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How to construct spin chains with perfect state transfer
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A method to systematically construct the XX quantum spin chains with nearest-neighbor interactions that
allow perfect state transfer (PST) is shown. Sets of orthogonal polynomials (OPs) are in correspondence with
such systems. The key observation is that for any admissible one-excitation energy spectrum, the weight function
of the associated OPs is uniquely prescribed. This entails the complete characterization of these PST models with
the mirror-symmetry property arising as a corollary. A simple and efficient algorithm to obtain the corresponding
Hamiltonians is presented. A model connected to a special case of the symmetric q-Racah polynomials is offered.
An explanation of how additional models with PST can be derived from a parent system by removing energy
levels from the one-excitation spectrum of the latter is given. This is achieved through Christoffel transformations
and is also completely constructive in regards to the Hamiltonians.
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I. INTRODUCTION

The problem of perfect state transfer (PST) in quantum in-
formation processing is deservedly attracting much attention.
(See Refs. [1,2] for reviews.) The transport of the quantum
state from one location to another is perfect if it is realized
with probability 1, thereby avoiding dissipation. Occurrences
of perfect transmission have been found in some XX chains
with inhomogeneous couplings [1–4]: in these cases, the
probability for the transfer of a single spin excitation from
one end of the chain to the other is indeed found to be 1 for
certain times. These models have the advantage that the perfect
transfer can be done without the need for active control. We
shall here describe how such systems can be systematically
“constructed” from given one-excitation spectra.

Specifically, we shall focus on Hamiltonians H of the XX

type with nearest-neighbor interactions, i.e.,

H = 1
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where Jl are the constants coupling the sites l − 1 and l, and
Bl are the strengths of the magnetic field at the sites l (l =
0,1, . . . ,N ). The symbols σx

l , σ
y

l , and σ z
l stand for the Pauli

matrices, which act on the single-qubit states |0〉 and |1〉 as
follows:

σx |0〉 = |1〉, σ y |0〉 = −i|1〉, σ z|0〉 = −|0〉,
σ x |1〉 = |0〉, σ y |1〉 = i|0〉, σ z|1〉 = |1〉.

It is straightforward to see that[
H,

1

2

N∑
l=0

(
σ z

l + 1
)] = 0,

and therefore the eigenstates of H split in subspaces labeled by
the number of spins over the chain that are in state |1〉. For our
purposes, it will suffice to restrict H to the subspace spanned
by the states which contain only one excitation (or spin up). A

natural basis for that subspace is given by the vectors

|en) = (0,0, . . . ,1, . . . ,0), n = 0,1,2, . . . ,N,

where the only “1” occupies the nth position. In that basis, the
restriction J of H to the one-excitation subspace is given by
the following (N + 1) × (N + 1) Jacobi matrix:

J =

⎛
⎜⎜⎜⎜⎝

B0 J1 0
J1 B1 J2 0
0 J2 B2 J3

. . .
. . .

. . . JN BN

⎞
⎟⎟⎟⎟⎠,

where it is assumed that Ji > 0. Its action on the basis vectors
|en) reads

J |en) = Jn+1|en+1) + Bn|en) + Jn|en−1). (2)

Note also that the conditions

J0 = JN+1 = 0 (3)

are assumed.
It has been shown [2] that the eigenvalues of J must

satisfy a simple PST condition for the perfect state transfer
to be possible. (We shall discuss this in Sec. III.) Since they
encode three-term recurrence relations, the Jacobi matrices are
diagonalized by orthogonal polynomials (OPs). Spin chains al-
lowing PST are hence in correspondence with families of OPs.

One question we address here is the following: Given
spectral data sets satisfying the PST condition, can the
corresponding spin chains with the PST property be found?
In other words, is there a procedure to explicitly obtain the
parameters Jn and Bn that determine the Hamiltonians? As it
turns out, this question has a rather elegant, affirmative answer.
Indeed, we shall see that the condition for a spin chain to
possess the PST property is very simply expressed through
the weight function of the orthogonal polynomials associated
to the chain. Hence, given a set of eigenvalues satisfying
the PST condition, the weight function is then prescribed.
This uniquely fixes (up to normalization) the corresponding
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orthogonal polynomials and, therefore, the coefficients Jn and
Bn as their recurrence coefficients. A simple algorithm for
constructing spin chains with the PST property along these
lines will be presented.

Another constructive issue that we consider is this: Can
one obtain different spin chains with the PST property by
performing some appropriate surgery on the spectrum of a
model already known to generate PST? Here again the answer
is positive and also provides tools to explicitly construct many
spin chains with PST from a given one.

These two natural questions have been touched upon in
[4,5]. However, the link with the weight function of the
associated OPs have so far not been stressed, and therein lies
the constructive power that our considerations add.

The outline of the paper is as follows.
In Sec. II, we briefly describe standard results concerning

Jacobi matrices and orthogonal polynomials.
In Sec. III, we revisit the necessary and sufficient conditions

for XX spin chains to realize perfect state transfer. We
derive the spectral condition already referred to and obtain
the expression for the weight function of the associated
polynomials on which much of the model characterization
hinges.

The approach fundamentally relies on the spectral theorem
and therefore relates to many other circumstances (see, for
example, [6,7]) where transition probabilities are likewise
determined.

In Sec. IV, we offer a simple algorithm for constructing the
Hamiltonians of the chains with PST from the spectra and the
weight functions.

In Sec. V, we give two simple examples that illustrate
how the proposed method applies. The first is the well-known
case corresponding to a linear spectrum and the Krawtchouk
polynomials. The second stems from a hyperbolic energy
spectrum and leads to a spin chain Hamiltonian with PST
that can be analytically described.

In Sec. VI, we present a “surgical” procedure consisting
of the removal of energy levels from the one-excitation
spectrum of a spin chain with PST. It is shown to lead
to other spin chains with the same property. This spectral
surgery amounts to performing Christoffel transforms of the
orthogonal polynomials associated to the parent or original
system. Since the transformed polynomials are explicitly
known (from the general OP theory [8]), such is also the
case for the corresponding Jacobi matrix and spin chain
Hamiltonian.

II. FINITE JACOBI MATRICES
AND ORTHOGONAL POLYNOMIALS

Because the matrix J is Hermitian, there exists an eigenba-
sis |s〉 such that

J |s〉 = xs |s〉, s = 0,1, . . . ,N. (4)

The eigenvalues xs are all real and nondegenerate, i.e., xs �= xt

if s �= t .
Consider the expansion of the eigenbasis |s〉 in terms of the

basis |en),

|s〉 =
N∑

n=0

Wsn|en). (5)

From (4), it is seen that the expansion coefficients Wsn satisfy

Jn+1Ws,n+1 + BnWsn + JnWs,n−1 = xsWsn. (6)

Hence we can present them in the form

Wsn = Ws0χn(xs), (7)

where χn(x) are polynomials satisfying the recurrence relation

Jn+1χn+1(x) + Bnχn(x) + Jnχn−1(x) = xχn(x) (8)

and the initial conditions

χ0 = 1, χ−1 = 0. (9)

Both bases |en) and |s〉 are orthonormal, i.e.,

(em|em) = δnm, 〈s ′|s〉 = δss ′ .

Therefore, the matrix Wsn is orthogonal,

N∑
n=0

WsnWs ′n = δss ′ , (10)

and similarly

N∑
s=0

WsnWsm = δnm. (11)

From (11), it follows that the polynomials χn(x) are orthonor-
mal on the finite set of spectral points xs ,

N∑
s=0

wsχn(xs)χm(xs) = δnm, (12)

where

ws = W 2
s0 (13)

play the role of discrete weights for the polynomials χn(x).
Note that ∑

s=0

ws =
∑
s=0

W 2
s0 = 1, (14)

which amounts to the standard normalization condition for the
weights.

We thus have the expansions

|s〉 =
N∑

n=0

√
wsχn(xs)|en), (15)

and similarly

|en) =
N∑

s=0

√
wsχn(xs)|s〉. (16)

In what follows, it will be convenient to work with monic
orthogonal polynomials,

Pn(x) = J1J2, . . . ,Jn χn(x) = xn + O(xn−1). (17)

They satisfy the recurrence relation

Pn+1(x) + BnPn(x) + UnPn−1(x) = xPn(x), (18)

where Un = J 2
n > 0.
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The polynomials Pn(x) satisfy the orthogonality relation

N∑
s=0

Pn(xs)Pm(xs)ws = hn δnm, (19)

where

hn = U1U2, . . . ,Un.

By starting from the initial conditions P0 = 1,P−1 = 0, it
is possible to reconstruct all monic polynomials Pn(x),n =
1,2, . . . ,N uniquely. The polynomial PN+1(x) will be

PN+1(x) = (x − x0)(x − x1), . . . ,(x − xN ). (20)

From the standard theory of orthogonal polynomials [8], it
follows that the discrete weights can be expressed as

ws = hN

PN (xs)P ′
N+1(xs)

, s = 0,1, . . . ,N. (21)

In what follows, we shall take the eigenvalues xs to be in
increasing order, i.e., we shall assume that

x0 < x1 < x2 < · · · < xN. (22)

Such an ordering is always possible because, by assumption,
all eigenvalues xs of the Hermitian matrix J are real and
simple.

One can then present the expression for P ′
N+1(xs) in the

form

P ′
N+1(xs) = (xs − x0)(xs − x1) · · ·

×(xs − xs−1)(xs − xs+1) · · · (xs − xN )

= (−1)N+s |P ′
N+1(xs)|. (23)

III. NECESSARY AND SUFFICIENT CONDITIONS
FOR PERFECT QUANTUM STATE TRANSFER

A perfect quantum state transfer is realized if for some fixed
time T > 0, one has

eiT J |e0) = eiφ|eN ), (24)

where φ is a real number. In other words, the initial state |e0)
evolves over time T into the state |eN ) (up to an inessential
phase factor eiφ).

Expanding the states |e0) and |eN ) in terms of the eigenstates
|s〉 with the help of formula (16), we find that condition (24)
is equivalent to

χN (xs) = e−iφeiT xs , s = 0,1, . . . ,N. (25)

Now, on the one hand, since the polynomial χN (x) is real, it
follows from (25) that

χN (xs) = ±1. (26)

On the other hand, the orthogonal polynomials χn(x) possess
the interlacing property [8]. In particular, any zero of the
polynomial χN (x) should lie between two neighboring zeros
xs of the polynomial χN+1(x). This is possible only if the
values 1 and −1 alternate in (26), namely, if

χN (xs) = (−1)N+s , s = 0,1, . . . ,N, (27)

where we took into account the ordering (22), formula (23),
and the positivity of the weights ws in formula (21).

From (25), it follows that (27) is equivalent to the condition

e−iφeiT xs = eiπseiφ+π(N+2Gs ), (28)

where Gs are arbitrary integers.
As a result, we have the following condition for the spacings

between the successive levels:

xs+1 − xs = π

T
Ms, (29)

where Ms may be arbitrary, positive, odd numbers.
We thus derived the necessary conditions, given by (29) and

(27), for a spin chain to realize perfect state transfer.
It is easily seen that these conditions are also sufficient.
From (27), (21), and (23), it is observed that (27) is

equivalent to the condition

ws = κN

|P ′
N+1(xs)| > 0, (30)

where the normalization constant κN (chosen from the
condition w0 + w1 + · · · + wN = 1) is not essential for our
considerations. This formula can also be found in [9], where
it occurs in connection with the inverse spectral problem for
persymmetric matrices. (See below.)

This means that only condition (29) is crucial: once the
eigenvalues xs satisfy (29), the weights ws > 0 are then
uniquely determined (up to a common factor) via (30) and (23).
In turn, the spectral points xs together with the weights ws are
known to determine the Hermitian Jacobi matrix J uniquely
[8]. Hence, from the sole knowledge of the spectral points xs

[satisfying condition (29)], we can uniquely reconstruct the
spin chain Hamiltonians with the desired properties.

IV. RECONSTRUCTION OF THE MATRIX
J FROM SPECTRAL DATA

Consider now the matrix J ∗, which is obtained from J by
a reflection with respect to the main counterdiagonal, i.e.,

J ∗ = RJR, (31)

where the matrix R (reflection matrix) is

R =

⎛
⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .

1 0 . . . 0 0

⎞
⎟⎠.

The matrix J ∗ has the same structure as the matrix J (i.e., J ∗
is a Hermitian three-diagonal matrix),

J ∗ =

⎛
⎜⎜⎜⎜⎝

B∗
0 J ∗

1 0
J ∗

1 B∗
1 J ∗

2 0
0 J ∗

2 B∗
2 J ∗

3
. . .

. . .
. . . J ∗

N B∗
N

⎞
⎟⎟⎟⎟⎠,

with the coefficients

B∗
n = BN−n, J ∗

n = JN+1−n. (32)
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Consider the corresponding monic orthogonal polynomials
P ∗

n (x) satisfying the recurrence relation

P ∗
n+1(x) + B∗

nP ∗
n (x) + U ∗

n Pn−1(x) = xP ∗
n (x). (33)

In view of (31), the matrix J ∗ has the same eigenvalues, i.e.,
xs,s = 0,1, . . . ,N , as the matrix J .

Hence, the polynomials P ∗
n (x) are orthogonal on the same

finite set of spectral points,

N∑
s=0

P ∗
n (xs)P

∗
m(xs)w

∗
s = h∗

nδnm, (34)

but with another set of weights w∗
s . There is a remarkable

relation between the weights ws and w∗
s [10–12]:

wsw
∗
s = hN

[P ′
N+1(xs)]2

. (35)

Now, if J is mirror symmetric, that is, J ∗ = J , we must
have w∗

s = ws , and in view of (35), both sets of weights
are equal and given by (30). A Jacobi matrix J with mirror
symmetry hence defines a spin chain with PST. Conversely, if
the matrix J leads to a system with PST, the weights ws of the
associated OPs must be given by formula (30). From (35), it
then follows that w∗

s = ws . This, in turn, implies that J ∗ = J ,
or in other words, that J is mirror symmetric. Note that in the
mathematical literature, the matrices with the property J ∗ = J

are called persymmetric [9,13].
In summary, (27) is equivalent to the condition that the

matrix J is mirror symmetric or persymmetric.
The fact that (29) and the mirror symmetry of the matrix

J are necessary and sufficient for perfect state transfer was
shown in [2].

As a result, the exploration of systems with perfect state
transfer proceeded customarily through the search for Jacobi
matrices with mirror symmetry. We have just seen that this
property follows automatically from the prescription (30). This
observation considerably simplifies the problem of finding
spin chains with PST, as their determination from the weight
formula (30) avoids the necessity to check the mirror symmetry
of J .

At this point, to complete the practical recipe for the
construction of spin chains with PST, we only need to provide
an efficient algorithm to determine the matrix J from the
spectrum.

One such possible algorithm (to reconstruct persymmetric
matrices from spectral data) was given in [9]. We here propose
another one, which seems more efficient, especially in view
of the “spectral surgery” procedure to be presented in the next
section.

First, we notice that the polynomial χN (x) can be recon-
structed from (27) by the ordinary Lagrange interpolation
procedure [14].

Indeed, χN (x) has degree N and takes N + 1 prescribed
values ±1 at N + 1 prescribed distinct points x0,x1, . . . ,xN .

It follows that

χN (x) =
N∑

s=0

(−1)N+sLs , (36)

where Ls are the standard Lagrange polynomials,

Ls =
N∏

i=0

′
x − xi

xs − xi

(37)

[as usual, the symbol ′ means that i �= s in the product (37)].
The monic polynomial PN (x) is then obtained through the
division of χN (x) by the coefficient of its leading monomial.

We thus know explicitly two monic polynomials: PN (x)
and PN+1(x) = (x − x0)(x − x1), . . . ,(x − xN ). Starting from
these polynomials, it is possible to reconstruct, step by step, all
of the orthogonal monic polynomials Pn(x), n = N − 1,N −
2, . . . ,1 by the well-known Euclidean algorithm.

Let us divide the polynomial PN+1(x) by the polynomial
PN (x):

PN+1(x) = qN (x)PN (x) + RN−1(x), (38)

where qn(x) = x − βN and RN−1(x) is the residue of this
division. By construction, we have, on the one hand,
deg[RN−1(x)] = N − 1, and hence

RN−1(x) = γNQN−1(x), (39)

where QN−1(x) = xN−1 + O(xN−2) is a monic polynomial of
degree N − 1.

On the other hand, we have the recurrence relation (18) from
which we conclude that βN = bN, γN = uN , and QN−1(x) =
PN−1(x). We thus get the next monic orthogonal polynomial
PN−1(x) as well as the recurrence coefficients bN,uN .

The same steps can then be repeated with the polyno-
mials PN (x),PN−1(x), yielding the recurrence coefficients
bN−1,uN−1 and the polynomial PN−2(x). Iteration will provide
all recurrence coefficients, bn, n = 0,1, . . . ,N and un, n =
1,2, . . . ,N , together with the corresponding orthogonal poly-
nomials, Pn(x), n = 1,2, . . . ,N .

From a physical point of view, the case Bn = 0 is of special
interest because it corresponds to zero external magnetic
field. Jacobi matrices J with zero diagonal entries Bn = 0
correspond to symmetric orthogonal polynomials satisfying
the property [8]

Pn(−x) = (−1)nPn(x). (40)

Conversely, (40) is equivalent to the condition Bn = 0 in the
Jacobi matrix J [8].

What is more important is that (40) is tantamount to the
following spectral properties [8]:

(i) the eigenvalues are antisymmetric, i.e.,

xn = −xN−n, n = 0,1, . . . ,N, (41)

and
(ii) the weights are symmetric,

ws = wN−s > 0. (42)

We can now apply these observations to the PST problem.
Assume that the eigenvalues xs satisfy the properties (29) and
(41). Then, the weights ws constructed from formula (30)
obviously satisfy (42).

For perfect state transfer to be achieved in spin chains with
zero magnetic field, it is thus necessary and sufficient that
the one-excitation energies satisfy (29) and (41). A similar
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result was obtained in [2] using a method associated to the
inverse eigenvalue problem. Note that it is assumed in [2] that
the matrix J is mirror symmetric. We already observed that
this assumption is superfluous, as the mirror symmetry of J

follows from (30).

V. TWO EXPLICIT EXAMPLES

As illustrations of how the constructive procedure we have
described can be applied, we present in this section two
examples.

Before proceeding, note that given a spectral data set
xs, s = 0,1, . . . ,N , it is straightforward to obtain another set
satisfying (29) by an affine transformation,

x̃s = αxs + β, (43)

where α,β are arbitrary real parameters. The corresponding
Jacobi matrix will then have, for its entries,

B̃n = αBn + β, J̃n = αJn. (44)

We can use this freedom to choose the most convenient form
of the spectral data.

In particular, it is always possible to choose the parameters
α,β so that the eigenvalues x̃s are integers with alternating
parity (all x2s even and all x2s+1 odd). We will use this
observation in the following.

Consider first the uniform grid

xs = s − N/2, s = 0,1, . . . N. (45)

Using (30), we easily reconstruct the weights ws to obtain the
binomial distribution. The corresponding orthogonal polyno-
mials Pn(x; N ) are the symmetric Krawtchouk polynomials,
and the entries of the matrix J are

Bn = 0, J 2
n = n(N + 1 − n)

4
. (46)

This example is well known and was, in fact, obtained in [3]
as an example of inhomogeneous spin chain with the perfect
state transfer property.

Let us note that this system had also appeared much earlier
in related contexts of coupling strength design. In [6], for
instance, it was used to describe the excitation dynamics of
an N-level problem; while in [7], it was employed to provide
quantum computer models for which the result of a calculation
is found for some prescribed time, at a given position, with
probability 1.

The next example is less trivial and seems to have escaped
notice. Take a “hyperbolic” analog of the uniform spectrum,
i.e.,

xs = A(q−s+N/2 − q−N/2+s), s = 0,1, . . . ,N, (47)

where 0 < q < 1 and A are real parameters. These parameters
should be chosen so as to enforce the condition that all
differences xs+1 − xs are positive odd integers. To that end,
it is sufficient to demand that all xs be integers with alternating
parity: say x0 is even, x1 odd, x2 even, and so on.

To do this, let us notice that the spectral points given by
(47) satisfy the recurrence relation

xs+1 + xs−1 = (q + q−1)xs, s = 1,2, . . . ,N − 1. (48)

In order to ensure that all xs are integers with alternating parity,
we need to require

q + q−1 = K, (49)

where K = 4,6, . . . is an arbitrary, positive, even integer in the
case of even N , and K = 6,10,14,18, . . . in the case of odd N

[we avoid the case K = 2 because it leads to the degenerate
case q = 1 corresponding to the uniform grid (45)]. Condition
(49) means that q is a special case of quadratic irrationality.
The difference in the ranges of K for even N and odd N is
explained by the observation that for even N , the minimal
distance between the eigenvalues xs is A(q−1 − q), while
for odd N , the minimal distance is 2A(q−1/2 − q1/2). The
admissible values for K then easily follow from (48).

With the help of (30), the weights are straightforwardly
found (up to a normalization factor):

ws = (−1)s qsN (1 + q2s−N )
(q−N ; q)s(−q−N ; q)s

(q; q)s(−q; q)s
, (50)

where

(x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1)

stands for the q-shifted factorial [15].
The weights given by (50) correspond to a special case

of the q-Racah polynomials that are orthogonal on the grid
(47) [15]. Hence, the entries Bn,Jn of the Jacobi matrix J can
be recovered from the known recurrence coefficients of the
q-Racah polynomials [15].

The spectrum xs is antisymmetric, xN−s = −xs , hence the
diagonal terms are absent, i.e., Bn = 0. For the nondiagonal
terms, we have, from [15], the expression

Un = J 2
n = A2 (1 − q2n)(q2(n−N−1) − 1)

(1 + q2n−N−2)(1 + q2n−N )
. (51)

It is easily seen that the coefficients (51) are positive and satisfy
the mirror-symmetry condition Un = UN+1−n.

Another explicit example of PST spin chain related to the
q-Krawtchouk polynomials was presented in [16].

VI. SPECTRAL SURGERY AND GENERATING
NEW PST CHAINS

Given a one-excitation spectrum xs, s = 0,1, . . . ,N satis-
fying condition (29), we have seen how to construct the spin
chain Hamiltonian with PST. The Jacobi matrix, which has
the couplings and magnetic field strengths as its entries, is
recovered from the prescribed weights ws given by (30), or, in
an equivalent form,

ws = (−1)N+s∏N
i=0

′
(xs − xi)

, (52)

where it is assumed that x0 < x1 < · · · < xN . By construction,
all weights are positive, i.e., ws > 0, s = 0,1, . . . ,N . The
weights ws in (52) are defined up to an arbitrary positive
common factor, which has no effect on the entries Ji,Bi of the
Jacobi matrix J .

Consider the modified set of spectral data x1,x2, . . . ,xN

obtained by removing the first entry x0. The corresponding
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weights,

w̃s = (−1)N+s∏N
i=1

′
(xs − xi)

, s = 1,2, . . . ,N,

can be obtained from the initial weights in the following simple
manner:

w̃s = const × (xs − x0)ws. (53)

This procedure removes the eigenvalue x0 and preserves the
positivity of the resulting weights ws .

Similarly, one can remove any fixed spectral point xj :

w̃s = const × (xs − xj )ws,

s = 0,1, . . . ,j − 1, j + 1, . . . ,N. (54)

In this case, however, the new weights will be positive only
if either j = 0 or j = N . In all other cases, the weights ws

cannot be positive for all s.
Nevertheless, removing a pair of neighboring points

xj ,xj+1 through

w̃s = const × (xs − xj )(xs − xj+1)ws (55)

maintains positivity of the weights w̃s for all s, preserves
property (29), and thus provides a new admissible Jacobi
matrix J̃ , which also generates perfect state transfer.

This procedure of removing pairs of neighboring levels can
obviously be iterated.

The orthogonal polynomials P̃n(x) corresponding to the
weights given by (54) are obtained from the polynomials Pn(x)
by the Christoffel transform [17],

P̃n(x) = Pn+1(x) − AnPn(x)

x − xj

, (56)

where

An = Pn+1(xj )

Pn(xj )
.

The entries of the matrix J̃ are related to the entries of the
matrix J by the well-known formulas [18]

Ũn = Un

An

An−1
, B̃n = Bn+1 + An+1 − An. (57)

Formulas (56) and (57) can be applied iteratively in order to
obtain new matrices J̃ with perfect state transfer from a matrix
J with that property.

Assume now that the initial matrix J describes a dynamics
with zero magnetic field, i.e., Bn = 0. The spectral points xs

satisfy, therefore, the symmetry condition (41). In this case,
one may remove a symmetric pair of boundary eigenvalues
corresponding to the first and last levels,

w̃s = const × (
x2

s − x2
0

)
ws, (58)

and find, for the associated polynomials P̃n(x) [17],

P̃n(x) = Pn+2(x) − KnPn(x)

x2 − x2
0

, Kn = Pn+2(x0)

Pn(x0)
, (59)

therefore obtaining a new Jacobi matrix J̃ with zero magnetic
field B̃n = 0 and with

Ũn = Un

Kn

Kn−1
. (60)

If N is odd, there is another possibility to remove two
neighboring levels, in this case from the middle of the
spectrum. Indeed, take

w̃s = const × (xs − xj )(xs − xj+1)ws = const × (
x2

s − x2
j

)
ws,

(61)

where j = (N − 1)/2. Formulas (59) and (60) remain valid if
one replaces x0 with xj .

The idea of obtaining PST chains with Bn = 0 from given
ones was discussed in [5]. Our approach is much more
explicit and exploits well-known formulas from the theory
of orthogonal polynomials.

As a simple (but already nontrivial) example, consider the
removal of levels from the middle of the uniform spectrum (45)
with odd N . After a finite number L of such transformations,
we obtain spectral data of the form

xs = −N/2, − N/2 + 1, . . . , − L − 3/2, − L − 1/2,

L + 1/2,L + 3/2, . . . ,N/2 − 1,N/2. (62)

For L = 0, this spectral data set coincides with (45). For L =
1,2, · · · < (N − 1)/2, we have two uniform grids separated
by a gap of length 2L + 1. This spectrum corresponds to a
spin chain with Bn = 0 that has the perfect transfer of state
property, and that was introduced in [19] and studied in [20].
We have shown in [21] that this model is associated to the dual
−1 Hahn polynomials.

Let us conclude by stressing here that all spin chains
with the PST property (not only those with Bn = 0 as in
[5]) can be obtained through such (iterated) spectral surgery
from the PST spin chain corresponding to the uniform
grid (45).
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