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Thermodynamic behavior of the quantum walk
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A thermodynamic theory is developed to describe the behavior of the entanglement between the coin and
position degrees of freedom of the quantum walk on the line. It is shown that, in spite of the unitary evolution,
a steady state is established after a Markovian transient stage. This study suggests that if a quantum dynamics
develops in a composite Hilbert space (i.e., the tensor product of several subspaces), then the behavior of an
operator that belongs only to one of the subspaces may camouflage the unitary character of the global evolution.
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I. INTRODUCTION

The concept of isolated system plays a fundamental role
in the formulation of quantum mechanics. It is an ideal-
ization that was constructed as an aid to understand some
phenomena displayed by real systems that may be regarded as
approximately isolated. However, since about 50 years ago,
the study of quantum decoherence has acquired a central
position in the formulation of quantum mechanics. In fact,
concepts such as thermodynamic equilibrium seem impossible
to coordinate with the idea of an isolated system because such
a system follows a unitary evolution and it cannot reach a final
equilibrium state at t → ∞.

In this context we ask ourselves if it is possible to introduce
the concept of temperature for an isolated quantum system
that evolves in a composite Hilbert space. In this paper the
quantum walk on the line [1] has been chosen as a model to
answer this question. The quantum walk (QW) is a natural
generalization of the classical random walk in the frame of
quantum computation and quantum information processing,
and it is receiving permanent attention [2–4]. It has the property
to spread over the line linearly in time as characterized by
the standard deviation σ (t) ∼ t , while its classical analog
spreads out as σ (t) ∼ t1/2. This property, as well as quantum
parallelism and quantum entanglement, could be used to
increase the efficiency of quantum algorithms [5,6]. Recently,
we have been investigating [7–9] the asymptotic behavior of
the QW on the line, focusing on the probability distribution
of chirality independently of position. We showed that this
distribution has a stationary long-time limit that depends on
the initial conditions. This result is unexpected in the context
of the unitary evolution of the QW because such a behavior
is usually associated with a Markovian process. In this paper
we further explore the behavior of the chirality distribution
and define a thermodynamic equilibrium between the degrees
of freedom of position and chirality. This equilibrium allows
us to introduce a temperature concept for this unitary closed
system. We obtain a master equation with a time-dependent
population rate that describes the transient behavior of the
reduced density operator of the QW toward thermodynamic
equilibrium. This reduced density operator shows a surprising
feature: its behavior looks diffusive in spite of the unitarity of
the global evolution of the system.
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This paper is organized as follows. In the next section the
standard QW model is presented. In Sec. III the entanglement
temperature is defined. Then in Secs. IV and V the entangle-
ment temperature is obtained for localized initial conditions
and for distributed initial conditions, respectively. In Sec. VI
the transient behavior toward thermal equilibrium is studied,
and finally, in the last section some conclusions are drawn.

II. QW ON THE LINE

The composite Hilbert space of the QW is the tensor product
Hs ⊗ Hc, where Hs is the Hilbert space associated to the
motion on the line and Hc is the chirality (or coin) Hilbert
space. In this composite space the walker moves, at discrete
time steps t ∈ N, along a one-dimensional lattice of sites k ∈
Z. The direction of motion depends on the state of the chirality,
with the eigenstates R and L. The wave vector can be expressed
as the spinor

|�(t)〉 =
∞∑

k=−∞

[
ak(t)

bk(t)

]
|k〉, (1)

where the upper (lower) component is associated with the left
(right) chirality.

Then PkL(t) = |ak(t)|2 and PkR(t) = |bk(t)|2 denote the
probability of finding the walker at (k,t) and the coin in states
R and L, respectively. The probability of finding the walker at
(k,t) is

P (k,t) = 〈�k,t |�k,t 〉 = |ak(t)|2 + |bk(t)|2, (2)

and
∑

k P (k,t) = 1.
The QW is ruled by a unitary map whose standard form

is [10–13]

ak(t + 1) = ak+1(t) cos θ + bk+1(t) sin θ,
(3)

bk(t + 1) = ak−1(t) sin θ − bk−1(t) cos θ,

where θ ∈ [0,π/2] is a parameter defining the bias of the coin
toss (θ = π

4 for an unbiased or Hadamard coin). The global
left- and right-chirality probabilities are defined as

PL(t) ≡
∞∑

k=−∞
PkL(t) =

∞∑
k=−∞

|ak(t)|2,
(4)

PR(t) ≡
∞∑

k=−∞
PkR(t) =

∞∑
k=−∞

|bk(t)|2,
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with PR(t) + PL(t) = 1. The global chirality distribution
(GCD) is defined as the distribution formed by the couple

[
PL(t)
PR(t) ]. It is shown in Ref. [7] that the GCD satisfies the

following map:[
PL(t + 1)

PR(t + 1)

]
=

(
cos2 θ sin2 θ

sin2 θ cos2 θ

)[
PL(t)

PR(t)

]

+Re[Q(t)] sin 2θ

[
1

−1

]
, (5)

where

Q(t) ≡
∞∑

k=−∞
ak(t)b∗

k (t). (6)

The two-dimensional matrix in Eq. (5) can be interpreted as
a transition probability matrix for a classical two-dimensional
random walk as it satisfies the necessary requirements, namely,
all its elements are positive and the sum over the elements of
any column or row is equal to 1. On the other hand, it is clear
that Q(t) accounts for the interferences. When Q(t) vanishes,
the behavior of the GCD can be described as a classical
Markovian process. However, in the generic case Q(t) together
with PL(t) and PR(t) are time-dependent functions that have
long-time limiting values [7] that are determined by the initial
conditions of Eq. (3). Equation (5) can be solved in this limit.
We define

�L ≡ lim PL(t)

t → ∞ ,

�R ≡ lim PR(t)

t → ∞ , (7)

Q0 ≡ lim Q(t)

t → ∞ ,

and then we obtain the asymptotic stationary solution for the
GCD as [

�L

�R

]
= 1

2

[
1 + 2Re(Q0)/ tan θ

1 − 2Re(Q0)/ tan θ

]
. (8)

This interesting result for the QW shows that the long-time
probability to find the system with left or right chirality has
a limit. Therefore, although the dynamical evolution of the
QW is unitary, the evolution of its GCD has an asymptotic-
limit characteristic of a diffusive behavior. This situation is
further surprising if we compare our case with the case of the
QW on finite graphs [14], where it is shown that there is no
convergence to any stationary distribution.

III. ENTANGLEMENT AND TEMPERATURE

The concept of entanglement is an important element
in the development of quantum communication, quantum
cryptography, and quantum computation. In this context some
authors [15,16] have proposed to use the QW as a tool
for quantum algorithm development and as an entanglement
generator, potentially useful for testing quantum hardware.
On the other hand, the relation between the asymptotic
coin-position entanglement and the initial conditions of the

QW has been investigated by several authors [17–27]. In this
work we also study this last kind of entanglement, which, as we
shall show, can be seen as a system-environment entanglement
and as such is not useful, in general, for quantum computing.

The unitary evolution of the QW generates entanglement
between the coin and position degrees of freedom. To
characterize this entanglement we start with the von Neumann
entropy. which is the quantum analog of the Gibbs entropy,

SN (ρ) = −tr(ρ log10 ρ), (9)

where ρ = |�(t)〉〈�(t)| is the density matrix of the quantum
system. Due to the unitary dynamics of the QW the system
remains in a pure state, and this entropy vanishes. However,
for these pure states the entanglement between the chirality and
the position can be quantified by the associated von Neumann
entropy for the reduced density operator [17,18] that defines
the entropy of entanglement,

S(ρ) = −tr(ρc log10 ρc), (10)

where

ρc = tr(ρ), (11)

and the partial trace is taken over the positions. Using the
wave-function equation (1) and its normalization properties,
we obtain the reduced density operator [17]

ρc =
(

PL(t) Q(t)

Q(t)∗ PR(t)

)
. (12)

The density operator ρc has the eigenvalues

λ± = 1
2 [1 ±

√
1 − 4[PL(t) PR(t) − |Q(t)|2]]. (13)

Then the entanglement entropy equation (10) is expressed
through these two eigenvalues as

S(ρ) = −λ+ log10 λ+ − λ− log10 λ−. (14)

In the asymptotic regime t → ∞ the eigenvalues go to a
stationary limit, λ± → 	±, and

	± = 1
2 [1 ±

√
1 − 4(�L �R − |Q0|2)]. (15)

Further from Eq. (8) it follows that

�L �R = 1

4
−

(
Re(Q0)

tan θ

)2

, (16)

which is substituted in Eq. (15), and then the asymptotic
eigenvalues are expressed as

	± = 1
2 ± √

χ, (17)

with

χ ≡ |Q0|2 + [Re(Q0)/ tan θ ]2. (18)

Note that the values of the interference term Q0 are constrained
to satisfy the condition

0 < 	+	− < 1, (19)

and then

0 < χ < 1
4 . (20)
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The entanglement entropy has an asymptotic limit as well,

S0 = −	+ log10 	+ − 	− log10 	−, (21)

which only depends on the initial conditions through the
interference term Q0. Therefore we are led to consider that
after some transient time the QW achieves a thermodynamic
equilibrium between the position and chirality degrees of
freedom.

In order to make a fuller description of this equilibrium it is
necessary to connect the eigenvalues of ρc with its associated
Hamiltonian operator Hc. To obtain this connection we shall
use the quantum Brownian motion model of Ref. [28]. We
considered the system associated with the chirality degrees of
freedom and characterized by the density matrix ρc in thermal
contact (entanglement) with the bath system associated with
the position degrees of freedom, the lattice. In this context ρc

satisfies the equation

∂ρc

∂t
= 1

ih̄
[Hc,ρc] + �ρc, (22)

where [Hc,ρc] is the commutator and �ρc represents the
Brownian motion of ρc induced by the noise (fluctuating
forces) exerted on ρc by the lattice (position degrees of
freedom). In the equilibrium (stationary) situation we must
have ∂ρc/∂t = 0 and �ρc = 0 [28], that is,

[Hc,ρc] = 0. (23)

Therefore, in the asymptotic regime, the density operator ρc is
an explicit function of the Hamiltonian operator, which must be
time independent. Let us call {
+,
−} the eigenfunctions of
the density matrix, so the operators Hc and ρc are both diagonal
in this basis. Then the eigenvalues 	+ and 	− depend on the
corresponding eigenvalues of Hc. We take these eigenvalues
to be {−ε,ε} without any loss of generality; they represent the
possible values of the entanglement energy. This interpretation
agrees with the fact that 	± are the probabilities that the system
is in the eigenstates 
±, respectively.

It is interesting to point out that, in the context of classical
random walks, it is natural to view the entanglement entropy
of heads vs tails as the entropy of mixing. Here the values
�L and �R [Eq. (8)] depend on the basis used for the
reduced density matrix; however, the asymptotic reduced
density matrix is characterized by the eigenvalues 	±, and
these are independent of the basis. Therefore, as in the classical
case, these eigenvalues can be interpreted as an excess density
of heads vs tails chirality in the basis where the density matrix
is diagonal.

The precise dependence between 	± and ±ε is determined
by the type of ensemble we construct. The main proposal of
this paper is that this equilibrium corresponds to a quantum
canonical ensemble. Therefore we propose that

	± ≡ e±βε

eβε + e−βε
, (24)

which defines the entanglement temperature T ≡ 1/β. Of
course, in Eq. (24) only the ratio ε/T is well defined;
however, we chose to introduce the temperature as this concept
strengthens the idea of asymptotic equilibrium between the
position and chirality degrees of freedom. Note that while
temperature makes sense only in the mentioned equilibrium

state, the entropy concept can be introduced without such a
restriction.

The probability that a state chosen at random from the
ensemble {
+, 
−} possesses an energy ε is determined by the
Boltzmann factor e−βε . Let us call ρ̃c the diagonal expression
of the density operator ρc; then

ρ̃c =
(

	+ 0

0 	−

)
= 1

eβε + e−βε

(
eβε 0

0 e−βε

)
. (25)

This operator is formally the same density operator that
corresponds to an electron that possesses an intrinsic spin
and a magnetic moment in an external magnetic field [29].
Therefore, we may consider the QW chirality in thermal
contact (entanglement) with its position space, the lattice.
The lattice itself is a large system, which can be regarded as
being always very close to internal equilibrium at the absolute
temperature T .

In general the Hilbert space of a quantum-mechanical
model factors as a tensor product Hsys ⊗ Henv of the spaces
describing the degrees of freedom of the system and environ-
ment. The evolution of the system is determined by the reduced
density operator that results from taking the trace over Henv

to obtain �sys = trenv(ρ). The simple toy models similar to our
model studied in Refs. [30–32] show how the correlations of
a quantum system with other systems may cause one of its
observables to behave in a classical manner. In this sense the
fact that the partial trace over the QW positions leads to a
system effectively in thermal equilibrium agrees with those
previous results.

Starting from Eq. (25), it is possible to build the thermo-
dynamics for the QW entanglement. The partition function of
the system is then given by

Z = eβε + e−βε = 2 cosh(βε). (26)

Accordingly, and also using Eqs. (15) and (24), the temperature
is given by

T = 2ε/ ln

(
1 + 2

√
χ

1 − 2
√

χ

)
, (27)

the Helmholtz free energy is given by

A = − 1

β
ln[2 cosh(βε)] = T

2
ln

(
1

4
− χ

)
, (28)

the internal energy is given by

U = −ε tanh(βε) = −2ε
√

χ, (29)

and, finally, the entropy is given by

S0 = βU − βA, (30)

where this last thermodynamic definition for the entropy
of course agrees with the previous Shannon expression
in Eq. (21). To finish this section, in Fig. 1 we present
the dependence of these thermodynamic magnitudes on the
interference parameter χ .
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FIG. 1. Dimensionless thermodynamic function normalized by
log(2) as a function of the dimensionless parameter χ . From the top
to the bottom they are as follows: thick solid line, βε; dashed line,
the entropy S0; thin solid line, the energy βU ; dash-dotted line, the
Helmholtz free energy βA.

IV. LOCALIZED INITIAL CONDITIONS

As seen in the previous section, the thermodynamics of
entanglement only depends on the interference term Q0, which
in turn only depends on the initial conditions, as shown in [7].

In order to investigate this dependence on the initial
conditions of the system we consider first the localized case.
The initial state of the walker is assumed to be sharply localized
at the origin with arbitrary chirality; thus

|�(0)〉 =
(

cos(γ /2)

exp iϕ sin(γ /2)

)
|0〉, (31)

where γ ∈ [0,π ] and ϕ ∈ [0,2π ] define a point on the unit
three-dimensional Bloch sphere. The expression for Q0 was
obtained in Ref. [18], fixing the bias of the coin toss θ = π/4,
following the method developed by Nayak and Vishwanath
[33]:

Q0 = 1

2

(
1 − 1√

2

)
[cos γ + sin γ (cos ϕ + i

√
2 sin ϕ)].

(32)

Using this result in Eq. (18), the dependence of χ with the
initial conditions is given by

χ = χ0(1 + cos ϕ sin 2γ ), (33)

where χ0 = 3/4 − 1/
√

2.
It is useful to define a characteristic temperature (in units

of ε)

T0 = 2/

[
ln

(
1 + 2

√
χ0

1 − 2
√

χ0

)]
(34)

FIG. 2. (Color online) Isothermal curves as functions of the di-
mensionless angles γ and ϕ. Due to the rotation symmetry in the angle
ϕ only four zones are distinguished: two “cold” and two “hot.” The hot
zones (thin orange lines) have six isotherms, and their temperatures
are, from inside to outside, T/T0 = 6.5,3.2,2.2,1.6,1.3, and 1.1.
The cold zones (thick blue lines) have five isotherms, and their
temperatures are, from outside to inside, T/T0 = 0.9,0.8,0.7,0.68,
and 0.66. The straight dashed green lines correspond to T/T0 = 1
[see Eq. (35)].

in order to express any other temperature in terms of T0 =
1/β0. Then from Eq. (27) we obtain an expression for β as a
function of the angles γ and ϕ:

cos ϕ sin 2γ =
(

tanh β

tanh β0

)2

− 1. (35)

Figures 2 and 3 show the level curves (isotherms) for the
entanglement temperature as a function of the QW initial
position, Eqs. (27) and (33). In Fig. 2 the initial position is
defined through the angles γ and ϕ, and in Fig. 3 it is defined
through the position on the Bloch sphere [see Eq. (31)]. Both
Figs. 2 and 3 show four regions, two of them corresponding
to temperatures T > T0 (thin orange lines) and the other
two to temperatures T < T0 (thick blue lines). The longest
isotherms (dashed green lines) correspond to the temperature
T = T0, and their initial conditions are γ = 0,π/2,π and
ϕ = π/2,3π/2. It is interesting to point out that the marked
asymmetry of Fig. 3 is related to the fact that the Hadamard
gate is a combination of σz and σx Pauli matrices acting in the
Hilbert space of the QW. As a result, in the asymptotic limit,
Fig. 3 has a symmetry in the XZ plane for θ = π/4, but it has
anisotropy in the Y direction.

Figures 2 and 3 also show the dependence on the initial
conditions γ and ϕ for any function of χ , in particular for 	±
[see Eqs. (17) and (33)].

V. DISTRIBUTED INITIAL CONDITIONS

In previous works [7,34] we have studied the QW with
extended initial conditions. Now the entanglement temperature
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FIG. 3. (Color online) The isothermal curves of Fig. 2 are shown
on the Bloch sphere. The initial chirality of the QW determines the
entanglement temperature [see Eqs. (27), (31), and (33)].

is studied in such a case. The following extended Gaussian
distributions is proposed:

a0
k ≡

[
1

σ0

√
2π

exp

(
− k2

2σ 2
0

)] 1
2

cos(γ /2), (36)

b0
k ≡ eiϕ

[
1

σ0

√
2π

exp

(
− k2

2σ 2
0

)] 1
2

sin(γ /2), (37)

where σ0 is the initial standard deviation, γ ∈ [0,π ] determines
the initial proportion of the left and right chirality, and
ϕ ∈ [0,2π ] is a global phase. Using these initial conditions,
Eqs. (36) and (37), the asymptotic value of Q(t), see Eqs. (6)
and (7), was obtained [7] as

Q0 = 1
2 cos γ tan θ , (38)

with the restrictions

σ0 � 1 (39)

and

cos ϕ = tan θ

tan γ
. (40)

Replacing Eq. (38) in Eq. (18), we obtain

χ =
( cos γ

2 cos θ

)2
, (41)

and then using Eq. (27), we have

βε = 1

2
ln

( | cos θ | + | cos γ |
| cos θ | − | cos γ |

)
, (42)

where, taking into account Eqs. (20) and (41), the initial
condition satisfies the constraint

| cos γ | < | cos θ |. (43)

The functions Q0, χ , and β vanish for γ = π/2 [see
Eqs. (38), (41), and (42)], and simultaneously, the entan-
glement entropy, Eq. (14), has its maximum value S0 = 1.

FIG. 4. (Color online) Isothermal curves as functions of the
dimensionless angles γ (initial conditions) and θ (bias of the coin).
Four curves are presented; each curve has two branches placed
symmetrically on both sides of γ = π/2, where T = ∞. The values
of T are given by Eq. (42). From left to right the values of T are,
in units of ε, 0.5 (purple), 1 (blue), 2 (green), and 5 (orange). The
diagram has two discontinuities in θ = π/2 and in γ = π/2 [see
Eqs. (42) and (43)].

This maximum value is achieved when the entanglement
temperature is T = ∞. Under these conditions the system
behaves as a classical Markov process [7]. On the other
hand, the initial conditions γ and ϕ are not independent [see
Eq. (40)], and for each value of γ there is only one value
of T ; then for fixed θ it is not possible to have isotherms as
functions of γ and ϕ. Instead, the entanglement temperature
depends on θ and γ from Eq. (42); i.e., the choice of the bias
of the coin toss θ or of the initial proportion of the chirality
γ could lead to the same entanglement temperature. Figure 4
shows the isotherms as functions of γ and θ .

VI. TRANSIENT BEHAVIOR

In the QW a stationary entanglement is established between
the chirality and position degrees of freedom after a transient
time. This fact allowed us to introduce the concept of en-
tanglement temperature. The transient behavior of the system
is studied using the original map equation (3) in a numerical
code with initial conditions given by Eq. (31). These numerical
calculations are summarized in Figs. 5 and 6. Figure 5 presents
the difference between the transient (λ+) and the stationary
(	+) eigenvalues of the density matrix as a function of time
[see Eqs. (13) and (15)]. Figure 5 only presents the envelope
of the curves because the real eigenvalue dynamics is very
intricate; it presents quick oscillations with a high density of
paths, and it is only possible distinguish its global contour.
However, the average evolution of the system is determined
by the envelope dynamics. Each envelope has two branches
placed symmetrically on both sides of λ+ − 	+ = 0. Two
pairs of curves are presented with solid and dashed lines. In

012319-5



ALEJANDRO ROMANELLI PHYSICAL REVIEW A 85, 012319 (2012)

FIG. 5. (Color online) Envelope of the probability λ+ − 	+ as
a function of the dimensionless time t for two different initial
conditions. Each initial condition is established by the couple (ϕ,γ )
in Eq. (31). Their values are (π/8,π/4) for the solid black line and
(π/4,π/3) for the dashed red line. In both cases, the temperature is
T = 0.79T0.

both cases, the envelopes decay for t → ∞ as a power law
1/tc, with c = 0.490 for the dashed red line and c = 0.486 for
the solid black line. The envelopes of λ± will be called λ̃±,
respectively.

It was numerically verified for several initial conditions
given by Eq. (31) that the transient behavior of λ̃± − 	± can
be adjusted by a time power law. Figure 6 shows the power-
law exponent c as a function of the initial condition γ for
the same temperature. Remember that, for T and γ given,
ϕ is determined by Eq. (35). Therefore, the exponent c has a

FIG. 6. The power-law exponent as a function of the dimension-
less angle γ . The initial conditions (ϕ,γ ) correspond to the isotherms
T = 1.1T0.

dependence on the initial conditions; however, this dependence
is not determined by the asymptotic temperature value.

Additionally, the transient behavior of λ̃± − 	± was
numerically studied using initial conditions given by Eqs. (36)
and (37), with σ � 1. In these cases, the system showed
a negligible transient dynamics, in agreement with the cal-
culation developed in Ref. [7]. Therefore, for these initial
conditions, the reduced density matrix is essentially always
in thermodynamic equilibrium.

With the aim to understand the transient behavior of
the system we develop an analytic theory implementing a
parallelism between the reduced density operator Eq. (25) and
the density operator of an electron in an external magnetic field.
With this picture in mind we propose the following master
equation for the probabilities λ+ and λ−:

dλ−
dt

= λ+ w+− − λ− w−+,

(44)
dλ+
dt

= λ− w−+ − λ+ w+−,

where w+− and w−+ are transition probabilities per unit
of time, which can be understood as population rates. w+−
corresponds to the transition λ+ → λ− and w−+ corresponds
to the transition λ− → λ+. These rates are time-dependent
functions, and their behaviors are known in the limit t → ∞
when dλ±/dt → 0. In this limit, the stationary solution of
Eq. (44) must be the couple 	− and 	+, given by Eq. (15).
Then the asymptotic values of the population rates satisfy

wb

wa

= 	−
	+

, (45)

where wa and wb are defined by

wa ≡ lim w−+
t → ∞ , (46)

wb ≡ lim w+−
t → ∞ . (47)

Equation (45) expresses a condition of detailed balance that
says that the rate of occurrence for any transition equals the
rate for the inverse transition. Using our knowledge about the
transient and asymptotic behaviors, the following population
rates are proposed:

w+− = wb + ξ (t), (48)

w−+ = wa − ξ (t), (49)

where

ξ (t) = K

tc

[
ω sin(ωt + δ) +

(c

t
− wa − wb

)
cos(ωt + δ)

]
,

(50)

with c > 0, K , ω, and δ being constants. The general solution
of Eq. (44) with these population rates is

λ+ = 	+ + K

tc
cos(ωt + δ) + d e−(wa+wb)t , (51)

λ− = 	− − K

tc
cos(ωt + δ) − d e−(wa+wb)t , (52)

where d is an additional constant. Note that e−(wa+wb)t → 0
faster than 1/tc for t → ∞; then Eqs. (51) and (52) verify the
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asymptotic behavior obtained numerically. All the constants
K , c, ω, δ, and d depend on the initial conditions; however,
their values should be compatible with the positive character
of the functions λ+, λ−, w+−, and w−+. In particular, to
describe correctly the numerical results, K takes a finite value
for localized initial conditions, and it takes a negligible value
for distributed initial conditions. In summary, the Brownian
motion equation for our reduced density matrix, Eq. (22), takes
the form of a master equation, Eq. (44).

Finally, it is important to point out that the asymptotic
behavior found here is similar to the behavior of the simple
cellular automaton known as sandpile [35]. Such behaviors
are characteristic of extended dynamical systems with spatial
degrees of freedom. They naturally evolve to self-organized
states with correlations that decay with a power law.

VII. CONCLUSION

The unitary evolution of the QW in a composite Hilbert
space is studied. In particular, the entanglement between chi-
rality and position degrees of freedom is investigated. After a
transient time the system establishes a stationary entanglement
between the coin and the position that allows us to develop
a thermodynamic theory. The asymptotic reduced density
operator is used to introduce the entanglement thermodynamic
functions in the canonical equilibrium. These thermodynamic
functions characterize the asymptotic entanglement, and the
system can be seen as a spin-1/2 particle coupled to an infinite
bath, the |k〉 position states.

It is shown that the QW initial condition determines
the system’s temperature as well as other thermodynamic

functions. A map for the isotherms is analytically built for
arbitrary localized initial conditions. Additionally, it is shown
that, choosing appropriately the bias of the coin toss, it is
possible to obtain a predetermined entanglement temperature.

The transient dynamics of the reduced density operator
outside the thermodynamic equilibrium is also studied. We
show numerically that this transient behavior can be adjusted
with a power law whose exponent depends on the initial
conditions. We built a master equation to describe this
behavior where the population rates have a time dependence.
The accuracy of the master equation solution is numerically
verified, and it is shown that the reduced density has a cellular
automaton behavior.

The behavior of the reduced density operator looks dif-
fusive, but it has a dependence on the initial conditions,
the global evolution of the system being unitary. Then, if
an observer only had information related to the chirality
degrees of freedom, it would be very difficult for him to
recognize the unitary character of the quantum evolution. In
general, from this simple model we can conclude that if the
quantum system dynamics occurs in a composite Hilbert space,
then the behavior of the operators that only belong to one
subspace could camouflage the unitary character of the global
evolution.
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