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Time-optimal synthesis of SU(2) transformations for a spin-1/2 system
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We consider a quantum control problem involving a spin-1/2 particle in a magnetic field. The magnitude of
the field is held constant, and the direction of the field, which is constrained to lie in the x-y plane, serves as
a control parameter that can be varied to govern the evolution of the system. We analytically solve for the time
dependence of the control parameter that will synthesize a given target SU(2) transformation in the least possible
amount of time, and we show that the time-optimal solutions have a simple geometric interpretation in terms
of the fiber bundle structure of SU(2). We also generalize our time-optimal solutions to a control problem that
includes a constant bias field along the ẑ axis and to the case of inhomogeneous control, in which a single control
parameter governs the evolution of an ensemble of spin-1/2 systems.
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I. INTRODUCTION

Many applications rely on the ability to coherently control
the state of a quantum system [1–6]. In particular, the current
push to develop robust quantum information processors has led
to the development of quantum control protocols for a diverse
array of experimental platforms, including atomic, optical,
and condensed matter systems [7–10]. In a typical control
problem, the system in question is described by a Hamiltonian
containing several control parameters that we are free to vary,
and we would like to determine the time dependence of these
parameters such that the evolution of the system implements
a desired unitary transformation. This type of problem can be
viewed as a quantum analog to motion planning in classical
control theory, in which one would like to vary a set of control
parameters so as to steer a classical dynamical system to a
desired point in state space [11–13]. Control problems are
generally highly nontrivial: they do not usually admit analytic
solutions, and must be solved via numerical searches [14–
21]. Analytic solutions can, however, sometimes be obtained
for control problems involving low-dimensional systems. In
particular, for control problems involving a spin-1/2 particle,
analytic solutions have been obtained that minimize either
an energy-type cost functional [22–24] or the total evolution
time [25,26].

Here we consider a model quantum control problem involv-
ing a spin-1/2 particle in a magnetic field. The magnitude of
the field is held constant, and its direction, which is constrained
to lie in the x-y plane, serves as a control parameter that can
be varied to govern the evolution of the system. The evolution
can be described in terms of an SU(2) evolution operator U (t),
such that if the state of the spin at time zero is |ψ(0)〉 then
the state at time t is |ψ(t)〉 = U (t)|ψ(0)〉. Given an arbitrary
target SU(2) transformation V , we analytically solve for the
time dependence of the control parameter such that U (t) = V

and t is as small as possible. By viewing SU(2) as a U (1)
fiber bundle over the two-dimensional sphere S2, we are able
to give a simple geometric interpretation to these time-optimal
solutions. We also generalize our time-optimal solutions to a
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control problem that includes a constant bias field along the ẑ
axis.

An important development in the field of quantum control
is the notion of inhomogeneous control, in which a single set
of control parameters governs the evolution of an ensemble
of systems subject to different Hamiltonians. The differences
in the Hamiltonians may, for example, describe unwanted
perturbations that give rise to decoherence. By choosing
the control parameters properly, one can compensate for
these perturbations so that the resulting system dynamics
are insensitive to their presence [27,28]. Alternatively, the
differences in the Hamiltonians may be intentional, so as
to provide a means of addressing individual systems in the
ensemble [29–31].

We investigate inhomogeneous control in our model control
problem by generalizing the problem to the case of an
ensemble of N spin-1/2 systems. The magnetic fields of the
different systems vary in magnitude but are all aligned along a
common direction in the x-y plane, and we take this common
direction to be the control parameter that governs the evolution
of the entire ensemble. We obtain a semianalytic solution to
this inhomogeneous control problem for the case N = 2, and
we verify that our solution is time optimal by comparing it
with the results of a numerical search.

II. CONTROL PROBLEM

The system that we consider consists of a spin-1/2 particle
in a magnetic field B. We assume that the magnitude B ≡ |B|
of the magnetic field is constant, and its direction n̂ ≡ B/|B|
serves as a control parameter that can be varied to govern the
evolution of the system. The Hamiltonian for the system is

H = −μBσ · n̂, (1)

where μ is the magnetic moment of the particle and σ =
(σx,σy,σz) are the Pauli spin matrices. For simplicity, we will
choose units such that μB = 1. The system evolves in time
according to the unitary transformation

U (t) = T exp

[
− i

∫ t

0
H (t ′) dt ′

]
, (2)
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where T is a time-ordering operator that places operators at
early times to the right of operators at later times. We note that
U satisfies the Schrödinger equation

iU̇ = HU. (3)

From Eq. (2), and the fact that H is traceless, it follows that
det U = 1, so U is an SU(2) transformation.

We now consider a control problem in which we are given
a target SU(2) transformation V and are asked to determine
the time dependence of the control parameter n̂ and the total
evolution time t such that U (t) = V and t is as small as
possible. If n̂ is allowed to point in any direction, then the
solution to the control problem is trivial: we write V in the
form V = eir·σ , where |r| � π , and we take

n̂ = r̂, t = |r|. (4)

For example, for a target transformation V = eiησz/2 describing
a spatial rotation with axis ẑ and angle η, we find that n̂ =
sign(η) ẑ and t = |η|/2.

Let us suppose, however, that the control parameter n̂ is
constrained to lie in the x-y plane. The control problem is still
solvable, but the solution is no longer trivial. We can verify
that the control problem is solvable by presenting a solution
that is not time optimal. Let us write the target transformation
V in terms of Euler angles ψ , θ , and φ:

V = eiψσx/2eiθσy/2eiφσx/2. (5)

From Eq. (5), it follows that V can be synthesized by taking

n̂(τ ) =

⎧⎪⎨
⎪⎩

sign (φ)x̂ for 0 < τ < |φ/2|,
sign (θ ) ŷ for |φ/2| < τ < |φ/2| + |θ/2|,
sign (ψ)x̂ for |φ/2| + |θ/2| < τ < t,

(6)

t = |ψ/2| + |θ/2| + |φ/2|. (7)

For example, consider again a target transformation V =
eiησz/2 describing a spatial rotation with axis ẑ and angle η.
We find that V = e−iπσx/4eiησy/2eiπσx/4, so φ = −ψ = π/2,
θ = η, and t = π/2 + |η|/2. For comparison, recall that t =
|η|/2 for the unconstrained control problem in which n̂ is
allowed to point in any direction.

III. TIME-OPTIMAL SOLUTION

We now present a time-optimal solution to the constrained
control problem. We begin by describing two methods for
assigning coordinates to an SU(2) transformation U . For the
first method, we assign real-valued coordinates r = (w,x,y,z)
to U by expanding U in the Pauli spin matrices:

U = w + ixσx + iyσy + izσz. (8)

We call these coordinates embedding coordinates, because
they describe an embedding of SU(2) into R4. For the second
method, we assign complex-valued coordinates (z1,z2) to U

by expressing U in the form

U =
(

z1 z2

−z∗
2 z∗

1

)
. (9)

We call these coordinates complex coordinates. From Eqs. (8)
and (9), it follows that the two sets of coordinates are related
by (z1,z2) = (w + iz,y + ix).

The Lie group SU(2) is three dimensional, but both sets
of coordinates label SU(2) transformations using four real
parameters. So for both sets of coordinates there are more
coordinate degrees of freedom than physical degrees of
freedom, and only some of the points in the coordinate space
actually correspond to SU(2) transformations. From Eqs. (8)
and (9), it follows that such points satisfy the constraint

|r|2 = |z1|2 + |z2|2 = 1. (10)

The locus of points r that satisfy Eq. (10) is a three-dimensional
sphere S3 embedded in R4, and the mapping U �→ r is a
diffeomorphism from SU(2) to S3.

It is useful to express the Schrödinger equation (3) in terms
of both sets of coordinates. We first consider the embedding
coordinates. We substitute the definition of the embedding
coordinates given in Eq. (8) into the Schrödinger equation (3)
to obtain an equation of motion for r:

ṙ = nx Lx(r) + ny Ly(r) + nz Lz(r), (11)

where

Lx(r) = w x̂ − xŵ + z ŷ − y ẑ, (12)

Ly(r) = w ŷ − yŵ + x ẑ − zx̂, (13)

Lz(r) = w ẑ − zŵ + y x̂ − x ŷ (14)

are orthonormal vectors that span the tangent space of S3 at
the point r . As r evolves in time, it traces out a path in S3

whose tangent vector is ṙ . From Eq. (11) it follows that the
length of the tangent vector is |ṙ| = 1, so time corresponds to
arc length along the path. The time evolution of r is governed
by the control parameter n̂, which dictates the projection of
the tangent vector ṙ along the basis vectors Lk(r):

Lx(r) · ṙ = nx, (15)

Ly(r) · ṙ = ny, (16)

Lz(r) · ṙ = nz. (17)

For the constrained control problem n̂ = cos φ x̂ + sin φ ŷ for
some angle φ, so

Lx(r) · ṙ = cos φ, (18)

Ly(r) · ṙ = sin φ, (19)

Lz(r) · ṙ = 0. (20)

It is also useful to express the Schrödinger equation (3) in
terms of the complex coordinates. We substitute the definition
of the complex coordinates given in Eq. (9) into Eq. (3) to
obtain equations of motion for z1 and z2:

ż1 = −ie−iφ z∗
2, (21)

ż2 = ie−iφ z∗
1. (22)

If we differentiate Eqs. (21) and (22) with respect to t and then
substitute for ż1 and ż2 using the original equations, we obtain
the decoupled equations

z̈1 + iφ̇ż1 + z1 = 0, (23)

z̈2 + iφ̇ż2 + z2 = 0. (24)
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By using Eqs. (21) and (22), it is straightforward to derive the
identities

ż1z
∗
1 + ż2z

∗
2 = 0, (25)

ż2z1 − ż1z2 = ie−iφ. (26)

We can understand the meaning of these identities by trans-
forming from complex coordinates to embedding coordinates:

ż1z
∗
1 + ż2z

∗
2 = r · ṙ + iLz(r) · ṙ, (27)

ż2z1 − ż1z2 = Ly(r) · ṙ + iLx(r) · ṙ. (28)

So Eqs. (25) and (26) follow from Eqs. (10) and (18)–(20).
Let us now return to the embedding coordinates and

consider the problem of finding a minimum-length path in
S3 that satisfies the constraint Lz(r) · ṙ = 0. Such a path can
be obtained by minimizing the action

S =
∫

[|r ′| + γ (|r|2 − 1) + λLz(r) · r ′] du. (29)

Here u is an arbitrary parametrization of the path, r ′ ≡ d r/du,
and γ and λ are Lagrange multipliers. The first term of the
integrand gives the length of the path, the second term imposes
the constraint |r|2 = 1, which restricts the path to S3, and
the third term imposes the constraint Lz(r) · ṙ = 0, which
expresses the fact that the control parameter n̂ must lie in
the x-y plane. Note that r ′ ≡ d r/du = (dt/du)ṙ and |ṙ| = 1,
so the parameter u is related to the time t by

dt/du = |r ′|. (30)

We write down the Euler-Lagrange equations corresponding
to the action given in Eq. (29), use Eq. (30) to replace u

with t , and transform from embedding coordinates to complex
coordinates to obtain

z̈1 + 2iλż1 + (iλ̇ − 2γ )z1 = 0, (31)

z̈2 + 2iλż2 + (iλ̇ − 2γ )z2 = 0. (32)

A time-optimal solution to the constrained control problem
must satisfy the Schrödinger equations (23) and (24) as well
as the Euler-Lagrange equations (31) and (32). We subtract
Eq. (23) from (31) and Eq. (24) from (32) to obtain

i(2λ − φ̇)ż1 + (iλ̇ − 2γ − 1)z1 = 0, (33)

i(2λ − φ̇)ż2 + (iλ̇ − 2γ − 1)z2 = 0. (34)

Using the identities given in Eqs. (25) and (26), we can
eliminate the coordinates z1 and z2 from Eq. (33) and (34)
and obtain equations that involve only the parameters γ , λ,
and φ:

φ̇ = 2λ, iλ̇ = 2γ + 1. (35)

The solution to these equations is

γ = −1/2, λ = ω/2, φ = φ0 + ωt, (36)

where φ0 and ω are integration constants. So an SU(2)
transformation can be synthesized in a time-optimal fashion
by varying the control parameter φ as described by Eq. (36).

We would now like to calculate the evolution operator U

that results when the control parameter φ is varied in the
time-optimal fashion described by Eq. (36). We first note
that U (0) is the identity transformation, which has complex

coordinates (z1,z2) = (1,0). We substitute Eq. (36) for φ into
the Schrödinger equations (21) and (22) and solve them subject
to these initial conditions to obtain

z1 = (2α)−1(β+eiβ−t + β−e−iβ+t ), (37)

z2 = (2α)−1e−iφ0 (eiβ−t − e−iβ+t ), (38)

where

α ≡ (1 + ω2/4)1/2, β± ≡ α ± ω/2. (39)

It is useful to view the parameters (φ0,ω,t) as defining a
third set of coordinates for U . We call these coordinates
time-optimal coordinates. Equations (37) and (38) can then
be viewed as describing a coordinate transformation from
time-optimal coordinates to complex coordinates.

Suppose we are given a target SU(2) transformation V . We
can synthesize V in a time-optimal fashion by determining
its complex coordinates (z1,z2) and then inverting Eqs. (37)
and (38) to obtain its time-optimal coordinates (φ0,ω,t). The
parameters φ0 and ω tell us the time dependence of the control
parameter φ, and the parameter t tells us the total evolution
time.

Let us now consider some specific examples. First
we consider a target transformation V = eiηêθ ·σ/2 that de-
scribes a spatial rotation with axis êθ ≡ cos θ x̂ + sin θ ŷ
and angle η. The complex coordinates of V are (z1,z2) =
(cos η/2,ie−iθ sin η/2). We invert Eqs. (37) and (38) to obtain
the time-optimal coordinates

φ0 = θ, ω = 0, t = η/2. (40)

This solution is identical to the time-optimal solution for
the unconstrained control problem described in Eq. (4). This
is to be expected, since the time-optimal solution for the
unconstrained control problem satisfies the constraint that n̂
must lie in the x-y plane.

Next we consider a target transformation V = eiησz/2 that
describes a spatial rotation with axis ẑ and angle η. The
complex coordinates of V are (z1,z2) = (eiη/2,0). We invert
Eqs. (37) and (38) to obtain the time-optimal coordinates

ω = 2ν(1 − ν2)−1/2, t = π (1 − ν2)1/2, (41)

where ν ≡ 1 − η/2π . The parameter φ0 is undetermined by
the inversion, and any value can be used to perform a time-
optimal synthesis of V . Mathematically, φ0 is undetermined
because V is located at a coordinate singularity of the
time-optimal coordinate system; physically, it is because V is
invariant under similarity transformations involving arbitrary
rotations about the ẑ axis. In Fig. 1 we compare the time-
optimal solution described in Eq. (41) with the Euler solution
described in Eqs. (6) and (7) and the time-optimal solution for
the unconstrained control problem described in Eq. (4).

Let us now consider the trajectory of the spin on the Bloch
sphere as it evolves along a time-optimal path. If the state
of the spin at time zero is |ψ(0)〉, then the state at time t is
|ψ(t)〉 = U (t)|ψ(0)〉. We can represent the state of the spin at
time t as a point ŝ(t) = 〈ψ(t)|σ |ψ(t)〉 on the Bloch sphere. In
Fig. 2 we plot the trajectory of the spin on the Bloch sphere for
the time-optimal synthesis of a π/2 rotation about the ẑ axis
(V = eiπσz/4), where the spin is initially aligned along the ẑ
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FIG. 1. (Color online) Time t needed to synthesize the transfor-
mation V = eiησz/2 vs η. (a) Time-optimal solution for the constrained
control problem. (b) Euler solution for the constrained control
problem. (c) Time-optimal solution for the unconstrained control
problem.

axis for Fig. 2(a) and the − ŷ axis for Fig. 2(b). For both curves
we take φ0 = 0.

IV. PROPERTIES OF THE TIME-OPTIMAL SOLUTIONS

We can visualize the time-optimal solutions by representing
SU(2) transformations as points on the two-dimensional sphere
S2. Given an SU(2) transformation U , we define p̂(U ) to be
the point on S2 corresponding to the state U †| ↑〉:

p̂(U ) = 〈↑ |UσU †| ↑〉. (42)

We note that p̂(U ) = p̂(eiθσzU ) for any value of θ . This
property of p̂ allows us to view SU(2) as a fiber bundle, where
S2 is the base manifold, U (1) is the fiber, and p̂ : SU(2) → S2

is the projection function.
We will now show that the time-optimal solutions project

to circles on S2. Let us identify the plane that bisects S2 at
the equator with the complex plane. We can map points p̂
on S2 to complex numbers ζ ( p̂) on the complex plane by
stereographically projecting from the south pole:

ζ ( p̂) = px + ipy

1 + pz

. (43)

(a) (b)

FIG. 2. (Color online) Trajectory of the spin on the Bloch sphere
for the time-optimal synthesis of the transformation V = eiπσz/4,
which describes π/2 rotation about the ẑ axis. (a) Spin initially
aligned along the ẑ axis. (b) Spin initially aligned along the − ŷ
axis.

FIG. 3. (Color online) Paths on the two-dimensional sphere S2 for
the time-optimal synthesis of the transformation V = eiησz/2, where
η = π/2,π,3π/2,2π . Longer paths correspond to larger values of η.

Let (z1,z2) denote the complex coordinates of an arbitrary
SU(2) transformation U . From Eqs. (9), (42), and (43), it
follows that

ζ ( p̂(U )) = z1/z2. (44)

For a time-optimal solution, z1 and z2 are given by Eqs. (37)
and (38). We substitute these expressions into Eq. (44) to obtain
ζ (t) = f (e2iαt ), where

f (z) ≡ e−iφ0 (z − 1)

β+z + β−
. (45)

The function f (z) is a Möbius transformation. Since e2iαt

describes a circle in the complex plane, and both stereographic
projection and Möbius transformations preserve circles, it
follows that the time-optimal solutions project to circular paths
on S2. In Fig. 3 we plot example paths for the time-optimal
synthesis of the transformation V = eiησz/2, which describes a
spatial rotation with axis ẑ and angle η. The paths begin and
end at the north pole. For the paths shown we take φ0 = 0;
alternative paths that also synthesize V can be obtained by
taking different values of φ0, and for such paths Fig. 3 is
rotated about the ẑ axis through an angle φ0. Under the
fiber bundle interpretation, the time-optimal solutions can be
obtained by lifting the circular paths from S2 to SU(2), where
the lifts are performed relative to the connection induced
by the constraint Lz(r) · ṙ = 0. Another way to visualize the
time-optimal solutions is to stereographically project from the
north pole, in which case the time-optimal solutions map to
straight lines on the complex plane.

We have shown that time-optimal solutions project to
circular paths on S2. We will now show that the length of
the path on S2 is equal to twice the amount of time needed to
synthesize the corresponding transformation. We first assign
coordinates (ψ,θ,φ) to an arbitrary SU(2) transformation U

by performing an Euler-angle decomposition:

U = eiψσz/2eiθσy/2eiφσz/2. (46)

We call these coordinates Euler coordinates. Note that

p̂(U ) = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ, (47)

so the coordinates (θ,φ) are the spherical-polar coordinates
of the point p̂(U ) on S2. From Eqs. (8), (9), and (46),
it follows that the Euler coordinates are related to the
complex coordinates (z1,z2) and the embedding coordinates
r = (w,x,y,z) by

z1 = w + iz = ei(ψ+φ)/2 cos θ/2, (48)
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z2 = y + ix = ei(ψ−φ)/2 sin θ/2. (49)

Let us consider a small segment [t,t + dt] of a time-optimal
path on S3. From Eqs. (48) and (49), it follows that the arc
length dt of the segment is given by

dt = (d r · d r)1/2

= (1/2)(dθ2 + dφ2 + dψ2 + 2 cos θ dφ dψ)1/2. (50)

Recall that time-optimal paths satisfy the constraint Lz(r) ·
ṙ = 0. From Eqs. (14), (48), and (49), it follows that in Euler
coordinates this constraint takes the form

dψ + cos θ dφ = 0. (51)

We substitute Eq. (51) into Eq. (50) to obtain

dt2 = (1/4)(dθ2 + sin2 θ dφ2) = (1/4) ds2, (52)

where ds2 is the standard metric on S2, which is induced by the
Euclidean metric onR3 via the embedding of S2 intoR3. From
Eq. (52), it follows that the time needed to synthesize an SU(2)
transformation is equal to half the length of the corresponding
path in S2.

V. BIAS FIELD

Let us now generalize the control problem described in
Sec. II by adding a constant bias magnetic field along the ẑ
axis. The Hamiltonian for the system is now given by

H = −σ · n̂ + bσz, (53)

where b characterizes the strength of the bias field. As before,
we assume that n̂ is constrained to lie in the x-y plane and thus
has the form n̂ = cos φ x̂ + sin φ ŷ. We assume that we are
given a target SU(2) transformation V and bias field value b,
and we would like to determine the time dependence of φ and
total evolution time t so as to synthesize V in a time-optimal
fashion.

It is convenient to work in the interaction picture. We
express the Hamiltonian as H = H0 + Hi , where H0 = bσz

is the bare Hamiltonian and Hi = −σ · n̂ is the interaction
Hamiltonian, and we define Ui = eiH0tU to be the interaction-
picture evolution operator. The operator Ui satisfies the
Schrödinger equation

iU̇i = HIUi, (54)

where

HI = eiH0tHie
−iH0t = −σ · n̂I , (55)

n̂I = x̂ cos φI + ŷ sin φI , (56)

φI = φ + 2bt. (57)

From the results of Sec. III, it follows that the time-optimal
solution for φI is given by φI = φ0 + ωt , where φ0 and ω are
constants, and the complex coordinates (z1(Ui),z2(Ui)) of Ui

are given by Eqs. (37) and (38). Since U = e−iH0tUi , it follows
that the complex coordinates (z1(U ),z2(U )) of U are given by

z1(U ) = (2α)−1e−ibt (β+eiβ−t + β−e−iβ+t ), (58)

z2(U ) = (2α)−1e−i(φ0+bt)(eiβ−t − e−iβ+t ), (59)

where α and β± are given by Eq. (39). Given the complex
coordinates of the target transformation V , we can invert
Eqs. (58) and (59) to determine the parameters needed to
synthesize V in a time-optimal fashion.

VI. INHOMOGENEOUS CONTROL

We will now generalize the control problem described in
Sec. II to the case of inhomogeneous control. We consider
an ensemble of N spin-1/2 particles, where particle i is in a
magnetic field Bi = Bi n̂ with magnitude Bi and direction n̂.
The Hamiltonian for particle i is

Hi = −χiσ · n̂, (60)

where χi ≡ μBi . As before, we assume that n̂ is constrained
to lie in the x-y plane and thus has the form n̂ = cos φ x̂ +
sin φ ŷ. We note that the single control parameter φ governs
the evolution of all N particles. If we evolve the ensemble
for a time t while varying the control parameter φ, we obtain
SU(2) evolution operators {U1(t), . . . ,UN (t)}, where Ui(t) is
the evolution operator for particle i. We assume that we are
given a list of target SU(2) transformations {V1, . . . ,VN } and
a list of field values {χ1, . . . ,χN }. We would like to determine
the time dependence of φ and total evolution time t such that
Ui(t) = Vi for i = 1, . . . ,N , and t is as small as possible.

We begin by adapting the formalism developed in Sec. III
to the case of the Hamiltonian Hi given in Eq. (60). We
denote the embedding coordinates of Ui by r i and the complex
coordinates of Ui by (z1i ,z2i). The Schrödinger equation in
embedding coordinates is

ṙ i = χi[nx Lx(r i) + ny Ly(r i) + nz Lz(r i)], (61)

From Eq. (61) and the orthonormality of the vector fields Lk , it
follows that the magnitude of the tangent vector ṙ i is |ṙ i | = χi ,
so the arc length s of the path traced out by r i in S3 is related
to the time t by s = χit . The Schrödinger equation in complex
coordinates is

ż1i = −iχie
−iφz∗

2i , (62)

ż2i = iχie
−iφz∗

1i . (63)

From Eqs. (62) and (63) we obtain the decoupled equations of
motion

z̈1i + iφ̇ż1i + χ2
i z1i = 0, (64)

z̈2i + iφ̇ż2i + χ2
i z2i = 0 (65)

and the identities

ż1iz
∗
1i + ż2iz

∗
2i = 0, (66)

ż2iz1i − ż1iz2i = iχie
−iφ. (67)

We can obtain a time-optimal solution to the control
problem by minimizing the action

S =
∑

i

Ai +
∑
i 
=j

(Bij + Cij ), (68)

where

Ai = χi

∫
(|r ′

i | + γi(|r i |2 − 1) + λi Lz(r i) · r ′
i) du, (69)
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Bij = bij

∫
(Lx(r i) · r ′

i − Lx(rj ) · r ′
j ) du, (70)

Cij = cij

∫
(Ly(r i) · r ′

i − Ly(rj ) · r ′
j ) du, (71)

and γi , λi , bij , and cij are Lagrange multipliers. The terms
Ai are straightforward generalizations of the action (29) for
the original control problem; the prefactor χi accounts for the
fact that the arc length s of a path in S3 is related to the time
t by s = χit . The terms Bij and Cij impose the constraints
Lx(r i) · ṙ i = Lx(rj ) · ṙj and Ly(r i) · ṙ i = Ly(rj ) · ṙj ; from
Eqs. (18) and (19), we see that these constraints account for the
fact that the same control parameter φ governs the evolution
of all N evolution operators {U1, . . . ,UN }.

We now follow the same procedure described in Sec. III:
we write down the Euler-Lagrange equations for S, subtract
the decoupled Schrödinger equations (64) and (65), and use
the identities (66) and (67) to obtain equations that involve
only the Lagrange multipliers and the control parameter φ. We
find that

χ2
i (2λi − φ̇) = eiφ

∑
ij

(ẇij − ẇji), (72)

iλ̇i − 2γi − χ2
i = −2ieiφ

∑
ij

(wij − wji), (73)

where wij ≡ bij + icij .
For the case N = 2 we can solve Eqs. (72) and (73) to

obtain an equation of motion for φ. From Eqs. (72) it follows
that

λ1 = (1/2)
(
φ̇ + α/χ2

1

)
, (74)

λ2 = (1/2)
(
φ̇ − α/χ2

2

)
, (75)

where

α ≡ ẇeiφ (76)

and w ≡ w12 − w21. From Eqs. (73) it follows that

λ̇1 + λ̇2 = 0, (77)

w = −(1/4)(λ̇1 − λ̇2 + 2iβ)e−iφ, (78)

where β = 2γ1 + χ2
1 = −(2γ2 + χ2

2 ). We integrate Eq. (77) to
obtain

λ1 + λ2 = A, (79)

where A is an integration constant. We solve Eqs. (74), (75),
and (79) for λ1, λ2, and α in terms of φ̇ and A:

λ1 = (χ/2)φ̇ − (
χ ′/2χ2

1

)
A, (80)

λ2 = −(χ/2)φ̇ + (
χ ′/2χ2

2

)
A, (81)

α = χ ′(φ̇ − A), (82)

where

χ ≡ χ2
1 + χ2

2

χ2
1 − χ2

2

, χ ′ ≡ 2χ2
1 χ2

2

χ2
1 − χ2

2

. (83)

We substitute Eqs. (80) and (81) for λ1 and λ2 into Eq. (78) to
obtain

w = −(1/4)(χφ̈ + 2iβ)e−iφ. (84)

We differentiate Eq. (84) with respect to time and substitute
the resulting expression for ẇ into Eq. (76) to obtain

α = −(1/4)[χ¨φ̇ + 2iβ̇ − iφ̇(χφ̈ + 2iβ)]. (85)

Taking the real and imaginary parts of Eq. (85), we find that

α = −(1/4)(χ¨φ̇ + 2βφ̇), (86)

0 = −(1/4)(2β̇ − χφ̈φ̇). (87)

We integrate Eq. (87) to obtain

β = (χ/4)φ̇2 + B, (88)

where B is an integration constant. Substituting Eqs. (85) for
α and (88) for β into Eq. (86), we find that

¨φ̇ + φ̇3/2 + (2B/χ )φ̇ + (4χ ′/χ )(φ̇ − A) = 0. (89)

So the control parameter φ satisfies the equation of motion

¨φ̇ + φ̇3/2 + bφ̇ + a = 0, (90)

where a ≡ −(4χ ′/χ )A and b ≡ (2/χ )B − 4χ ′/χ . We note
that since the integration constants A and B can take any
values, the parameters a and b can also take any values, and
they are thus not constrained by the values of χ1 and χ2.

Given initial conditions (φ0,φ̇0,φ̈0) and parameters (a,b),
we can integrate Eq. (90) to obtain a time-optimal solution
for φ. Given this time-optimal solution, we can integrate the
Schrödinger equations (62) and (63) subject to the initial
conditions (z1i ,z2i) = (1,0) to obtain the complex coordinates
of a pair of evolution operators {U1,U2}. It is useful to
view the parameters (φ0,φ̇0,φ̈0,a,b,t) as a generalization of
the time-optimal coordinates described in Sec. III. The two
integrations then define a coordinate transformation from
the time-optimal coordinates to the complex coordinates of
the pair of evolution operators {U1,U2}. Given target SU(2)
transformations {V1,V2} and field values {χ1,χ2}, we can write
down the complex coordinates of {V1,V2} and then invert this
coordinate transformation to determine the time dependence
of the control parameter φ and the total evolution time t needed
to synthesize V1 and V2 in a time-optimal fashion. We have
thus formally solved the inhomogeneous control problem for
the case N = 2.

We note that the parameters (φ0,φ̇0,φ̈0,a,b) determine a
time-optimal evolution for the control parameter φ, and this
evolution, together with the parameters (t,χ1,χ2), determines
a pair of evolution operators {U1,U2}. It is interesting that the
time-optimality of φ does not depend on the field values χ1 and
χ2. That is, if we hold the time dependence of φ and the total
evolution time t fixed, and vary χ1 and χ2, we will synthesize
different evolution operators U1 and U2, but it will always be
the case that the synthesis of these operators is time optimal.

Let us now consider a specific example. We will take the
field values to be χ1 = 1/2 and χ2 = 3/2, and consider the pair
of transformations {V1,V2} whose time-optimal coordinates
are φ0 = 0, φ̇0 = −2, φ̈0 = 0, a = 2, b = 3, t = 3. We
numerically integrate the equation of motion (90) to determine
the time evolution of the control parameter φ that synthesizes
V1 = U1(t) and V2 = U2(t) in a time-optimal fashion, and we
numerically integrate the Schrödinger equations (62) and (63)
to determine the complex coordinates of the pair {V1,V2}. In
Fig. 4 we plot the resulting time-optimal evolution of φ.
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FIG. 4. (Color online) Control parameter φ vs time t . The solid
curve is obtained by numerically integrating Eq. (90); the points are
obtained from a numerical gradient-ascent search with t = 3 and
R = 50.

We verify that the synthesis of V1 and V2 is time optimal
as follows. Given arbitrary SU(2) transformations A1 and A2,
we define the fidelity F with which A1 and A2 approximate
V1 and V2 to be

F = (1/4)(Tr[V †
1 A1] + Tr[V †

2 A2]). (91)

The fidelity ranges from −1 to 1, where F = 1 if A1 = V1

and A2 = V2, and F decreases as the deviation of A1 and A2

from V1 and V2 increases. We fix the total evolution time t , and
we discretize the time evolution of the control parameter by
dividing t into R time steps of duration δt = t/R. We define
φr = φ(rδt) to be the value of the control field at time step
r . We then take A1 = U1(t) and A2 = U2(t) and perform a
numerical gradient-ascent search to maximize F with respect
to the discretized control parameter values {φ0, . . . ,φR−1}. In
Fig. 5 we plot the numerically determined maximum fidelity
Fmax as a function of t for R = 50. Since Fmax first reaches 1
at t = 3, we see that the evolution described above is indeed
time optimal. In Fig. 4, we plot the time-optimal evolution
of φ for t = 3, as determined by the gradient-ascent search.
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F
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FIG. 5. (Color online) Maximum fidelity Fmax vs time t , as
determined by a gradient-ascent search with R = 50.

We find good agreement with the time-optimal evolution of φ

obtained by integrating the equation of motion (90).

VII. SUMMARY

We have considered a quantum control problem involving
a spin-1/2 particle in a magnetic field. We have analytically
solved for the time dependence of the control parameter
needed to synthesize an arbitrary SU(2) transformation in a
time-optimal fashion, and we have generalized our solution to
the case of an inhomogeneous control problem involving an
ensemble of spin-1/2 systems. It is interesting to consider how
our results might be extended to other control problems. The
formalism we have developed relies heavily on the fact that
SU(2) is diffeomorphic to the three-dimensional sphere S3;
since no SU(d) for d > 2 is diffeomorphic to an n-dimensional
sphere, our formalism cannot be directly extended to higher-
dimensional systems. Our formalism could, however, be used
to describe SU(2) control problems involving a different choice
of control fields, and it would be interesting to see if such
problems are also analytically solvable.
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