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A field configuration utilizing local static fields and a few continuous-wave driving fields is constructed
to achieve universal (but low-order) protection of two-qubit states. That is, two-qubit states can be protected
against arbitrary system-environment coupling with control fields if their frequencies are sufficiently large as
compared with the cutoff frequency of the environment. Equally important, we show that it is possible to construct
driving fields to protect two-qubit entangling gates against decoherence, without assuming any particular form of
system-environment coupling. Using a non-Markovian master equation, we further demonstrate the effectiveness
of our continuous dynamical decoupling fields in protecting entanglement and the excellent performance of
protected two-qubit gates in generating entanglement. The results are complementary to current studies of
entanglement protection using universal dynamical decoupling pulse sequences.
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I. INTRODUCTION

The unwanted interaction between a system and its en-
vironment causes decoherence, i.e., the loss of quantum
coherence. Since future quantum technologies rely on coherent
quantum states, it has become increasingly important to
effectively suppress decoherence. To achieve this goal, various
schemes, such as error-correction codes [1], decoherence-free
subspaces [2,3], and dynamical decoupling (DD) [4–8], have
been proposed. It is expected that in a large-scale working
quantum computer, all of these schemes will be used in
some way to store quantum states with high fidelity. For
instance, a combination of dynamical decoupling and quantum
error-correction codes has been proposed to combat errors due
to spontaneous emission [9] (see also Ref. [10] for a recent
study on such a hybrid scheme).

Our focus here is on DD. In the DD approach, external
time-dependent fields are applied to the system such that
the interaction term between the system and its environment
rapidly flips sign. In this way, the effect of the environment on
the system is canceled to a certain degree. The key advantage
of DD, compared to some other methods such as quantum
error-correction codes, is that no overhead is required—the
qubits storing quantum information are protected directly,
without any need for extra qubits. Moreover, DD requires
neither quantum measurements nor feedback control.

Broadly speaking, two types of DD have been studied:
pulsed DD, which uses sharp pulses (impulsive pulses in
many cases) to counter the effect of the environment, and
continuous DD, which uses continuous driving fields, that is,
fields with continuously varying amplitude and/or phase. We
discuss pulsed DD first. The pioneering work on pulsed DD
considered pulses applied, at equal time intervals, to a single
qubit coupled to an environment [4]. Many extensions have
been worked out since then, including, for example, DD for an
arbitrary finite-dimensional system [5] and the suppression of
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arbitrary internal coupling in a quantum register [11]. Studies
of nonimpulsive DD are also fruitful, by use of, for example,
the so-called Eulerian DD schemes [12,13], and optimized
pulses under an energy cost constraint [14] or a minimum
leakage requirement [15]. Recently, a significant advance was
made when Uhrig [16] showed that by using aperiodic pulses,
the so-called Uhrig’s DD (UDD) scheme, the coherence of
a single qubit can be protected to the N th order by using
only N (or N + 1) instantaneous pulses. Uhrig originally
considered only pure dephasing in the spin-boson model.
Yang and Liu [17] then showed that UDD is universal in
the sense that it does not depend on how a single qubit is
coupled to its environment. Going further, West el al. [18]
constructed a nested UDD sequence that can protect a single
qubit against both dephasing and relaxation at the same time.
A mathematical proof for the effectiveness of nested UDD
sequences has been recently given in Ref. [19]. Effects of
nonideal pulses on UDD are also under investigation [20].
On the experimental side, the excellent performance of UDD
in protecting single-qubit quantum states has been studied in
Refs. [21–23].

Given high-efficiency single-qubit DD schemes, extending
single-qubit DD to two-qubit (or multiqubit) decoherence
control becomes more interesting. It should be emphasized
at this point that two-qubit (multiqubit) decoherence control
offers a whole new set of challenges (see also [5,11,13]). For
instance, a fundamental objective of two-qubit decoherence
control must be to protect two-qubit entanglement, since
entanglement has been identified as the key resource for
quantum information [24]. As is now well known, quantum
entanglement can, unlike single-qubit coherence, vanish in a
finite amount of time [25–30]. In addition, there are different
types of system-environment coupling that are not present in
single-qubit cases. In particular, there can be a noisy interaction
between two qubits, and errors such as correlated bit flipping,
dissipation, and dephasing might emerge. Along this general
direction of two-qubit DD, Ref. [31] showed for the first time
that it is possible to construct a pulse sequence to protect
a known two-qubit quantum state to the N th order using
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N pulses, without any knowledge of system-environment
coupling. During the same year, the same group of authors
advocated the use of a nested sequence of UDD pulses to
protect unknown two-qubit states with high efficiency, with
each layer eliminating different noise terms [32]. It is now
clear that to protect a completely unknown two-qubit state with
high efficiency, four layers of UDD pulses are required [32,33].
These schemes are exciting because they are universal. That
is, so long as the pulses are applied fast enough (as compared
with the cutoff frequency of the environment), we do not
need to assume anything about the actual form of the system-
environment coupling. Nested-UDD schemes have also been
extended to multiqubit systems with remarkable mathematical
insights [33,34]. Parallel with these theoretical advances,
experiments on the protection of pseudo-entanglement or
multispin coherence using pulsed DD have been reported in
Refs. [35–37].

Interestingly, many pulsed DD schemes mentioned above
can be considered to be too strong in the sense that, while a
scheme does protect a quantum state with high efficiency, it
also generally freezes useful coherent evolution generated by
the system’s own Hamiltonian. To achieve useful coherent
evolution concurrently with pulsed DD [38,39], one idea
is to encode the logical qubits in physical qubits and then
design the fields in such a way that the gate operation
commutes with the pulse operations [40]. However, apparently
an overhead is required. Recently, a general procedure utilizing
finite-power and finite-bandwidth pulses has been worked out
for constructing dynamically corrected gates (DCGs) without
encoding or measurement overhead [41,42]. Going further,
by concatenating DCGs, it is possible to achieve arbitrary
accuracy in quantum gate implementation [43]. However, for
arbitrary system-environment coupling, dynamically corrected
two-qubit gates have not been explicitly constructed and it is
unclear how complicated the solution might be.

The existence of universal UDD schemes for two-qubit
entanglement protection motivated this work. In particular, we
shall investigate the usefulness of universal continuous DD
(more specifically, DD based on the use of a few continuous-
wave driving fields) to protect two-qubit states, and hopefully,
also to protect two-qubit gates. We note that, as mentioned
before, in general the term “continuous DD” refers to DD
using fields of continuously varying amplitude and/or phase
(see, for instance, Ref. [44]). However, in the following, we
use the term continuous DD exclusively to refer to DD based
on periodic time dependence with a few continuous-wave
(sinusoidal) driving fields. Switching from pulsed DD to such
continuous-wave fields, the sacrifice is obvious as compared
with UDD and nested-UDD schemes: the performance of our
continuous DD is of a low-order nature. But our interest here
is not with the high-order performance of a DD scheme.
Rather, we ask the following important question: Are there
universal continuous DD schemes to protect two-qubit states
and two-qubit gates, irrespective of how a two-qubit system is
coupled with its environment? This is a pertinent question to
ask because, compared with pulsed DD, continuous DD has
some advantages from a practical point of view. For example,
there is no longer any concern about pulse timings or pulse-
sequence engineering, and the higher driving frequencies that
we can achieve with continuous fields are naturally expected

to eliminate higher frequency noise sources [45]. Indeed,
continuous DD schemes to protect a single qubit have attracted
considerable interest [45–48]. Among the known features of
single-qubit continuous DD, most relevant here is the fact
that continuous control fields may be constructed to protect
a quantum state and implement a gate at the same time,
without the use of any overhead [47,48] (thus forming a type
of DCG [41,42]). However, it is imperative, considering the
complexity of two-qubit decoherence, that such Hamiltonians
be constructed for two-qubit gates as well. After all, in the
circuit model of quantum computation, two-qubit gates are of
fundamental importance.

What is lacking currently is a completely general treatment
of continuous DD for two-qubit systems. A recent study [49]
considered the application of external fields to protect a
multiqubit system against a restricted class of dephasing and
relaxation mechanisms. Some stimulating progress has also
been made in Ref. [50]. However, therein only local noise
terms were considered, which amounts to making a specific as-
sumption applicable to only one class of system-environment
coupling. With such an assumption, continuous fields were
constructed for the protection of two-qubit quantum states and
two-qubit gates against decoherence [50]. Nevertheless, as also
seen below, if only local noise terms are considered, then the
issue of decoherence control is somewhat quite analogous to
single-qubit continuous DD and is not universal. The explicit
task of this work is hence to extend the work in Ref. [50]
to cases with the most general system-environment coupling.
Our universal two-qubit continuous DD schemes presented
below may be of great use if very high control fidelities are
nonessential. Certainly, universal continuous DD schemes may
be also combined with pulsed DD for hybrid DD schemes.

The organization of this paper is as follows. In Sec. II,
we construct continuous driving fields that are able to protect
an arbitrary two-qubit quantum state against its environment.
Once we have such a scheme, we use this knowledge for
the construction of two-qubit gates protected against the most
general decoherence. It is shown in Sec. III that an explicitly
constructed control Hamiltonian can implement and protect
two-qubit gates at the same time, and can therefore yield
much better gate performance. In Sec. IV, in order to test
these theoretical results, we introduce a non-Markovian master
equation. By modeling the environment as one (or many)
thermal bath(s) possessing an Ohmic spectral density, we show,
in Sec. V, the results of our numerical simulations illustrating
the excellent performance of our fields in protecting two-qubit
states as well as in implementing two-qubit gates. Finally,
Sec. VI concludes this paper.

II. UNIVERSAL CONTINUOUS DYNAMICAL
DECOUPLING

We start off by considering the Hamiltonian of a two-
qubit system interacting with its environment (modeled by—
possibly more than one—thermal bath later),

Htot = H0 + HB + HSB, (1)

where H0 denotes the Hamiltonian of the two-qubit system, HB

the Hamiltonian of the environment, and HSB the interaction
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Hamiltonian between the system and its environment. The
most general form of HSB is given by [31]

HSB =
3∑

k=1

B
(1)
k σ

(1)
k +

3∑
k=1

B
(2)
k σ

(2)
k +

3∑
k=1,l=1

B
(12)
kl σ

(1)
k σ

(2)
l ,

(2)

where σ1 = σx,σ2 = σy,σ3 = σz, and the B operators denote
arbitrary environment operators. Note that this form is consid-
erably more complex than the local-environment interaction
Hamiltonian considered in Ref. [50], since nonlocal terms such
as B

(12)
kl σ

(1)
k σ

(2)
l are now taken into account.

We now consider continuous driving fields applied to the
system, whose effect is described by the Hamiltonian Hc(t).
Corresponding to Hc(t), there is a unitary operator Uc(t), given
by the time-ordered exponential of Hc(t) (h̄ = 1 and T is the
time-ordering operator throughout),

Uc(t) = T exp

[
−i

∫ t

0
Hc(s) ds

]
. (3)

In order to achieve continuous DD (that is, using several
continuous-wave control fields with periodic time dependence
of the total field), Uc(t) must fulfill two criteria. First, since
the total field is assumed to be periodic, Uc(t) should also be
periodic in time with a period denoted by tc, that is,

Uc(t + tc) = Uc(t). (4)

Second, in order to decouple the system from the environment,
we hope to have∫ tc

0
U †

c (t)HSBUc(t) dt = 0. (5)

Technically, these conditions can be derived using the Magnus
expansion. For completeness, following the treatment given
in Ref. [51], we show that these conditions indeed lead to
a low-order decoupling of the system from the environment.
Ideas and notation introduced here will be used again when we
explain the reasoning behind the construction of control fields
for gate protection.

The Hamiltonian for the total system in the presence of the
control fields can be written (in the laboratory frame) as

Htot = H0 + Hc(t) + HB + HSB = H ′ + Hc(t), (6)

where

H ′ ≡ H0 + HB + HSB. (7)

Our goal is to see how a state evolves under the action of this
total Hamiltonian, if conditions (4) and (5) are satisfied. To do
so, we transform the system to the frame of the control fields,
that is, we rotate the basis by Uc(t). Then, in this frame, a
total system-environment state evolves under the action of the
unitary time-evolution operator,

Ũtot(t) = T exp

[
−i

∫ t

0
H̃ ′(s) ds

]
, (8)

where H̃ ′(s) = U
†
c (s)H ′Uc(s).

At time t = Ntc (N is a positive integer), because H̃ ′(s) is
periodic with period tc, we have

Ũtot(t) = [Ũtot(tc)]N, (9)

and

Ũtot(tc) = T exp

[
−i

∫ tc

0
H̃ ′(s) ds

]
. (10)

The Magnus expansion [52] allows us to write (refer to
Appendix A),

Ũtot(tc) = exp[−itc(H̃ (0) + H̃ (1) + · · ·)], (11)

with,

H̃ (0) = 1

tc

∫ tc

0
ds H̃ ′(s). (12)

We ignore the higher order terms since we are concerned with
a low-order DD only.

Now it is at this point that the condition in Eq. (5) comes
in. Because of this condition, i.e.,

∫ tc
0 U

†
c (t)HSBUc(t)dt = 0,

we can eliminate the HSB term in H̃ (0). Therefore, H̃ (0) =
H̄ + HB, with

H̄ = 1

tc

∫ tc

0
ds U †

c (s)H0Uc(s). (13)

We also note that H̄ is independent of tc. Since Uc(t) is periodic
in time with period tc, we can write it as some function of t/tc,
say, U ′

c(t/tc). Then,

H̄ = 1

tc

∫ tc

0
dt U ′†

c (t/tc)H0U
′
c(t/tc),

=
∫ 1

0
dx U ′†

c (x)H0U
′
c(x), (14)

with x = t/tc. It follows that H̄ is indeed not an explicit
function of tc.

Keeping in mind that N = t/tc, we then find that to lowest
order in tc,

Ũtot(t) ≈ [
e−itcH̃

(0)]t/tc ≈ e−iH̄ t e−iHB t . (15)

Finally, transforming it back to the original frame (the
laboratory frame), we find that the unitary evolution operator
in this frame is

Utot(t) ≈ Uc(t)e−iH̄ t e−iHB t . (16)

But, because of the condition t = Ntc and the periodicity of
Uc(t), Uc(Ntc) is just identity. Obviously then, the system
has been decoupled from the environment—they both evolve
independently, since H̄ acts only on the system Hilbert space,
while HB acts only on the environment Hilbert space. Roughly
speaking, we can understand this result by realizing that under
the condition in Eq. (5), the system-environment interaction is
averaged out in the frame of the control fields.

A. Suppression of local noise

Let us now come back to our problem of finding control
fields to protect an arbitrary two-qubit state. As stated before,
in Ref. [50], continuous fields were found to eliminate the local
noise terms. Local noise here means the following restricted
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form of system-environment coupling:

HSB =
3∑

k=1

B
(1)
k σ

(1)
k +

3∑
k=1

B
(2)
k σ

(2)
k . (17)

Other coupling terms in Eq. (2) different from above are
loosely called nonlocal noise terms.

We recap what is already known: how to find continuous
fields to eliminate the above-defined local noise terms, as is
done in Ref. [50] (but with more details). We first observe that
with the unitary control operator

Uc(t) = U (1)
c (t)U (2)

c (t), (18)

where

U (k)
c (t) = e−2πiσ

(k)
x nx t/tc , k = 1,2, (19)

with nx a nonzero integer, we eliminate noise terms propor-
tional to σ (k)

y and σ (k)
z . Intuitively, this follows from the fact

that Uc(t) is just a rotation operator, and therefore causes the
σ (k)

y and σ (k)
z noise terms to rotate so that they average out

to zero. However, it leaves the σ (k)
x noise terms untouched. To

cancel these noise terms as well, we modify our unitary control
operator to

U (k)
c (t) = e−2πiσ

(k)
x nx t/tc e−2πiσ

(k)
z nzt/tc , (20)

where nz is another nonzero integer satisfying the condition
nx �= nz. The unitary control operator now consists of two
rotation operators. The σ (k)

x part of the unitary operator rotates
the σ (k)

z and σ (k)
y noise terms and averages them out to zero,

while the σ (k)
z part of the unitary control operator takes care

of the remaining σ (k)
x noise terms (it nevertheless also rotates

the σ (k)
y operators). The condition nx �= nz is important because

otherwise, the effect of the second rotation cancels some effect
of the first rotation such that, for instance, the σ (k)

y noise terms
do not average out to zero. All these claims can be examined by
explicitly verifying if Eq. (5) holds. For instance, we observe
that∫ tc

0
U †

c (t)σ (k)
x Uc(t) dt =

∫ tc

0
e4πinzσ

(k)
z t/tcσ (k)

x dt = 0. (21)

Also,∫ tc

0
U †

c (t)σ (k)
z Uc(t) dt

=
∫ tc

0
e2πinzσ

(k)
z t/tc e4πinxσ

(k)
x t/tc e−2πinzσ

(k)
z t/tc σ (k)

z dt. (22)

Using the commutator[
e2iωnxσ

(k)
x t ,e−iωnzσ

(k)
z t

] = −2i sin(2nxωt) sin(nzωt) σ (k)
y ,

where ω ≡ 2π
tc

, we can simplify it to∫ tc

0
U †

c (t)σ (k)
z Uc(t) dt

= −
∫ tc

0
2ie2πinzσ

(k)
z t/tc sin(2nxωt) sin(nzωt) σ (k)

y σ (k)
z dt

+
∫ tc

0
e4πinxσ

(k)
x t/tc σ (k)

z dt, (23)

which further simplifies to∫ tc

0
U †

c (t)σ (k)
z Uc(t) dt

= −2i

∫ tc

0

[
cos(nzωt) + i sin(nzωt)σ (k)

z

]
× sin(2nxωt) sin(nzωt) σ (k)

y σ (k)
z dt. (24)

Now ∫ tc

0
sin2(nzωt) sin(2nxωt)dt = 0, (25)

no matter what the values of nx and nz are, but in order to have∫ tc

0
cos(nzωt) sin(2nxωt) sin(nzωt) dt = 0, (26)

we require that nx �= nz. Therefore, if nx �= nz, the σ (k)
x noise

terms are eliminated. Similarly, one can check that the σ (k)
y

noise terms are also eliminated.
The necessary control field to implement the unitary control

operator Uc(t) can be found from the Schrodinger equation
i ∂Uc

∂t
= Hc(t)Uc(t). We then find

Hc(t) =
2∑

i=1

{
ωnxσ

(i)
x

+ ωnz

[
cos(2ωnxt)σ

(i)
z − sin(2ωnxt)σ

(i)
y

]}
. (27)

One obvious aspect of this control field is that both qubits are
addressed in exactly the same way. The field configuration is
also quite simple: it consists of a local static field and a local
rotating field.

However, the control Hamiltonian found above is not
universal. In particular, it cannot eliminate all possible forms of
system-environment coupling shown in Eq. (2). For instance,
consider the noise term proportional to σ (1)

x σ (2)
x . We find that∫ tc

0
U †

c (t)σ (1)
x σ (2)

x Uc(t) dt

=
∫ tc

0
e4πinzσ

(1)
z t/tc σ (1)

x e4πinzσ
(2)
z t/tc σ (2)

x dt

=
∫ tc

0

[
cos(2nzωt) + i sin(2nzωt)σ (1)

z

]
× [

cos(2nzωt) + i sin(2nzωt)σ (2)
z

]
σ (1)

x σ (2)
x dt �= 0.

(28)

This is obvious because∫ tc

0
cos2(2nzωt)σ (1)

x σ (2)
x dt �= 0.

Therefore, the σ (1)
x σ (2)

x noise term does not average out to zero
if σ (1)

x and σ (2)
x are rotated at the same frequency.

B. Universal protection of two-qubit states

We have just shown that it is not possible to eliminate all
the noise terms by applying the same field to both qubits. So
the important question is the following: is it possible to find
a field configuration in which, by applying different fields to
the two qubits, all the noise terms as shown in Eq. (2) can be
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eliminated? At the same time, we would also like to retain the
relative simplicity of the field configuration used for previous
local noise considerations. This motivates us to investigate if

Uc(t) = U (1)
c (t)U (2)

c (t), (29)

where

U (k)
c (t) = e−2πiσ

(k)
x n

(k)
x t/tc e−2πiσ

(k)
z n

(k)
z t/tc (30)

serves to eliminate all the noise terms. Note that since we
allow the possibility of different fields being applied to the
two qubits, this Uc(t) differs from the previous Uc(t) in that,
this time, the integers in U (1)

c and U (2)
c need not be the same

(previously we had n(1)
x = n(2)

x and n(1)
z = n(2)

z ). The postulated
Uc(t) is obviously periodic in time with period tc. Furthermore,
as shown below, we find that all the noise terms can indeed
be eliminated, provided that the integers n(1)

x , n(1)
z , n(2)

x , and
n(2)

z fulfill some criteria. For simplicity, we consider n(1)
x , n(1)

z ,
n(2)

x , and n(2)
z to be positive integers. Also, since we expect

that the integers are different, for our own convenience in
narrowing down the criteria fulfilled by the integers, we impose
the condition

n(1)
x < n(1)

z < n(2)
x < n(2)

z . (31)

Let us now find the criteria that the integers n(1)
x , n(1)

z , n(2)
x ,

and n(2)
z need to fulfill. To do this rigorously, we need to check

that each noise term averages out to zero under the action of
the applied fields. Since we have ordered the integers as in
Eq. (31), we already have that

n(1)
x �= n(1)

z , (32)

n(2)
x �= n(2)

z . (33)

Using the derivations in Sec. II A, it is easy to see that all local
noise terms are indeed eliminated.

We next examine the fate of nonlocal noise terms. For
instance, let us consider the noise term proportional to σ (1)

x σ (2)
x .

This time we have∫ tc

0
U †

c (t)σ (1)
x σ (2)

x Uc(t) dt

=
∫ tc

0
e4πin

(1)
z σ

(1)
z t/tc σ (1)

x e4πin
(2)
z σ

(2)
z t/tc σ (2)

x dt

=
∫ tc

0

[
cos

(
2n(1)

z ωt
) + i sin

(
2n(1)

z ωt
)
σ (1)

z

]
× [

cos
(
2n(2)

z ωt
) + i sin

(
2n(2)

z ωt
)
σ (2)

z

]
σ (1)

x σ (2)
x dt,

(34)

which is zero, provided that

n(1)
z �= n(2)

z . (35)

This is obvious because under the condition n(1)
z �= n(2)

z ,∫ tc

0
cos

(
2n(1)

z ωt
)

cos
(
2n(2)

z ωt
)
dt

and similar terms are all zero.
Therefore, one observes that if σ (1)

x and σ (2)
x are rotated

at different frequencies, then the noise term proportional
to σ (1)

x σ (2)
x is eliminated. This condition gives support to

our intuition that the fields applied to each qubit should be
different.

We next outline the calculation for the noise term propor-
tional to σ (1)

z σ (2)
z . In this case, the calculation is considerably

more involved. To calculate the required integral involving this
noise term, we first calculate (suppressing the k index),

e2πinzσzt/tc e2πinxσx t/tc σz e−2πinxσx t/tc e−2πinzσzt/tc

= e2πinzσzt/tc e4πinxσx t/tc e−2πinzσzt/tc σz

= cos(2nxωt)σz + sin(2nxωt) sin(2nzωt)σx

+ sin(2nxωt) cos(2nzωt)σy. (36)

The integral that we wish to set to zero then becomes∫ tc

0
U †

c (t)σ (1)
z σ (2)

z Uc(t) dt

=
∫ tc

0

[
cos

(
2n(1)

x ωt
)
σ (1)

z + sin
(
2n(1)

x ωt
)

sin
(
2n(1)

z ωt
)
σ (1)

x

+ sin
(
2n(1)

x ωt
)

cos
(
2n(1)

z ωt
)
σ (1)

y

]
× [

cos
(
2n(2)

x ωt
)
σ (2)

z + sin
(
2n(2)

x ωt
)

sin(2n(2)
z ωt)σ (2)

x

+ sin
(
2n(2)

x ωt
)

cos
(
2n(2)

z ωt
)
σ (2)

y

]
dt. (37)

By multiplying the terms in the square brackets above, we get
different terms. Each of these terms must individually integrate
to zero, because the tensor products of two Pauli matrices are
linearly independent in the operator space. So, for example,
we require that∫ tc

0
cos

(
2n(1)

x ωt
)

sin
(
2n(2)

x ωt
)

sin
(
2n(2)

z ωt
)
σ (1)

z σ (2)
x dt = 0,

(38)

which is true provided that

n(1)
x + n(2)

x − n(2)
z �= 0. (39)

One might think that we would also need three other condi-
tions, one of which is given by

n(1)
x − n(2)

x + n(2)
z �= 0. (40)

Fortunately, due to the ordering to the integers in Eq. (31), this
condition and the other two are redundant. Therefore, we can
ignore these redundant conditions.

Similarly, analyzing each of the others terms in Eq. (37)
one by one, and keeping the ordering of the integers in mind,
we arrive at the following list of criteria:

n(2)
z �= n(1)

x + n(2)
x ,

n(2)
x �= n(1)

z + n(1)
x ,

(41)
n(1)

x + n(1)
z + n(2)

x − n(2)
z �= 0,

n(1)
x − n(1)

z − n(2)
x + n(2)

z �= 0.

The other seven types of system-environment coupling shown
in Eq. (2) can be treated in a similar fashion and will not be
repeated here. Carefully going through all of them, we come
to the conclusion that by applying the unitary control operator
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in Eq. (29) with the following conditions

n(1)
x < n(1)

z < n(2)
x < n(2)

z ,

n(2)
x �= n(1)

x + n(1)
z ,

n(2)
z �= n(1)

x + n(2)
x ,

n(2)
z �= n(1)

x + n(1)
z , (42)

n(2)
z �= n(1)

z + n(2)
x ,

n(1)
x + n(1)

z + n(2)
x − n(2)

z �= 0,

n(1)
x − n(1)

z − n(2)
x + n(2)

z �= 0,

our two-qubit system can be (approximately) decoupled from
the most general environment. From the above conditions, it is
seen that not only must the frequencies in Uc(t) be all different,
but also that neither of the two larger frequencies should be the
sum of two smaller frequencies. Furthermore, the difference
of the two larger frequencies should not be equal to the sum
or the difference of the two smaller frequencies. It is not hard
to find integers that fulfill all the criteria we have found. One
possible choice is n(1)

x = 1, n(1)
z = 2, n(2)

x = 4, and n(2)
z = 8.

Finally, the control Hamiltonian Hc(t), which is needed to
generate the unitary operator Uc(t), is found to be [from the
time derivative of Uc(t)]

Hc(t) =
2∑

i=1

{
ωn(i)

x σ (i)
x

+ ωn(i)
z

[
cos

(
2ωn(i)

x t
)
σ (i)

z − sin
(
2ωn(i)

x t
)
σ (i)

y

]}
.

(43)

Each of the two qubits is now subject to a different local control
field consisting of a static field and a rotating field; we must
address each qubit individually. With these control fields, the
two-qubit system is dynamically decoupled from the environ-
ment for all possible types of system-environment coupling.
Note also from Eq. (43) that the field amplitude should also
go up if the frequencies of the driving field are increased to
compete with the cutoff frequency of the environment.

III. PROTECTION OF TWO-QUBIT GATES

Once we have the control operator Uc(t) that is able to
protect two qubits against decoherence in a universal manner,
the next natural question is how to turn on coherent evolution
in two-qubit systems such that two-qubit gates can be also
protected. This is important because, in reality, there is no
instantaneous quantum gate. As shown below, we can extend
our previous considerations to protect a two-qubit state and
implement a desired gate at the same time. Some early studies
considered the protection of a two-qubit gate against random
dephasing [53] and against bit-flip errors [54], but these early
decoherence suppression approaches are not applicable to an
arbitrary environment. Our procedure is analogous to that
in Refs. [47,48] but for most general system-environment
coupling in two-qubit systems. The extension here is worth-
while because in actual realizations of two-qubit gates, it is
unavoidable that the two-qubit interaction Hamiltonian will
suffer from fluctuations, on top of local noise terms seen by
each individual qubit.

A. Two-qubit gate under pure dephasing

To illustrate the method, we start off with the simple case
of pure dephasing. The interaction between the two qubits and
their environment is given by

Hdephasing = B(1)
z σ (1)

z + B(2)
z σ (2)

z + B(12)
zz σ (1)

z σ (2)
z . (44)

As can be easily verified, in this case, a simpler control operator

Uc(t) = exp
(−2πiσ (1)

x n1t/tc
)

exp
(−2πiσ (2)

x n2t/tc
)
, (45)

with n1 �= n2, suffices to protect two-qubit states.
Consider now a two-qubit gate that converts a separable

state into a Bell state, i.e.,

|ψ0〉 = 1√
2

(|↑〉x + |↓〉x) |↓〉x −→ 1√
2

(|↑↓〉x + |↓↑〉x),

where

|↑〉x = 1√
2

(|0〉 + |1〉), (46)

|↓〉x = 1√
2

(|0〉 − |1〉), (47)

with |0〉 and |1〉 being eigenstates of the σz operator. We
consider the initial state to be |ψ0〉 in order to bring out clearly
the effect of the dephasing noise. It should be noted that the
above gate is analogous to the usual controlled-NOT (CNOT)
gate, since the CNOT gate performs the operation 1√

2
(|0〉 +

|1〉) |1〉 −→ 1√
2
(|01〉 + |10〉). Therefore, we refer to the gate

implementing the above operation as the CNOT gate. We work
with the CNOT gate because it generates entanglement—the
usual CNOT gate acting on 1√

2
(|↑〉x + |↓〉x) |↓〉x yields a

separable state.
The most straightforward way to implement the CNOT gate

(up to an irrelevant global phase) is to use the two-qubit
Hamiltonian

H0 = π

2τ

1

2

(
σ (1)

x + σ (2)
z − σ (1)

x σ (2)
z

)
, (48)

where τ is the time over which the gate is implemented. Note
that no decoherence control fields are being applied at this
stage. Therefore, during the gate operation time, the two-qubit
state is vulnerable to decoherence due to the environment. Our
task is to modify the Hamiltonian given by Eq. (48) such that
the new Hamiltonian not only implements the CNOT gate, but
also prevents decoherence.

To find this new Hamiltonian, we begin by writing the
system Hamiltonian as

HS(t) = H0(t) + Hc(t), (49)

where H0(t) implements the gate. To find the unitary control
operator that both implements the gate and protects against
decoherence, the basic idea is to once again transform to the
frame given by Hc(t). Now, in this frame, the effect of the
environment has already been largely removed; it is almost as
if the environment were not there. Therefore, we implement
the gate in this picture. After doing so, we simply transform
back to our original reference frame to find the total unitary
control operator.
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Let us now carry out these ideas in detail in order to
find the required HS(t). We first, once again, write the total
Hamiltonian as

H = H ′(t) + Hc(t), (50)

where H ′(t) = H0(t) + HB + HSB. We now transform to the
frame of the control fields, as we did before. In this frame,
H0(t) becomes H̃0 = U

†
c (t)H0(t)Uc(t). Corresponding to this

Hamiltonian, there is a unitary time-evolution operator

Ũ0(t) = T exp

[
−i

∫ t

0
H̃0(s)ds

]
. (51)

It is this unitary operator that we use to implement the gate.
Therefore,

Ũ0(t) = exp

[
−i

π

2τ

t

2

(
I + σ (1)

x + σ (2)
z − σ (1)

x σ (2)
z

)]
, (52)

where again τ is the time over which the gate is implemented
up to a global phase, that is, Ugate = Ũ0(t = τ ). We set τ = Ntc
(N is a positive integer). Comparing Eqs. (51) and (52), it is
clear that

H̃0 = π

2τ

1

2

(
σ (1)

x + σ (2)
z − σ (1)

x σ (2)
z

)
(53)

will do the right job (this choice for H̃0 is simple because it is
time independent).

As shown in our previous general consideration of DD in
Sec. II, the total system-environment time-evolution operator
in the frame of the control fields is already approximately
decoupled into a product of system and environment parts [see
Eq. (15)]. In particular, applying the Magnus expansion to the
following total evolution operator

Ũtot(τ ) = T exp

[
−i

∫ τ

0
H̃ ′(s) ds

]
, (54)

we have that for sufficiently small tc,

Ũtot(τ ) ≈ e−iH̃0τ e−iHBτ = Ugate e−iHBτ . (55)

We finally transform back to the original frame. In this frame,
the unitary time evolution operator is given by

Utot(τ ) ≈ Uc(τ )Ugate e−iHBτ . (56)

But Uc(τ ) is just identity, leading to

Utot(τ ) ≈ Ugate e−iHBτ . (57)

Clearly then, the desired gate operation is performed on the
two-qubit system.

For arbitrary time t , the system is also approximately
decoupled from the environment (because in the limit tc ≈ 0,
t is always close to an integer multiple of tc). Then, in the
laboratory frame the overall unitary evolution operator for the
two-qubit system at arbitrary time t is given by

US(t) = Uc(t)Ũ0(t)

= exp
(−2πiσ (1)

x n1t/tc
)

exp
(−2πiσ (2)

x n2t/tc
)
Ũ0(t).

(58)

Further using the time-dependent Schrodinger equation, the
Hamiltonian that generates the overall evolution operator US(t)
can be obtained as

HS(t) = ωn1σ
(1)
x + ωn2σ

(2)
x

+ π

2τ

1

2

[
σ (1)

x + σ (2)
z cos(2ωn2t) − σ (2)

y sin(2ωn2t)

− σ (1)
x σ (2)

z cos(2ωn2t) + σ (1)
x σ (2)

y sin(2ωn2t)
]
,

(59)

with n1 �= n2. By our construction above, such a field configu-
ration implements the gate and protects against two-qubit pure
dephasing at the same time. Note that here some nonlocal
field components are needed. This is expected. After all,
the original CNOT gate Hamiltonian, Eq. (48), also needs a
qubit-qubit interaction term. The message is that an oscillating
qubit-qubit interaction can be highly useful in implementing
robust two-qubit gates in a noisy environment. This need for
oscillating qubit-qubit interaction here should not be regarded
as a great disadvantage of our universal continuous DD. In
fact, even in pulsed DD schemes for entanglement protection
[31], pulsed qubit-qubit interaction is necessary to reduce the
number of UDD layers. The requirement for time-dependent
qubit-qubit interaction terms is also consistent with previous
case studies under the general DCG framework [41,42].

B. CZ gate protected against most general environment

We are now ready to carry out similar calculations to
construct a field configuration that protects a two-qubit gate
against all possible forms of system-environment coupling. As
an example, we consider the implementation of a controlled
phase (CZ) gate [55]. This case is representative, because if we
can reliably implement the CZ gate in the presence of arbitrary
decoherence sources, then, together with single-qubit gates,
we can perform universal gate operations in the presence of an
unknown environment.

The CZ gate, in a matrix form in the standard representation,
can be written as

UCZ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ . (60)

To achieve this unitary operation (up to a global phase) on a
two-qubit system, a desired bare Hamiltonian would be

H0 = π

2τ

1

2

(
σ (1)

z + σ (2)
z − σ (1)

z σ (2)
z

)
. (61)

where τ is the gate operation time. But the resulting two-qubit
state is not protected against the environment. As such, we
seek instead a time-dependent system Hamiltonian HS(t).

Our previous treatment for the CNOT gate in a pure
dephasing model can be extended easily. The physical picture
underlying the technique remains exactly the same. That is,
we implement the desired gate in the rotating frame and
then transform it back to the laboratory frame. Following our
previous notation, in the rotating frame we hope to have

Ũ0(t) = exp

[
−i

π

2τ

t

2

(
I + σ (1)

z + σ (2)
z − σ (1)

z σ (2)
z

)]
. (62)
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On the other hand, Uc(t) is given by Eq. (29). By combining
these two unitary operators as before, the sought Hamiltonian
is determined by simply using the time-dependent Schrodinger
equation on the overall unitary evolution operator. It is found
to be

HS(t) =
2∑

i=1

{
ωn(i)

x σ (i)
x + ωn(i)

z

[
cos

(
2ωn(i)

x t
)
σ (i)

z

− sin
(
2ωn(i)

x t
)
σ (i)

y

]} + π

2τ

1

2

[
σ (1)

z cos
(
2ωn(1)

x t
)

− σ (1)
y sin

(
2ωn(1)

x t
) + σ (2)

z cos
(
2ωn(2)

x t
)

− σ (2)
y sin

(
2ωn(2)

x t
)

− σ (1)
z σ (2)

z cos
(
2ωn(1)

x t
)

cos
(
2ωn(2)

x t
)

+ σ (1)
z σ (2)

y cos
(
2ωn(1)

x t
)

sin
(
2ωn(2)

x t
)

+ σ (1)
y σ (2)

z sin
(
2ωn(1)

x t
)

cos
(
2ωn(2)

x t
)

− σ (1)
y σ (2)

y sin
(
2ωn(1)

x t
)

sin
(
2ωn(2)

x t
)]

. (63)

We stress that here we did not make any assumption about
the system-environment coupling. A CZ gate can hence be
implemented and protected against any type of decoherence,
so long as the driving frequencies are sufficiently large (also
sufficiently strong) relative to the cutoff frequency of the
environment. Comparing the system Hamiltonian here with
that in the previous pure-dephasing case, more oscillating
qubit-qubit interaction terms are required for decoherence
suppression. Another interesting observation is that here, the
oscillating qubit-qubit interaction terms carry the sum and
the difference frequencies 2(n(1)

x + n(2)
x )ω and 2(n(1)

x − n(2)
x )ω.

This feature can be regarded as a result of the dual role of the
control fields (implementing and protecting a gate). It is also
consistent with the fact that the two qubits should be rotated
at different frequencies. We do not suggest that the required
control fields in Eq. (63) are easy to realize experimentally. But
at least, such an explicit solution as an example of universal DD
is indicative of what could be crucial in protecting two-qubit
gates without making assumptions of system-environment
coupling. Our two-qubit gate construction also constitutes an
explicit and simple implementation of DCG [41,42] to fight
against arbitrary (environment-induced) single-qubit and two-
qubit errors, using a static field plus several continuous-wave
driving fields of different frequencies.

IV. THE MASTER EQUATION

In this section, we briefly introduce a master equation for
our use in numerical simulations. Here we only summarize the
basic formalism. For a conceptually simple derivation of the
master equation based solely on time-dependent perturbation
theory and not on any special techniques such as projection-
operator methods, please see Appendix B.

In the master equation approach [56], we find the dynamics
of a system that is coupled to the environment by first
considering the total system consisting of the system and the
environment as closed. We then trace over the environment to
obtain a differential equation, known as the master equation,
for the reduced density matrix of the system.

We start by writing down the Hamiltonian of the total
system as

Htot = HS(t) + HB + HSB(t), (64)

where HS(t) describes the system Hamiltonian, HB the
environment Hamiltonian, and HSB is the interaction between
the system and the environment. In general, we can write

HSB(t) =
∑

j

Fj (t) ⊗ Bj (t). (65)

Here, the Fj (t) are operators in the system Hilbert space, and
the Bj (t) are operators in the environment Hilbert space.

We assume that the interaction between the system and
the environment is weak, and that the total initial state of
the system and environment is a product state. We can then
derive the master equation describing the time evolution of the
reduced density matrix ρ of the system as

dρ(t)

dt
= i[ρ(t),H (t)]

+
∑

j

∫ t

t0

ds{[F̄j (t,s)ρ(t),Fj (t)]Cj
ts + H.c.}, (66)

where,

F̄j (t,s) = US(t,s)Fj (s)U †
S(t,s), (67)

C
j
ts = 〈B̃j (t)B̃j (s)〉, (68)

B̃j (t) = U
†
B(t,t0)B(t)UB(t,t0), (69)

and UB(t,t0) and US(t,t0) are the unitary time-evolution
operators corresponding to HB and HS(t), respectively. Such
a master equation has been used previously in Ref. [57].

We consider the environment as a collection of an infinite
number of harmonic oscillators, so that

HB =
∑

j

∑
k

ωj,ka
†
j,kaj,k. (70)

Here index k denotes different modes of the oscillators in one
bath, and index j denotes different thermal baths. Furthermore,
we take the Bj operators for the j th bath as

Bj =
∑

k

(gj,kaj,k + g∗
j,ka

†
j,k), (71)

where the gj,k are coupling strength parameters. All the baths
are assumed to be in a thermal equilibrium state with the
same temperature T . We then note that the bath correlation
function, given by C

j
ts , can be written as a function of the

time difference t − s. To proceed with the calculation the bath
correlation functions, the discrete modes of the environment
are replaced by a smooth continuum of modes specified by the
so-called spectral density J (	). For our numerical simulations,
we consider an Ohmic spectral density with an exponential
cutoff, that is,

J (	) = G	e−	/ωc , (72)

where G is the coupling constant, and ωc is the cutoff frequency
of a bath. For simplicity, we assume that all baths have the same
spectral density, with the same G and ωc.
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V. NUMERICAL RESULTS

In this section we present numerical results illustrating
universal protection of two-qubit states and two-qubit gates.
Two extreme cases are considered. In the first case, two qubits
are coupled to 15 different baths, each of which induces one
type of system-environment coupling. The operators Fj in the
master equation (66) are then given by

Fj = 1
2σ

(1)
k σ

(2)
l , (73)

where σ0 = I , and the notation for Pauli matrices is the
same as before. In the second case, all possible types of
decoherence are modeled by a common bath. That is, in the
master equation (66), there is only one Fj , which is written as

F = 1

2

(
3∑

k=1

σ
(1)
k +

3∑
k=1

σ
(2)
k +

3∑
k=1,l=1

σ
(1)
k σ

(2)
l

)
. (74)

In addition, pure-dephasing cases are also considered, with the
different and common bath cases defined in an analogous way.
The only difference is that for pure-dephasing cases, there are
no terms containing σx or σy in the Fj operators.

We work in dimensionless units with h̄ = 1 and kBT = 2. In
these units, the parameters we use are ωC = 2π , and tc = 0.5
(so ω = 4π ), unless stated otherwise. As the measure of
bipartite entanglement, we use the concurrence [58]. Given
a two-qubit density matrix ρ, the concurrence C is defined as
C ≡ max{λ1 − λ2 − λ3 − λ4,0}, where the λi are the square
roots of the eigenvalues (in descending order) of the matrix
ρ(σ (1)

y ⊗ σ (2)
y )ρ∗(σ (1)

y ⊗ σ (2)
y ) (the asterisk denotes complex

conjugation).
We first present results of two-qubit state protection using

our universal continuous DD fields. For convenience, the self-
Hamiltonian of the two-qubit system is set to zero.

Figures 1 and 2 illustrate the performance of the deco-
herence control fields in protecting two-qubit entanglement
against an environment that generates all types of decoherence.
Without these fields, we see (dotted curve) that, in both
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FIG. 1. Entanglement vs time without decoherence control
fields (dotted line) and with applied control fields (dashed and solid
lines). The environment is modeled by 15 different baths, i.e., in
our master equation, the system coupling operators are given by
Eq. (73). The dashed line is for n(1)

x = 1,n(1)
z = 2,n(2)

x = 4,n(2)
z = 8.

The solid line is for stronger and higher frequency fields with
n(1)

x = 2,n(1)
z = 4,n(2)

x = 8,n(2)
z = 16. For this numerical simulation,

we use G = 0.05. Here and in all other figures, all plotted quantities
are in dimensionless units.
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FIG. 2. Same as Fig. 1, but here the environment is modeled
by one common bath, with the system coupling operator given by
Eq. (74).

the common-bath and different-bath cases, the entanglement
rapidly decays due to the interaction with the environment.
The situation changes dramatically after switching on the
continuous control fields. The dashed curves demonstrate
the suppression of entanglement decay due to the control
fields. Furthermore, by applying fields of greater strength and
higher frequency (the solid curves)—thus effectively reducing
tc—even better protection of entanglement is achieved.

We now study the effectiveness of the control Hamiltonian
found in Eq. (59) in implementing the CNOT gate in the
presence of pure dephasing. First, the Hamiltonian that only
implements the gate without decoherence control is given by
Eq. (48), which we rewrite here for convenience as

H0 = π

2τ

1

2

(
σ (1)

x + σ (2)
z − σ (1)

x σ (2)
z

)
.

This Hamiltonian should be contrasted with the Hamiltonian
in Eq. (59) that both implements the gate and protects against
decoherence. Using numerical simulations, we can directly
compare the performance of these two Hamiltonians for
entanglement generation in the presence of pure dephasing.

Such a comparison is done in Figs. 3 and 4. The dashed
curves depict the entanglement generation by the bare Hamil-
tonian Eq. (48) and the solid lines are for the performance by
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FIG. 3. For the CNOT gate, behavior of entanglement vs time using
a bare Hamiltonian that only implements the gate (dashed line) and
using control fields that both implement the gate and protect against
all types of pure dephasing (solid line) for the case of different baths.
In the dimensionless units defined before, the parameters used are
n1 = 2,n2 = 1,τ = 0.5,G = 0.03.
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FIG. 4. Same as Fig. 3, but for the common bath case.

the control Hamiltonian given in Eq. (59). As expected from
an entangling gate, both Hamiltonians generate entanglement
with similar performance in the beginning. However, after
some time (for common-bath and different-bath cases), the
effect of the environment is accumulated and eventually the
bare Hamiltonian loses its battle against the environment,
whereas for our constructed control Hamiltonian, the entan-
glement generation stays close to its expected value. By the
time the gate operation is completed, much better performance
is achieved due to the application of continuous DD fields.

We now perform a similar task for the CZ gate in the
presence of all types of decoherence. The CZ gate is used to
take a separable state to a fully entangled state. We compare the
gate performance afforded by the control Hamiltonian given by
Eq. (63) with that of a bare Hamiltonian that solely implements
the CZ gate. The bare Hamiltonian, as already given by
Eq. (61), is

H0 = π

2τ

1

2

(
σ (1)

z + σ (2)
z − σ (1)

z σ (2)
z

)
.

Up to a global phase factor, this Hamiltonian implements the
CZ gate in time τ . We stress that numerical simulations here
are no longer restricted to pure dephasing. Instead we are
considering the most general case, allowing errors such as
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FIG. 5. Evolution of entanglement using a bare Hamiltonian that
only implements the gate (dashed line) and using control fields that
both implement the gate and protect against decoherence at the same
time (solid line) for the case of 15 different baths [Eq. (73)]. The
parameters (in dimensionless units defined before) are τ = 0.5,G =
0.02,ωc = π,n(1)

x = 1,n(1)
z = 2,n(2)

x = 4,n(2)
z = 8. The CZ gate here

converts a separable state to an entangled state.
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FIG. 6. Same as Fig. 5, but for the case of a common bath
[Eq. (74)].

uncorrelated bit flipping and dephasing as well as “noisy”
interaction between the two qubits.

In Figs. 5 and 6, the dashed curves depict the performance
of the bare Hamiltonian in Eq. (61), whereas the solid curves
show the performance of the control Hamiltonian we found
in Eq. (63). Once again, the performance benefit is obvious.
In both the different-bath and common-bath cases, with the
continuous DD fields implemented, we are able to achieve
almost perfectly entangled states even in the presence of
all possible types of decoherence. By contrast, the desired
coherent evolution takes place with a clearly poor fidelity if
only a bare Hamiltonian is used.

VI. CONCLUSION

In this paper, we first asked and then answered the following
question: is it possible to use several continuous-wave driving
fields to achieve (albeit low-order) protection of two-qubit
states as a universal dynamical decoupling approach? By
extending the methodology in Ref. [50], we have found a
rather simple field configuration to achieve this task. This
associated decoherence control is completely general in the
sense that it is able to protect the state against all types of
decoherence, so long as the frequency of the control fields is
sufficiently large (with sufficient field strength) as compared
with the environment cutoff frequency. From a practical point
of view, the very existence of a universal scheme is important
if we do not have enough information about the environment.
The found continuous DD is also relatively simple: only local
continuous and periodic fields are required. Our results are
thus at least complementary to recent studies of universal
pulsed DD for entanglement protection. In particular, under the
circumstances where multipulse DD is difficult to implement
(e.g., due to the requirement of very small pulse intervals), then
our universal continuous DD scheme provides one alternative.
Furthermore, one can imagine using a combination of pulsed
DD and continuous DD to reliably store quantum information.

We have also constructed continuous control fields to
implement two-qubit gates in the presence of most general
decoherence. This is important for three reasons. First, it
always takes a finite amount of time for a quantum gate
to be implemented and as such a two-qubit gate must be
protected against decoherence during the gate operation time.
Second, during the implementation of a two-qubit gate,
coherent evolution of the system itself complicates the issue
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of decoherence control due to the transformation between
different types of quantum coherence properties. Third, the
implementation of two-qubit gates itself will unavoidably
bring about noise in qubit-qubit interactions. As seen from
two case studies of universal two-qubit gate protection against
both local and nonlocal noise, the required control Hamiltonian
is not too complicated, with the most involving component
being oscillating qubit-qubit interaction terms. Our treatment
is general in the sense that we have not considered any
particular physical implementation of a two-qubit gate. It
would be interesting to apply our findings here to a particular
physical realization of two-qubit gates. One excellent example
would be in the recent implementation of superconducting
two-qubit gates using simple microwave fields [59]. In a
second example from the trapped-ion context, continuous
microwave driving is already theoretically considered to
protect two-qubit gates against noise due to magnetic field
fluctuations and the thermal motion of the ions [60]. Of course,
in such physical realizations, it may be the case that only a
few noise sources contribute appreciably to decoherence and
therefore the required continuous DD fields may be simplified.
Our results here also lay a useful starting point for future
optimization studies [44,61,62] by, for example, first extracting
some information about an environment. Finally, as pointed
out earlier, this work offers an explicit and simple route to
constructing dynamically corrected two-qubit gates [41,42] to
fight against arbitrary system-environment coupling.
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APPENIDX A: THE MAGNUS EXPANSION

The Magnus expansion [52] says that the unitary evolution
operator U (t) corresponding to a time-dependent Hamiltonian
H (t) can be written as

U (t) = exp
∞∑
i=1

Ai(t), (A1)

where

A1 = −i

∫ t

0
dt1H (t1), (A2)

A2 = −1

2

∫ t

0
dt1

∫ t1

0
dt2[H (t1),H (t2)], (A3)

with higher order terms given by higher order commutator
expressions. For further details, we refer the reader to Ref. [63].

APPENIDX B: DERIVATION OF THE MASTER EQUATION

Here we present a conceptually simple derivation of the
non-Markovian master equation that we have used. Such a
master equation has been previously used in, for example,
Ref. [57]. However, unlike Ref. [57], we do not use any

advanced techniques such as the projection-operator method
to derive the master equation. Rather, we only use a simple
perturbation theory. Note that it is essential that we do not
make the Markov approximation since we are interested in
decoherence control.

For simplicity, here we derive the master equation for a
system interacting with an environment consisting of a single
bath. The more general case of the environment consisting of
multiple baths can be dealt with via a simple extension. As
usual, we start off by writing down the Hamiltonian of the
total system,

Htot(t) = H (t) + V (t). (B1)

H (t) = HS(t) + HB is the Hamiltonian describing the free
system and the bath, and, for notational convenience, here
we use V (t) instead of HSB to represent coupling between
them. Note that these are Schrodinger picture operators. Any
time dependence in the system Hamiltonian or the Hamiltonian
describing the coupling is an explicit time dependence. This
time dependence can arise, for instance, due to the application
of external fields.

Consider system-environment operators of the form Y ⊗
IB, where Y is an operator acting on the Hilbert space of the
system and IB denotes identity in the Hilbert space of the
environment. If the state of the total system is described by
the density matrix ρtot(t), then the expectation value of the
operator Y is given by

〈Y 〉 = TrS(Yρ), (B2)

where ρ = TrBρtot. TrB denotes taking trace over the bath
degrees of freedom, while TrS means tracing out the system de-
grees of freedom. Now, ρ is our primary object of interest. We
are trying to derive an equation of motion for ρ. Note also that

〈Y 〉 = TrS,B[(Y ⊗ IB)ρtot]. (B3)

Now, for computational purposes, we express the density
matrix in some basis, namely, ρmn(t) = 〈m| ρ(t) |n〉. In
particular, if we choose Y = |n〉 〈m| ≡ Ynm, we get

〈Y 〉 = TrS[Ynmρ(t)]

= 〈m| ρ(t) |n〉 = ρmn(t)

= TrS,B[(Ynm ⊗ IB)ρtot(t)]

= TrS,B[U †(t,t0)(Ynm ⊗ IB)U (t,t0)ρtot(t0)], (B4)

where U (t,t0) is the unitary evolution operator describing the
unitary evolution of the total system. The cyclic invariance
property of the trace has also been used. Defining Ynm ⊗ IB ≡
Xnm, we observe that U †(t,t0)XnmU (t,t0) is just a Heisenberg
picture operator. We refer to this operator as Xnm(t), with the
understanding that any X operator with a time dependence is
in the Heisenberg picture. Therefore, we can write

ρmn(t) = TrS,B[ρtot(t0)Xnm]. (B5)

It follows that

dρmn(t)

dt
= TrS,B

[
ρtot(t0)

dXnm

dt

]
. (B6)

We now derive the Heisenberg equation of motion for a
general system-environment operator, and substitute that in
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the above expression. After doing so, we take the trace over
the system and the environment to obtain our master equation.
We proceed with the derivation of this Heisenberg equation of
motion using perturbation theory.

As in standard time-dependent perturbation theory, we set
U (t,t0) = U0(t,t0)UI (t,t0) where U0(t,t0) = US(t,t0)UB(t,t0)
describes the free evolution of the system and environment, and
the UI (t,t0) comes in due to the coupling with the environment.
It follows then that to first order in the system-environment
coupling,

U (t,t0) = U0(t,t0)

(
1 − i

∫ t

t0

dsṼ (s)

)
, (B7)

where Ṽ (s) = U
†
0 (s,t0)V (s)U0(s,t0).

We know that operators in the Heisenberg picture and
operators in the Schrodinger picture are related by,

OH (t) = U †(t,t0)O(t)U (t,t0), (B8)

where O(t) is a general Schrodinger picture operator, and
OH (t) is its Heisenberg picture counterpart.

Considering OH (t) to be a general system-environment
operator that has no explicit time dependence, we have the
Heisenberg equation of motion,

dOH (t)

dt
= i[HH (t),OH (t)] + i[VH (t),OH (t)]. (B9)

Using our above perturbative expression for the unitary time
evolution operator, and observing that [VH (t),OH (t)] is a
Heisenberg picture operator, we have

dOH (t)

dt
= i[HH (t),OH (t)] + i[Ṽ (t),Õ(t)]

+
∫ t

t0

ds[[Ṽ (t),Õ(t)],Ṽ (s)]. (B10)

We now set OH (t) = Xnm(t), and substitute Eq. (B10) in
Eq. (B6). Each term of Eq. (B10) gives a term in the master
equation, so we work them out one by one. We assume that
the initial state is a product state ρ(t0) ⊗ ρB.

The first term of Eq. (B10), i.e., i[HH (t),Xnm(t)], when
substituted in Eq. (B6), leads to

TrS,B{(ρ(t0) ⊗ ρB)i[HH (t),Xnm(t)]} = i
∑
m′n′

�mnm′n′ρm′n′ ,

(B11)

where �mnm′n′ ≡ δmm′Hn′n(t) − δnn′Hmm′(t). The second term
of (B10), i.e., i[Ṽ (t),X̃nm(t)], leads to

TrS,B{i[ρ(t0) ⊗ ρB]U †
0 (t,t0)[V (t),Xnm]U0(t,t0)}.

The system-environment coupling is of the form

V (t) = F (t) ⊗ B(t), (B12)

where F (t) is an operator acting in the Hilbert space of the
system and B(t) is an operator acting in the Hilbert space of
the environment. With such a coupling, we can then work out
the trace over the environment. This is given by

TrB[ρBU
†
B(t,t0)B(t)UB(t,t0)] = 〈B(t)〉. (B13)

We assume that this is zero. This is commonly referred to as
“centering” of the bath.

The last term of Eq. (B10), when substituted in Eq. (B6),
gives us four terms. Here, we only show the working for one
of them. The rest can be worked out in almost the same way.
We now proceed to simplify

TrS,B

[
[ρ(t0) ⊗ ρB]

∫ t

t0

ds Ṽ (t)X̃nm(t)Ṽ (s)

]
. (B14)

The trace over the environment gives

TrB[ρBU
†
B(t,t0)B(t)UB(t,t0)U †

B(s,t0)B(s)UB(s,t0)]

= 〈B̃(t)B̃(s)〉 = Cts. (B15)

The trace over the system gives

TrS[ρ̃(t)F (t)YnmUS(t,s)F (s)U †
S(t,s)].

We can now use the completeness relations of the basis states
to write

F (t) =
∑
n′m′

Fn′m′(t)Yn′m′ , (B16)

F (s) =
∑
αβ

Fαβ(s)Yαβ, (B17)

US(t,s) =
∑
μν

U
μν

S (t,s)Yμν, (B18)

U
†
S(t,s) =

∑
μ′ν ′

U
†μ′ν ′
S Yμ′ν ′ =

∑
μ′ν ′

U
∗ν ′μ′
S Yμ′ν ′ . (B19)

Substituting these relations back, and assuming that our basis
states are orthonormal, we can simplify the trace over the
system to∑

n′m′

∑
μ′ν ′

Fn′n(t)Fm′μ′(s)Umm′
S (t,s)U †μ′ν ′

S (t,s)ρν ′n′(t),

where ρ̃(t) has been replaced by ρ(t). This is justified since
the correction gives us terms of higher order in the coupling
strength in the master equation. For convenience, we define

gmν ′
m′μ′(t,s) ≡ Umm′

S (t,s)U ∗ν ′μ′
S (t,s). (B20)

Putting all the above expressions together, Eq. (B14) simplifies
to∫ t

t0

ds
∑
n′m′

∑
μν

Fn′n(t)Fm′μ(s)gmν
m′μ(t,s)ρνn′(t)〈B̃(t)B̃(s)〉.

(B21)

After working out all other terms, we finally arrive at the master
equation

dρmn(t)

dt
= i

∑
m′n′

�mnm′n′ (t)ρm′n′(t) +
∑
m′n′

ρm′n′ (t)

×
{ ∫ t

t0

ds
∑
μν

∑
l

[
δνm′Fn′n(t)Flμ(s)gmν

lμ (t,s)Cts

+ δνn′Fmm′(t)Fμl(s)gνn
μl (t,s)Cst

−
∑

l′

[
δmm′δμn′Fl′n(t)Fνl(s)gμl′

νl (t,s)Cst

+ δμm′δnn′Fml′(t)Flν(s)gl′μ
lν (t,s)Cts

]]}
. (B22)
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From a computational point of view, this is the most
useful form of the master equation. However, it is also useful
to see the basis-independent form of the master equation.
Using the completeness relations of the basis states in the
master equation above, one can remove the summations.
After taking into account the possibility of multiple baths,
one then ends up with the basis-independent form of the
master equation, which is given by Eq. (66) in the main
text.

To solve the master equation, we first note that the system
Hamiltonian is generally explicitly time dependent. In such a
case, we cannot, in general, calculate US(t,s) in a simple way.
Furthermore, solving the master equation itself becomes much
more involved because of this explicit time dependence, since

the integrand in the master equation now depends explicitly
on t . For our purpose, however, since we are only interested in
short times, we can still use a straightforward method to solve
the master equation. Even though we know US(t,s) for our
case, we choose to start from the Hamiltonians; this serves as
a check that the Hamiltonians have been calculated correctly.
We first use the split-operator method [64–66] to calculate
US(t,s), then perform the integration in the master equation
numerically, and then finally solve the differential equation
using the fourth-order Runge-Kutta (RK4) algorithm [67]. We
also note that there are considerably more involved and more
efficient methods to solve such driven open system problems
based on a decomposition of the bath spectral density (see,
for example, Ref. [68]).
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