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I. INTRODUCTION

Ionization is a process in which an electron is transferred
from its bound discrete state into a continuum of free states,
e.g., by interacting with an optical field. In a stationary optical
field, an electron at an atom gradually leaves its bound state and
moves into an ionized free state [1]. This process is irreversible.
It can be utilized for the generation of entangled electron
states that are stable in time. The time-dependent entanglement
among bound electrons can easily be generated in reversible
interactions (Coulomb interaction; dipole-dipole interaction).
The irreversible ionization can subsequently “freeze” it and
provide this way the stability in time. We demonstrate this
approach on the simplest model of two atoms, one of which
allows the electron ionization.

It is well known that the process of ionization is strongly
influenced by the presence of additional discrete excited
states (autoionization levels). They considerably modify the
long-time photoelectron ionization spectra (for an extended
list of references, see, e.g. [2–5]). There even might occur Fano
zeros [6–8] in the spectra of isolated autoionization systems
due to the mutual interference of different ionization paths.
The interaction of an autoionization system with neighbor
atoms leads to the presence of dynamical zeros [9–13] that
occur periodically in time. Ionization spectra contain useful
information about bound states of an atom and that is why they
have widely been studied experimentally [14]. Autoionization
systems have also been found useful as media exhibiting
electromagnetically induced transparency and slowing down
the propagating light [15]. The ionization process is also
sensitive to quantum properties of the optical field [16].

Here, we consider two atoms in a stationary optical field
that moves electrons from their ground states into excited
or ionized states. Electrons in their excited states mutually
interact by the dipole-dipole interaction [17]. This creates
quantum correlations (entanglement) between two electrons.
Whereas one electron remains in a bound state, the second one
is allowed to be ionized. We pay attention both to the temporal
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entanglement formation [18,19] and its long-time limit. The
quadratic negativity of a bipartite system generalized to the
continuum of states is used to quantify the entanglement. We
show that highly entangled states can be reached in a wide area
of parameters characterizing the system of two atoms.

The paper is organized as follows. A semiclassical model of
the system under consideration is described in Sec. II together
with its the most general solution. The formula for negativity
as a measure of entanglement in a bipartite system with the
continuum of states is derived in Sec. III and compared with
quantum discord. The spectral density of quadratic negativity
is introduced in Sec. IV. The dynamics of entanglement as
well as its long-time limit are discussed in Sec. V. The spectral
entanglement is analyzed in Sec. VI. Conclusions are drawn in
Sec. VII. The Appendix is devoted to an alternative derivation
of the formula for negativity.

II. SEMICLASSICAL MODEL OF OPTICAL EXCITATION
OF AN AUTOIONIZATION ATOM INTERACTING

WITH A NEIGHBOR ATOM

We consider an atom b with one autoionizing discrete level
that interacts with a neighbor two-level atom a by the dipole-
dipole interaction (for the scheme, see Fig. 1). Both atoms are
excited by a stationary optical field. This composite system
can be described by the Hamiltonian Ĥ ,

Ĥ = Ĥai + Ĥta + Ĥtrans. (1)

Here, the Hamiltonian Ĥai characterizes the autoionization
atom:

Ĥai = Eb|1〉bb〈1| +
∫

dE E|E〉〈E|

+
∫

dE [V |E〉 b〈1| + H.c.]

+ [μbαL exp(−iELt)|1〉bb〈0| + H.c.]

+
∫

dE [μαL exp(−iELt)|E〉b〈0| + H.c.]. (2)

Energy Eb means the energy difference between the ground
state |0〉b and the excited discrete state |1〉b of atom b.
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FIG. 1. Sketch of an autoionization system b interacting with
a two-level atom a. Ground states are denoted as |0〉a and |0〉b,
whereas symbols |1〉a , |1〉b, and |E〉 stand for the excited states.
Dipole moments μa , μb, and μ describe the appropriate interactions.
The excited discrete state at atom a (b) has energy Ea (Eb),
whereas energies E characterize excited states |E〉 of the continuum.
Symbol V describes the Coulomb configurational coupling between
the excited states at atom b. Constants Jab and J emerge from
the dipole-dipole interaction between the atoms a and b; αL

is the pumping amplitude.

Similarly, energy E stands for the energy difference between
the state |E〉 in the continuum and the ground state |0〉b. The
Coulomb configurational coupling between the excited states
of atom b is described by V . The dipole moments between the
ground state |0〉b of atom b and its excited states are denoted
as μ and μb. The stationary optical field with its amplitude αL

oscillates at frequency EL. We assume h̄ = 1.
The Hamiltonian Ĥta of the neighbor two-level atom a

introduced in Eq. (1) takes on the form

Ĥta = Ea|1〉aa〈1| + [μaαL exp(−iELt)|1〉aa〈0| + H.c.], (3)

where Ea means the energy difference between the ground
state |0〉a and the excited state |1〉a; μa stands for the dipole
moment.

The Hamiltonian Ĥtrans in Eq. (1) characterizes the dipole-
dipole interaction between electrons at atoms a and b:

Ĥtrans = (Jab|1〉bb〈0||0〉aa〈1| + H.c.)

+
∫

dE [J |E〉b〈0| |0〉aa〈1| + H.c.] . (4)

In Eq. (4), Jab (J ) quantifies the dipole-dipole interaction that
leads to the excitation from the ground state |0〉b into the state
|1〉b (|E〉) of atom b at the cost of the decay of atom a from
the excited state |1〉a into the ground state |0〉a .

Following the approach of Ref. [11], a state vector |ψ〉(t)
of the system at time t can be decomposed as

|ψ〉(t) = c00(t)|0〉a|0〉b + c10(t)|1〉a|0〉b + c01(t)|0〉a|1〉b
+ c11(t)|1〉a|1〉b +

∫
dE d0(E,t)|0〉a|E〉

+
∫

dE d1(E,t)|1〉a|E〉 (5)

using time-dependent coefficients c00, c01, c10, c11, d0(E), and
d1(E).

These coefficients satisfy a system of differential equations
that can be conveniently written in the matrix form:

d

dt
c(t) = −iAc(t) − i

∫
dE Bd(E,t),

(6)
d

dt
d(E,t) = −iB†c(t) − iK(E)d(E,t)

and

c(t) =

⎡
⎢⎢⎣

c00(t)

c10(t)

c01(t)
c11(t)

⎤
⎥⎥⎦ , d(E,t) =

[
d0(E,t)

d1(E,t)

]
. (7)

The matrices A, B, and K introduced in Eq. (6) are time-
independent provided that a basis rotated at the pump-field
frequency EL is used:

A =

⎡
⎢⎢⎢⎣

0 μ∗
aα

∗
L μ∗

bα
∗
L 0

μaαL �a J ∗
ab μ∗

bα
∗
L

μbαL Jab �b μ∗
aα

∗
L

0 μbαL μaαL �a + �b

⎤
⎥⎥⎥⎦ , (8)

B =

⎡
⎢⎢⎢⎣

μ∗α∗
L 0

J ∗ μ∗α∗
L

V ∗ 0

0 V ∗

⎤
⎥⎥⎥⎦ , (9)

K(E) =
[
E − EL μ∗

aα
∗
L

μaαL E − EL + �a

]
. (10)

Here �a = Ea − EL and �b = Eb − EL stand for the fre-
quency detunings of discrete excited states with respect to the
pump-field frequency.

Contrary to the solution of the model equations found
in Ref. [11], we adopt here the most general approach
based on algebraic decomposition of dynamical matrices and
solution of the corresponding Sylvester equation. We first
neglect threshold effects in the ionization, eliminate continuum
coefficients d(E) in Eq. (6), and introduce a new matrix M:

M = A − iπBB†. (11)

The matrix M describes the dynamics of only discrete states
that is governed by the vector c. We denote eigenvalues of
the matrix K(E) as E − ξ1 and E − ξ2 and eigenvalues of the
matrix M as �Mj , j = 1,2,3,4. These eigenvalues occur in
the matrix decompositions of matrices K and M:

K(E) = (E − ξ1)K1 + (E − ξ2)K2, (12)

M =
4∑

j=1

�Mj Mj . (13)

The basis matrices K1 and K2 can be obtained from the
following equations:

K1 + K2 = I2,
(14)

(E − ξ1)K1 + (E − ξ2)K2 = K(E).

012321-2



ENTANGLEMENT BETWEEN AN AUTOIONIZING SYSTEM . . . PHYSICAL REVIEW A 85, 012321 (2012)

The eigenvalues ξ1 and ξ2 are given as follows:

ξ1,2 = EL − �a ± δξ

2
,

(15)
δξ =

√
�2

a + 4|μaαL|2.
Symbol δξ represents the frequency of Rabi oscillations of the
two-level atom a.

Similarly, the basis matrices Mj , j = 1,2,3,4, arise as the
solution of the following equations:

4∑
j=1

Mj = I4,

(16)
4∑

j=1

�k
Mj Mj = Mk, k = 1,2,3.

In Eqs. (14) and (16), I2 and I4 are 2 × 2 and 4 × 4 unit
matrices, respectively.

After the introduction of matrix M in Eq. (11), the solution
of Eqs. (6) for the vector c can be written in the very simple
form

c(t) = exp(−iMt)c(0), (17)

where c(0) is the vector of initial conditions.
On the other hand, a newly introduced matrix T(E) (of

dimension 2 × 4) obtained as the solution to the Sylvester
equation [20],

K(E)T(E) − T(E)M = B†, (18)

is useful for expressing the solution of Eqs. (6) for the
continuum of states described by the vector d(E). On using
the matrix decompositions written in Eqs. (12) and (13), the
solution of the Sylvester equation (18) can be expressed as
follows:

T(E) =
2∑

k=1

4∑
j=1

1

E − ξk − �Mj

KkB†Mj . (19)

The components of amplitude spectrum of an ionized electron
at atom b are given by the coefficients in the vector d(E,t).
They can be written in the most general form,

d(E,t) = {exp[−iK(E)t]T(E) − T(E) exp[−iMt]}c(0),

(20)

depending on the initial conditions. We have assumed that
d0(E,0) = d1(E,0) = 0 in the derivation of Eq. (20).

As the interaction processes between the discrete states
and the continuum of states are irreversible, the eigenvalues
of matrix M are complex with negative imaginary parts. As
a consequence, the expression in Eq. (20) for the amplitude
spectral components d simplifies in the long-time limit:

dlt(E,t) = exp[−iK(E)t]T(E)c(0). (21)

III. NEGATIVITY OF A BIPARTITE SYSTEM
IN DISCRETE AND CONTINUOUS HILBERT SPACES

We need to quantify the amount of entanglement between
the two-level atom a and the autoionization atom b that has a

continuous spectrum. The philosophy based on declinations of
the partially transposed statistical operators of entangled states
from the positive-semidefinite partially transposed statistical
operators of separable states [21,22] has been found fruitful
here and has resulted in the definition of negativity.

Following the approach by Hill and Wooters [21], we write
a matrix P of the statistical operator describing an electron at
atom a and a (fully) ionized electron at atom b in a given time
T [dj (E) ≡ dj (E,T ), j = 0,1]:

P =
[
d0(E)d∗

0 (E′) d0(E)d∗
1 (E′)

d1(E)d∗
0 (E′) d1(E)d∗

1 (E′)

]
. (22)

We note that the frequencies E and E′ in Eq. (22) are
considered as continuous indices of the matrix P.

A partially transposed matrix PT a transposed with respect
to the indices of two-level atom a is obtained after the exchange
of submatrices in the upper-left and lower-right corners of the
matrix P in Eq. (22):

PT a =
[
d0(E)d∗

0 (E′) d1(E)d∗
0 (E′)

d0(E)d∗
1 (E′) d1(E)d∗

1 (E′)

]
. (23)

In order to determine negativity N , we need to find the
eigenvalues λ of matrix PT a first. An eigenvalue λ together
with its eigenvector [u0(E),u1(E)] fulfill the following system
of equations with a continuous index E:

d0(E)
∫

dE′d∗
0 (E′)u0(E′) + d1(E)

∫
dE′d∗

0 (E′)u1(E′)

= λu0(E),
(24)

d0(E)
∫

dE′d∗
1 (E′)u0(E′) + d1(E)

∫
dE′d∗

1 (E′)u1(E′)

= λu1(E).

Integrals in Eqs. (24) give the coefficients ajk of the decom-
position of eigenvector functions uj (E) in the basis dj (E):

ajk =
∫

dE′d∗
j (E′)uk(E′), j,k = 0,1. (25)

Using the coefficients ajk defined in Eq. (25), the equations in
Eq. (24) can be rewritten as follows:

d0(E)a00 + d1(E)a01 = λu0(E),
(26)

d0(E)a10 + d1(E)a11 = λu1(E).

The projection of equations in Eq. (26) onto the basis vectors
dj (E) results in a system of four algebraic equations for the
coefficients ajk determining the eigenvector [u0(E),u1(E)]:⎡

⎢⎣
b00 b01 0 0
0 0 b00 b01

b10 b11 0 0
0 0 b10 b11

⎤
⎥⎦

⎡
⎢⎣

a00

a01

a10

a11

⎤
⎥⎦ = λ

⎡
⎢⎣

a00

a01

a10

a11

⎤
⎥⎦ . (27)

The coefficients bjk introduced in Eq. (27) are the overlap
integrals between the functions d0(E) and d1(E):

bjk =
∫

dE d∗
j (E)dk(E). (28)

It holds that b01 = b∗
10 and b00 + b11 = 1 due to the

normalization.
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The system of algebraic equations (27) has a nontrivial
solution provided that the eigenvalues λ are solutions of the
secular equation:

λ4 − λ3 + Dλ − D2 = 0, (29)

where

D = b00b11 − b01b10. (30)

The fourth-order polynomial in Eq. (29) can be written as a
product of the second-order polynomials (λ2 − D)(λ2 − λ +
D). This allows one to find its roots:

λ1,2 = ±
√
D,

(31)

λ3,4 = 1

2
±

√
1

4
− D.

As the negativity N is given by the amount of negativeness in
the eigenvalues λ, we have

N =
√
D. (32)

Alternative and more intuitive derivation of the formula
in Eq. (32) can be found in the Appendix invoking the
decomposition of functions d0(E) and d1(E).

Parallel to the entanglement, quantum discord [23] has been
discussed in the past years for systems composed of several
parts [24]. Discord quantifies the amount of information in
the whole system that cannot be extracted using quantum
measurements at separated parts. Provided that a bipartite
system is in a pure state, quantum discord is quantified by
entropy S of entanglement. The entropy S of entanglement is
given by the entropy of reduced statistical operator 
a of atom
a that takes the form


a =
[
b00 b10

b01 b11

]
, (33)

exploiting the coefficients bjk . The eigenvalues λ3,4 written in
Eq. (31) naturally give also the eigenvalues of matrix 
a and
so they can be conveniently used in expressing the entropy S.
The entropy S of entanglement is given by the usual formula
S = −∑

j=3,4 λj log2(λj ), log2 being the logarithm of base 2.
This formula provides us with the following expression:

S = −1

2

[
log2(D) + √

1 − 4D log2

(
1 + √

1 − 4D
1 − √

1 − 4D

)]
.

(34)

Here, determinant D of the matrix 
a is given in Eq. (30).
Combining Eqs. (32) and (34), the entropy S of entangle-

ment can be expressed as a monotonous function of negativity
N (see Fig. 2):

S = − log2(N ) −
√

1 − 4N2

2
log2

(
1 + √

1 − 4N2

1 − √
1 − 4N2

)
.

(35)

The curve in Fig. 2 reveals that both quantities can be
equally well used for the quantification of entanglement in
the considered system.

The negativity N can also be expressed in terms of
eigenvalues of the Schmidt decomposition of the state |ψ〉

FIG. 2. Entropy S of entanglement as a function of negativity N

in the interval [0,0.5] of attainable values of N .

in the long-time limit. Substituting Eq. (30) into Eq. (32), we
arrive at the useful formula for negativity N :

N =
√√√√1

2

1∑
j,k=0

[bjjbkk − bjkbkj ]. (36)

Further substitution for the coefficients bjk from Eq. (28)
provides the negativity N depending on the reduced statistical
operator 
b of the continuum:

N =
√

1

2

[
1 −

∫
dE

∫
dE′|
b(E,E′)|2

]
, (37)


b(E,E′) =
∑
k=0,1

dk(E)d∗
k (E′). (38)

Using the coefficients
√

λ3 and
√

λ4 of the Schmidt decompo-
sition of the state |ψ〉, the formula (37) can be recast into the
simple form

N =
√

λ3λ4. (39)

The formula for negativity N in Eq. (32) can even be used for
finite times t , in which discrete states of atom b are populated.
In this case, the formula in Eq. (28) has to be replaced by the
more general one:

bjk =
∑

l

c∗
j lckl +

∫
dE d∗

j (E)dk(E). (40)

IV. QUADRATIC NEGATIVITY AND
ITS SPECTRAL DENSITY

The substitution of the expression in Eq. (30) into the
formula (32) for negativity N gives us an expression that
indicates the existence of quadratic negativity Nq as a
measure of entanglement that allows us to introduce a spectral
density [25]:

Nq ≡ 4N2 = 4(b00b11 − b01b10). (41)

The use of expressions (28) for the coefficients bjk allows us
to rewrite the formula in Eq. (41) as

Nq = 2
∫

dE 
(E)
∫

dE′
(E′)nq(E,E′), (42)
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where 
(E) gives the density of states |E〉 in the continuum:


(E) =
1∑

j=0

|dj (E)|2. (43)

The spectral density nq(E,E′) of quadratic negativity intro-
duced in Eq. (42) is obtained in the form

nq(E,E′) = 1


(E)
(E′)

[
1∑

j,k=0

|dj (E)|2|dk(E′)|2

−
1∑

j,k=0

d∗
j (E)dk(E)d∗

k (E′)dj (E′)

]
. (44)

The value of spectral density nq(E,E′) of quadratic negativity
gives the value of quadratic negativity of a qubit-qubit system
composed of the states {|0〉a,|1〉a} and {|E〉,|E′〉}. According
to Eq. (42), the quadratic negativity Nq is given as a weighted
sum of quadratic qubit-qubit negativities between the two-level
atom a and all possible qubits embedded inside the continuum.
This interpretation is important from the physical point of view,
because it allows us to interpret the overall entanglement as
composed of individual spectral contributions. We note that
values of both the quadratic negativity Nq and its density
nq lie in the interval [0,1]. We also note that an alternative
normalization in the definition (44) of density nq of quadratic
negativity is possible. It is based on substituting the factor
1/[
(E)
(E′)] by the factor 4/[
(E) + 
(E′)]2. However,
this “mathematically more compact” normalization is not
suitable for indicating entanglement in the case of qubits with
considerably different values of the probability densities 
(E)
and 
(E′).

Experimental determination of the density nq of quadratic
negativity has to take into account a finite resolution �E of
frequencies of free electrons. That is why it is convenient to
introduce a series of experimental quadratic negativities N (i)

q ,
i = 1,2, . . . , that are obtained after spectral filtering of a free
electron by using i filters positioned at the central frequencies
Ek , k = 1, . . . ,i:

N (i)
q (E1, . . . ,Ei) = [

b
(i)
00(E1, . . . ,Ei)b

(i)
11(E1, . . . ,Ei)

− ∣∣b(i)
01(E1, . . . ,Ei)

∣∣2]1/2[
b

(i)
00(E1, . . . ,Ei)

+ b
(i)
11(E1, . . . ,Ei)

]−1
. (45)

The coefficients b
(i)
jk(E1, . . . ,Ei) occurring in Eq. (45) depend

on the experimental frequency width �E and are given as

b
(i)
jk(E1, . . . ,Ei) =

i∑
l=1

∫ El+�E/2

El−�E/2
dE′d∗

j (E′)dk(E′). (46)

We note that the last term in the expression (45) originates in
the normalization of the considered state.

V. ENTANGLEMENT GENERATION

The entanglement between electrons at atoms a and b is
generated by the dipole-dipole interaction that is characterized
by the coefficients Jab and J . This means that two different
channels of the entanglement generation exist. In the first
channel, the entanglement among the discrete states at atoms a

and b is formed due to the dipole-dipole interaction described
by the coefficient Jab first. Subsequently, this entanglement
is transferred to the continuum of states |E〉 using either
the Coulomb interaction (V ) or the optical dipole interaction
(μαL). The second channel is based on the dipole-dipole
interaction (J ) between the excited discrete state |1〉a at atom
a and the continuum of states |E〉 at the ionization atom b.

The dynamics of the system is such that an electron at
atom b gradually “leaks” into the continuum of states |E〉. The
probability of finding this electron in a combination of discrete
states |0〉b and |1〉b decreases roughly exponentially. After a
sufficiently long time, this probability is practically zero, the
electron is fully ionized, and its long-time spectrum completely
characterizes its state. On the other hand, the electron at atom b

periodically oscillates between its discrete states in a stationary
optical field at the Rabi frequency. The entanglement between
the bound electron at atom a and the ionized electron at atom b

is formed during the period of ionization and is “frozen” as
soon as atom b is completely ionized. At this instant, the
entanglement reaches its long-time limit, but superimposed
periodic oscillations are possible under certain conditions (see
below).

Let us concentrate on the first channel. Both electrons at
atoms a and b being initially in their ground states gradually
move into their excited states |1〉a|0〉b, |0〉a|1〉b, and |1〉a|1〉b
due to the interaction with the stationary optical field [see
Fig. 3(a)]. The entanglement between discrete states arises
from the dipole-dipole interaction between the states |1〉a|0〉b
and |0〉a|1〉b. The probabilities |c10|2 and |c01|2 affiliated to
these states periodically return to zero with a period that

(a)

(b)

FIG. 3. Temporal evolution of (a) probabilities |c00|2 (solid curve
with ∗), |c10|2 (solid curve with �), |c01|2 (solid curve with 	), and
|c11|2 (solid curve with ◦) of detecting two electrons in the appropriate
discrete states and their sum � (� = ∑

j=0,1

∑
k=0,1 |cjk|2, solid

curve) and (b) quadratic negativities Nq (solid curve with ∗), Nf
q

(solid curve with 	), and Nd
q (solid curve); μaαL = μbαL = Jab =

V = 0.05, μ = J = 0, and Ea = Eb = EL = 1.
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decreases with the increasing values of |Jab|, |μaαL|, and
|μbαL|. At these instants, highly entangled states occur
and their quadratic negativities Nd

q quantifying entanglement
among discrete states reach local maxima [see Fig. 3(b)]. Pro-
vided that the probabilities of the ground state |0〉a|0〉b and the
state with both electrons excited are balanced (|c00|2 ≈ |c11|2),
the quadratic negativity Nd

q reaches its maximum value one.
The quadratic negativity Nd

q oscillates between its maximum
and zero during the time evolution. The entanglement between
the discrete states at atom a and the continuum of states
at atom b arises as a consequence of the interaction of the
continuum of states |E〉 with the discrete states |0〉b and |1〉b.
The quadratic negativity Nq appropriate for this entanglement
typically increases during the time evolution and gradually
reaches its long-time value, as documented in Fig. 3(b).
However, weak oscillations may occur in this evolution.
The overall quadratic negativity N

f
q that characterizes the

entanglement between atoms a and b including all states
behaves similar to the quadratic negativity Nq comprising
only the continuum of states. As a rule of thumb, a slightly
stronger optical pumping of atom a compared to atom b

(μa > μb) results in greater values of the long-time quadratic
negativity N lt

q .
In the second channel, the entanglement is generated

directly by the dipole-dipole interaction between the excited
state |1〉a and the continuum of states |E〉. The ability to
generate the entanglement is weaker compared to the first
channel. “Transfer of entanglement” can be observed also
here and so nonzero values of the quadratic negativity Nd

q

are found during the temporal evolution (see Fig. 4). Even the
maximum entangled discrete states (Nd

q = 1) can be reached.
This clearly shows that there exists a strong “back-action”
from the “reservoir” continuum of states |E〉 toward the
discrete states |0〉b and |1〉b. Otherwise, the observed temporal
evolution is qualitatively similar to that found in the first
channel.

Some general features of the behavior of quadratic neg-
ativity Nq in the long-time limit can be obtained even
analytically. A detailed analysis of the long-time solution
in Eq. (21) has shown [11] that the coefficients b00 and b11

giving the probabilities of finding an electron at atom a in

FIG. 4. Temporal evolution of quadratic negativities Nq (solid
curve with ∗), Nf

q (solid curve with 	), and Nd
q (solid curve); J =

0.05, Jab = 0, and values of the other parameters are the same as in
the caption to Fig. 3.

the states |0〉a and |1〉a , respectively, can be expressed in the
form

blt
00(t) = a + [b exp(iδξ t) + c.c.],

(47)
blt

11(t) = (1 − a) − [b exp(iδξ t) + c.c.].

Constant a describes the steady-state parts of probabilities b00

and b11, whereas constant b gives the amount of probability
that oscillates between the states |0〉a and |1〉a at the Rabi
frequency δξ . The symbol c.c. replaces a complex-conjugate
term. On the other hand, the cross-correlation coefficient b01

can be written as

b01(t) = c1 + c2 exp(iδξ t) + c3 exp(−iδξ t), (48)

with c1, c2, and c3 being constants.
Using the equality b2 = −c2c

∗
3 valid in the model, we arrive

at the following formula for the long-time quadratic negativity
N lt

q :

N lt
q (t) = 4

{
a(1 − a) − 2|b|2 − |c1|2 − |c2|2 − |b|4

|c2|2

+
[

(1 − 2a)b − c∗
1c2 + c1b

2

c2

]
exp(iδξ t)

}
. (49)

We can see from Eq. (49) that the quadratic negativity N lt
q is

composed of a steady-state part and an oscillating part with
the Rabi frequency δξ . However, the oscillating part is usually
much smaller than the steady-state one. Even if atom a is
resonantly pumped, the oscillating term in Eq. (49) vanishes
and we arrive at the following simplified formula:

N lt,res
q = 4

[
a(1 − a) − 2|b|2 − |c1|2 − |c2|2 − |b|4

|c2|2
]

.

(50)

According to Eq. (50), equal steady-state probabilities a and
(1 − a) of detecting the electron at atom a in the states |0〉a and
|1〉a , respectively, are needed to reach the maximum value of
quadratic negativity N lt

q (a = 1/2). Moreover, nonzero values
of constants |b|, |c1|, and |c2| lower the values of long-time
quadratic negativity N lt

q .
The numerical analysis of the long-time behavior of

quadratic negativity N lt
q has revealed that the larger the values

of dipole-dipole constants Jab and J are, the larger is the
potential to generate highly entangled states. In order to arrive
at high values of the quadratic negativity N lt

q , the values of
constants μαL and V have to be sufficiently small compared
to the values of J and Jab. This can be physically explained
as follows. The constants μαL and V determine the speed
of transfer of an electron at atom b into the continuum of
states |E〉. If this speed is too fast, the electron at atom b has
not enough time to create the entanglement with the electron
at atom a. As a consequence, the entanglement between
two electrons is weaker. This behavior is documented in
Fig. 5 considering both channels of entanglement generation.
However, the graphs in Fig. 5 reveal that also greater values of
the constants μαL and V allow us to reach strong entanglement
under the condition μαL ≈ V . The analysis of temporal
behavior of the system has shown that the movement of
the electron at atom b into the continuum of states |E〉 is
considerably slowed down in this case of balanced interactions
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(a)

(b)

(c)

lt

lt

lt

FIG. 5. Topo graphs of long-time quadratic negativity N lt
q de-

pending on optical pumping μαL and strength V of the Coulomb
interaction for (a) Jab = 0.001, J = 0, (b) Jab = 0, J = 0.001,
and (c) Jab = J = 0.001; μaαL = μbαL = 0.05 and Ea = Eb =
EL = 1.

μαL and V . This slowing-down then gives enough time for
the entanglement generation, even for smaller values of the
constants Jab and J . This regime is even preferred for the
channel exploiting the constant J , as the graph in Fig. 5(b)
shows.

Two channels based on the constants Jab and J mutually
“interfere” in creating the entanglement between two elec-
trons. This can be conveniently used for reaching greater
values of the quadratic negativity N lt

q in regions where the
above described conditions are not met. Great values of the
quadratic negativity N lt

q can be obtained in specific areas of
the space spanned by the constants Jab and J , as illustrated in
Fig. 6.

lt

FIG. 6. Topo graph of long-time quadratic negativity N lt
q as it

depends on dipole-dipole coupling constants Jab and J ; μaαL =
μbαL = μαL = 0.05, V = 0.01, and Ea = Eb = EL = 1.

We have considered the resonant pumping of atoms a and
b up to now. The nonresonant pumping of both atoms makes
the dynamics as well as the entanglement generation even
more complex. Upon depending on conditions, the frequency
detuning of atoms a and b may either support the entanglement
creation or degrade it. A typical graph showing the behavior
of quadratic negativity N lt

q in dependence on the detunings �a

and �b is plotted in Fig. 7.

VI. SPECTRAL ENTANGLEMENT

We illustrate typical properties of the spectral entanglement
considering the system characterized by parameters mentioned
in the caption to Fig. 3. In Fig. 8, the spectral density nq

of quadratic negativity is plotted in the range of relative
frequencies that covers two complex peaks occurring in
the ionization spectrum (shown in Fig. 9). Strong spectral
correlations inside the complex peaks as well as between
different peaks are clearly visible. They mainly occur in
spectral regions where the fast intensity variations occur
(compare Figs. 8 and 9).

The experimental quadratic negativity N (1)
q defined in

Eq. (45) represents the simplest experimentally accessible
characteristics. As its definition indicates, the negativity N (1)

q

∇

∇

lt

FIG. 7. Topo graph of long-time quadratic negativity N lt
q as a

function of detunings �a and �b of atoms a and b, respectively;
μaαL = μbαL = 0.05, μαL = 0.005, Jab = V = 0.001, J = 0, and
EL = 1.
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lt

FIG. 8. Topo graph of density nlt
q of quadratic negativity showing

qubit-qubit correlations in relative frequencies (E − Eb)/� and
(E′ − Eb)/�; values of parameters given in the caption to Fig. 3
are used.

depends on the experimental frequency resolution �E. It even
holds that N (1)

q (E) → 0 for �E → 0. This reflects the fact
that at least a “small” group of states |E〉 inside the frequency
interval �E is needed to “imprint” the entanglement. The
wider the frequency interval �E is, the larger are the values
of quadratic negativity N (1)

q . As an example, the long-time
“distribution” of entanglement along the relative frequency
axis (E − Eb)/� for the case studied in Fig. 3 is shown
in Fig. 10. According to Fig. 10, there exist four spectral
regions that considerably contribute to the formation of
entanglement. If the frequency interval �E is sufficiently
wide, the maximum attainable values of quadratic negativity
N (1),lt

q can be approached. The comparison of the graph in
Fig. 10 with that in Fig. 9 giving the long-time photoelectron
ionization spectrum I lt reveals that two spectral regions in the
middle are crucial for constituting the entanglement between
two electrons.

We note that the experimental quadratic negativity N (1)
q is

time-independent in the long-time limit provided that atom a

is resonantly pumped. We recall that this is not the case of
conditional long-time photoelectron ionization spectra I lt

0 and
I lt

1 obtained for atom a being in the ground (|0〉a) and the
excited (|1〉a) state, respectively (for details, see [11]).

The spectral correlations of entanglement as theoretically
described by the density nq(E,E′) of quadratic negativity

lt

FIG. 9. Long-time photoelectron ionization spectrum I lt; values
of parameters given in the caption to Fig. 3 are used.

FIG. 10. Long-time experimental quadratic negativity N (1),lt
q as

a function of relative frequency (E − Eb)/� for �E/� = 0.001
(solid curve), �E/� = 0.005 (solid curve with ∗), �E/� = 0.025
(solid curve with 	), and �E/� = 0.05 (solid curve with �); � =
π |V |2 + π |J |2 and values of parameters given in the caption to Fig. 3
are used.

can be experimentally revealed measuring the experimental
quadratic negativity N (2)

q (E,E′) introduced in Eq. (45). As the
considered example documents in Fig. 11, two kinds of the
spectral correlations of entanglement may be distinguished.
Strong correlations are found among the frequencies E and
E′ lying inside one spectral peak, but different subpeaks [see

FIG. 11. Topo graphs of long-time experimental quadratic neg-
ativities N (2),lt

q depending on relative frequencies (E − Eb)/� and
(E′ − Eb)/� and showing the correlations (a) inside one spectral
region and (b) between two different spectral regions; �E/� =
0.001 and values of the other parameters are written in the caption to
Fig. 3.
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Fig. 10(a)]. On the other hand, strong correlations occur also
for the frequencies E and E′ localized inside the neighbor
spectral peaks. Here, the correlations are observed inside the
lower-frequency subpeaks of two neighbor spectral peaks as
well as inside the upper-frequency subpeaks of the neighbor
peaks [see Fig. 10(b)]. This example illustrates richness of the
internal spectral structure of entangled states in the investigated
system.

VII. CONCLUSIONS

The entanglement between two electrons in an autoion-
ization atom and a neighbor two-level atom has been in-
vestigated. An expression for the negativity of a bipartite
system composed of a qubit and a general system including
both the discrete and continuum levels has been derived. The
spectral density of quadratic negativity has been introduced
to study the spectral features of entanglement. It has allowed
us to decompose the overall entanglement into the qubit-qubit
entanglement of the constituting parts. Also the concept of
experimental quadratic negativities has been introduced. It has
been shown that the dipole-dipole interaction creates the en-
tanglement between electrons until one of them is completely
ionized. This puts restrictions to the strength of ionization
paths in the autoionization atom. However, the balancing of
two ionization paths in the autoionization atom results in a
lower ionization speed that is in favor of the entanglement
generation. Highly entangled states stable for long times are
then reached. The entanglement is spectrally “concentrated”
below the peaks of the long-time ionization spectra. Strong
correlations have been found for pairs of frequencies localized
inside one spectral peak as well as when two frequencies have
been positioned below the neighbor peaks.
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APPENDIX: ALTERNATIVE DERIVATION OF THE
FORMULA (32) FOR NEGATIVITY N

We may conveniently decompose the functions d0(E) and
d1(E) characterizing an ionized electron at atom b in a

suitable orthonormal basis formed by functions f0(E) and
f1(E). In this basis, the problem of quantifying entanglement
between the two-level system a and the system b with the
continuum of states is reduced to the problem of quantifying
the entanglement in a qubit-qubit system. The appropriate
basis functions f0(E) and f1(E) can be constructed along
the following recipe:

f0(E) = d0(E)√
b00

,

(A1)

f1(E) = −b10d0(E) + b00d1(E)

b00b11 − |b01|2 .

The coefficients bjk have been defined in Eq. (28). The inverse
transformation to that written in Eq. (A1) can be derived in the
form

d0(E) = α00f0(E),
(A2)

d1(E) = α10f0(E) + α11f1(E),

where α00 = √
b00, α10 = b10/

√
b00, and α11 = (b00b11 −

|b10|2)/b00.
Using new basis vectors |0〉〉b and |1〉〉b in the continuum

of states at atom b,

|j 〉〉b =
∫

dE fj (E)|E〉, j = 0,1, (A3)

the state vector |ψ〉lt in Eq. (5) can be recast into the following
long-time form:

|ψ〉lt = α00|0〉a|0〉〉b + α10|1〉a|0〉〉b + α11|1〉a|1〉〉b.
(A4)

The state vector |ψ〉lt can be considered as a state of two
qubits, a and b. The partially transposed statistical operator

T a , transposed with respect to the indices of atom a, can be
written in the following matrix form:


T a =

⎡
⎢⎢⎢⎣

α2
00 0 α00α10 0

0 0 α00α11 0

α00α
∗
10 α00α11 |α10|2 α10α11

0 0 α∗
10α11 α2

11

⎤
⎥⎥⎥⎦ . (A5)

The secular equation for the matrix 
T a can be obtained
in the form (λ2 − D)(λ2 − pλ + D) = 0, where p = α2

00 +
α2

11 + |α10|2 and D has been defined in Eq. (30). The only
negative solution of the secular equation, λ = −√

D, gives the
formula for negativity N given in Eq. (32).
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A 83, 053430 (2011).
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