 Thus, the more capable class is
strictly broader than the less noisy class. However, it is not yet
clear whether the less noisy class is strictly broader than the
degradable or conjugate degradable classes.

IV. PROOF OF THEOREMS

A. Properties of C (1)
p (NB) and Q(1)(NB)

In this section, we summarize the properties of C(1)
p (NB)

and Q(1)(NB) when Eq. (6) or Eq. (7) holds for n = 1. For
n � 2, we can also show similar properties of C(1)

p (N⊗n
B )

and Q(1)(N⊗n
B ) when Eq. (6) or Eq. (7) holds for each n by

considering n times extension of NB . The following properties
can be regarded as quantum extensions of the properties shown
for classical channels in the literature [2,19,23,24]

Proposition 1. Suppose that Eq. (6) holds for n = 1. Then
we have

C(1)
p (NB) = Q(1)(NB).

2The role of the legitimate receiver and the eavesdropper is
interchanged because we are considering the private capacity of NE .

3Note that the private and quantum capacities of this channel are
strictly positive, which can be checked as follows. If Q(NB ) = 0, then
the complementary channel NE is more capable. Then, Theorem 1
implies that Q(NE) = Cp(NE), which contradicts the fact that
Cp(NE) > Q(NE) = 0.
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Proof. For any PU and {ρu
A}, let

ρu
A =

∑
x

αu,x |ψu,x〉〈ψu,x |

be an eigenvalue decomposition. Let X̃ be the random variable
on U × X such that

PX̃|U (u′,x|u) =
{
αu,x if u = u′,
0 otherwise.

Then, we have

I (U ; B) − I (U ; E) = [I (X̃; B) − I (X̃; E)]

− [I (X̃; B|U ) − I (X̃; E|U )]. (9)

Since Eq. (6) holds for n = 1, we have

I (X̃; B|U = u) − I (X̃; E|U = u) � 0

for every u, which means that the second set of brackets in
Eq. (9) is nonnegative. Furthermore, by noting that {|ψu,x〉}
are pure, we have

I (X̃; B) − I (X̃; E) = Ic(A〉B),

where

ρA =
∑
u,x

PU (u)PX̃|U (u,x|u)|ψu,x〉〈ψu,x |.

Since PU and {ρu
A} are arbitrary, we have

C(1)
p (NB) � Q(1)(NB).

The opposite inequality is obvious from the definitions of
C(1)

p (NB), Q(1)(NB), and Eq. (5). �
Proposition 2. Suppose that Eq. (6) does not hold for n = 1

and the density operator ρ∗
A maximizing Ic(A〉B) is full rank.

Then, we have

C(1)
p (NB) > Q(1)(NB).

Particularly when dimHA = 2 and C(1)
p (NB) > 0, the suffi-

cient and required condition on

C(1)
p (NB) = Q(1)(NB)

is that Eq. (6) holds for n = 1.
Proof. Since Eq. (6) does not hold for n = 1, there exists

ρ̂A such that

Ic(A〉B)ρ̂ < 0.

Since ρ∗
A is full rank, there exists 0 < λ < 1 such that ρ∗

A −
λρ̂A is positive semidefinite. We construct PU and {ρu

A} as
follows. Let

ρ̂A =
∑

x

P̂X(x)|ψ̂x〉〈ψ̂x |,

ρ∗
A − λρ̂A =

∑
x

βx |φx〉〈φx |

be eigenvalue decompositions. Let U = {0} ∪ X . Then, we
set PU (0) = λ, PU (u) = βu for u ∈ X , ρ0

A = ρ̂A, and ρu
A =

|φu〉〈φu| for u ∈ X . Let X̃ be the random variable on U × X
such that

PX̃|U (u′,x|u) =

⎧⎪⎨
⎪⎩

P̂X(x) if u = u′ = 0,

1 if x = u = u′ �= 0,

0 otherwise.

Then, we have

I (U ; B) − I (U ; E) = I (X̃; B) − I (X̃; E) − [I (X̃; B|U )

− I (X̃; E|U )] = I (X̃; B) − I (X̃; E)

− λ[I (X̃; B|U = 0) − I (X̃; E|U = 0)]

> I (X̃; B) − I (X̃; E) (10)

= Ic(A〉B)ρ∗ , (11)

where Eq. (10) follows from

I (X̃; B|U = 0) − I (X̃; E|U = 0) = Ic(A〉B)ρ̂ < 0

and Eq. (11) follows from∑
x

PU (0)PX̃|U (0,x|0)|ψ̂x〉〈ψ̂x |

+
∑

u,x∈X
PU (u)PX̃|U (u,x|u)|φx〉〈φx | = ρ∗

A.

Next, we show the latter statement of the proposition. The
sufficient condition follows from Proposition 1. Suppose that

Ic(A〉B) � 0,∀ρA (12)

holds. Since C(1)
p (NB) > 0, there exists PU and {ρu

A} such that

I (U ; B) − I (U ; E) > 0,

which implies the required condition. Next, we consider the
case such that Eq. (12) does not hold. In this case, we have

max
ρA

Ic(A〉B) > 0.

Then, since dimHA = 2, ρ∗
A must be full rank. Thus, the

required condition follows from the former statement of the
proposition. �

Proposition 3. Equation (7) holds for n = 1 if and only if
the coherent information is concave.4 That is,

Ic(A〉B)ρ �
m∑

i=1

piIc(A〉B)ρi
,

where ρ = ∑m
i=1 piρi .

Proof. Let

ρi =
∑

x

pi,x |ψi,x〉〈ψi,x |

be an eigenvalue decomposition. Then, let U = {1, . . . ,m},
PU (u) = pi , X̃ be the random variable on U × X such that

PX̃|U (u′,x|u) =
{
pi,x if u′ = u,

0 otherwise.

4It should be noted that the coherent information is known to
be concave if the quantum channel NB is degradable [Ref. [3],
Eq. (9.89)].
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Then, we have

I (U ; B) − I (U ; E) = [I (X̃; B) − I (X̃; E)]

− [I (X̃; B|U ) − I (X̃; E|U )]. (13)

We also have

I (X̃; B) − I (X̃; E) = Ic(A〉B)ρ

and

I (X̃; B|U ) − I (X̃; E|U ) =
m∑

i=1

piIc(A〉B)ρi
.

Thus, from Eq. (13), Eq. (7) holds for n = 1 if and only if the
coherent information Ic(A〉B) is concave. �

Proposition 4. The following two conditions are equiva-
lent.

(i) Equation (7) holds for n = 1.
(ii) Equation (8) holds for n = 1.
Proof. We first show that (i) implies (ii). For any ρA, ρ̂A

and 0 � λ � 1, let U = {0,1}, PUλ
(0) = λ, PUλ

(1) = 1 − λ,
ρ0

A = ρA, and ρ1
A = ρ̂A. Then, let

f (λ) = I (Uλ; B) − I (Uλ; E)

= λD(NB(ρA)‖NB(ρ̄A)) + (1 − λ)D(NB(ρ̂A)‖NB(ρ̄A))

− λD(NE(ρA)‖NE(ρ̄A))

− (1 − λ)D(NE(ρ̂A)‖NE(ρ̄A)),

where

ρ̄A = λρA + (1 − λ)ρ̂A.

By elementary calculation (cf. Ref. [3], Exercise 1.4), we
have

f ′(0) = D(NB(ρA)‖NB(ρ̂A)) − D(NE(ρA)‖NE(ρ̂A)).

Obviously, we have f (0) = 0. Since Eq. (7) holds for
n = 1, f (λ) � 0 for any 0 � λ � 1. Thus, f ′(0) must
be non-negative, which means that Eq. (8) holds for
n = 1.

Next, we show that (ii) implies (i). For any PU and {ρu
A},

we have

I (U ; B) =
∑

u

PU (u)D
(
NB

(
ρu

A

)‖NB(ρ̄A)
)
,

I (U ; E) =
∑

u

PU (u)D
(
NE

(
ρu

A

)‖NE(ρ̄A)
)
,

where

ρ̄A =
∑

u

PU (u)ρu
A.

Since Eq. (8) holds for n = 1, we have

I (U ; B) � I (U ; E). �

B. Proof of Theorem 1

It is a straightforward consequence of Proposition 1. Since
NB is more capable, Eq. (6) holds for every n � 1. Thus,
we have C(1)

p (N⊗n) = Q(1)(N⊗n
B ) for every n � 1, and the

statement of the theorem follows from Eqs. (1) and (2). �

C. Proof of Theorem 2

Since less noisy implies more capable, by Theorem 1, it
suffices to show Q(NB) = Q(1)(NB). For this purpose, we
will show that

max
ρAn

Ic(An〉Bn) � n max
ρA

Ic(A〉B) (14)

holds for every n � 1. For any input state ρAkA	 on H⊗(k+	)
A ,

let ρAk and ρA	 be the partial traces. Then, we have

Ic(Ak〉Bk) + Ic(A	〉B	) − Ic(AkA	〉BkB	)

= D
(
N⊗(k+	)

B (ρAkA	)‖N⊗k
B (ρAk ) ⊗ N⊗	

B (ρA	)
)

−D
(
N⊗(k+	)

E (ρAkA	)‖N⊗k
E (ρAk ) ⊗ N⊗	

E (ρA	)
)
.

Since Eq. (7) holds for n = (k + 	), by (n times extension
of) Proposition 4, Eq. (8) also holds for n = (k + 	), which
implies

Ic(AkA	〉BkB	) � Ic(Ak〉Bk) + Ic(A	〉B	).

Thus, Eq. (14) can be proved by induction. �

V. CONCLUSION

In this paper, we introduced two classes of quantum
channels, which we call more capable and less noisy. For
the more capable class, we showed that the private capacity
and quantum capacity coincide. For the less noisy class, we
showed that the private capacity and quantum capacity can be
single letter characterized.

Our results shed light on further understanding the private
and quantum capacities of quantum channels. However, the
conditions such that a certain channel belongs to the more
capable class or the less noisy class are hard to verify in general,
and we do not yet know whether there exists a channel that
belongs to the less noisy class but not to the degradable or
conjugate degradable classes, which is an important future
research agenda.
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