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Photonic realization of PT -symmetric quantum field theories
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A photonic realization of the quantum field theoretical Lee model, describing the strong coupling of two
neutral fermions and a neutral scalar boson field, is proposed in the ghost regime, where the Lee Hamiltonian is
non-Hermitian but PT symmetric. Our optical system, which is based on light transport in an engineered semi-
infinite waveguide lattice, could provide an accessible laboratory system to simulate PT -symmetric quantum
field theories and to visualize the appearance and role of ghost states in the dynamics.
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I. INTRODUCTION

An unpleasant feature arising in nonperturbative renormal-
ization procedures of relativistic quantum field theories (QFTs)
is the “ghost problem,” (i.e., the appearance of negative norm
states and nonunitary of the S-matrix for strong coupling).
Such predictions are generally viewed as a fundamental
deficiency for an acceptable QFT [1–3]. This happens, for
example, in the Lee model [4], which was introduced in 1954
by Lee as a simple toy model of three interacting fields (two
neutral fermion fields and a neutral scalar boson field) in
which renormalization can be exactly performed. Källen and
Pauli showed that, when the renormalized coupling constant
is larger than a critical value, the Hamiltonian of the Lee
model becomes non-Hermitian and a ghost state appears [2,5].
Numerous attempts were suggested to make sense of ghost
states, for example, by introduction of an indefinite metric
in the Hilbert space; however, at the price of giving up
microscopic causality and the unitarity of the S-matrix (see, for
instance, Ref. [2] and references therein). This was regarded as
unacceptable and the Lee model in the ghost regime has been
then generally viewed as an unsatisfactory QFT [3]. However,
since the advent of PT quantum mechanics [6–8], there has
been a renewed interest in PT -symmetric extensions of QFTs
[7,9,10], including the Lee model in the ghost regime [10]. In
Ref. [10], Carl Bender and collaborators noticed that, in the
ghost regime, the Lee Hamiltonian is not Hermitian, however it
does possessPT symmetry (i.e., it is invariant under combined
space reflection and time reversal), and a unitary quantum
theory can be constructed by introduction of an appropriate
time-independent operator (the C operator) and a new inner
product, in terms of which the ghost state has a positive norm
and the Lee model is an acceptable unitary quantum field
theory for all values of coupling.

Recently, a great interest has been devoted to the realization
of physical systems described byPT -symmetric Hamiltonians
[11–20], including optical [12,13,15–19] and electronic [20]
systems. In particular, since the pioneering work by Makris,
El Ganay, and collaborators [12], it has been recognized
that light propagation in engineered photonic structures
with balanced optical gain and absorption can provide an
experimentally accessible test bed to realize PT -symmetric
quantum mechanical theories, with important applications to
the realization of nonreciprocal optical devices [19]. Most
of such previous studies in the optical context have been
mainly focused to the realization of nonrelativistic [12–15] or

relativistic [16,18] PT -symmetric quantum mechanical wave
equations; however, so far little attention has been devoted to
simulate in optics PT -symmetric extensions of QFTs, which
is the aim of this work. In particular, here we propose an
optical system, based on light propagation in an engineered
semi-infinite waveguide lattice, which could provide a test bed
to simulate in the laboratory the Lee model in the ghost regime.

The paper is organized as follows: In Sec. II, we briefly
review the QFT Lee model in the ghost regime, corresponding
to a complex-valued bare coupling constant, and present
analytical results for a specific spectral coupling function.
The photonic realization of the non-Hermitian model is then
presented in Sec. III. Finally, in Sec. IV the main conclusions
are outlined.

II. LEE MODEL AND GHOST STATES

A. The model

In this section, for the sake of completeness we will briefly
review the QFT Lee model [2–4], focusing our attention on
the ghost regime where the Hamiltonian is not Hermitian
but PT symmetric [10]. Such an analysis will be then
specialized in Sec. II B by assuming an exactly solvable
spectral coupling function and dispersion relation, suggesting
a photonic realization of the model in Sec. III.

The Lee model is a rather simple QFT model describing
three interacting fields: two fermion fields, describing the V

and N particles, and a boson field, describing the θ particles.
The V particle can emit a θ particle, transforming into the N

particle; however it cannot absorb a θ particle. On the other
hand, the N particle can absorb a θ particle, transforming into
the V particle, but cannot emit a θ particle. Here we consider a
one-dimensional system, so that the momentum of particles is
a scalar variable. The Hamiltonian describing the field system
(with h̄ = c = 1) reads Ĥ = Ĥ0 + ĤI , where [2–4]

Ĥ0 = mV0

∫
dpV̂ †(p)V̂ (p) + mN0

∫
dpN̂ †(p)N̂ (p)

+
∫

dk�(k)â†
θ (k)âθ (k) (1)

is the noninteracting Hamiltonian, and

ĤI = g

∫
dkf (k)

∫
dp[V̂ †(p)N̂(p − k)âθ (k)

+ N̂ †(p − k)â†
θ (k)V̂ (p)] (2)
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describes the interaction of the three fields. In the previous
equations, N̂ †(p) [V̂ †(p)] and N̂(p) [V̂ (p)] are the creation and
annihilation operators of the fermion N [V ] with momentum
p, â†

θ (p), and âθ (p) are the creation and annihilation operators
of the bosons θ , mV0 , and mN0 are the bare masses of the
V particle and N particle, respectively, �(k) is the energy
of a θ quantum of momentum k, g is the bare coupling
constant, and f (k) is the (real-valued) normalized spectral
coupling function. The energy �(k) is usually taken to be
�(k) =

√
μ2 + k2, where μ is the mass of the boson, and a

cutoff function is introduced in the shape of f (k) to avoid
divergences [2,3]. However, here we will not specify the form
of the dispersion relation �(k), as well as the shape of the
spectral function f (k). It is well known that, in the Lee model,
the physical and bare one-N -particle and one-θ -particle states
coincide; that is, N̂ †(p)|0〉 and â†(k)|0〉 are eigenfunctions of
Ĥ with eigenvalues mN0 and �(k), respectively. This is not
the case for the physical and bare states of the V particle.
The “physical” state |mV ,p〉 of the V particle, corresponding
to the “bare” state |mV0 ,p〉 = V̂ †(p)|0〉 in the noninteracting
(g → 0) limit, is found as a solution of the eigenvalue equation
Ĥ |mV ,p〉 = mV |mV ,p〉 corresponding to a bound state. The
eigenvalue mV is the renormalized mass of the physical V

particle. The state |mV ,p〉 can be represented by the following
superposition of the V and N -θ bare scattering states (see, for
instance, Ref. [2]):

|mV ,p〉 =
√

Z

{
V̂ †(p)|0〉 +

∫
dk�(k)N̂ †(p − k)â†

θ (k)|0〉
}

,

(3)

where Z = Z(mV ,p) is a normalization constant. The renor-
malized mass mV is then found as a solution to the nonlinear
algebraic equation

mV − mV0 = g2�(mV ), (4)

where we have set

�(mV ) = P
∫

dk
f 2(k)

mV − ω(k)
(5)

and

ω(k) = �(k) + mN0 . (6)

Note that, after introduction of the density of states ρ(ω) =
(∂k/∂ω) and the spectral function G(ω) = ρ(ω)f 2(ω), one
can write

�(mV ) = P
∫

dω
G(ω)

mV − ω
. (7)

A stable V particle is found provided that a solution mV to
Eq. (4) does exist outside the continuum of N -θ scattering
states [i.e., for which mV �= ω(k) for any allowed value of k].

Let us first assume that the bare coupling constant g is real
valued (i.e., Ĥ is Hermitian). Then, the renormalized coupling
constant gr is introduced as [2,3,10] g2

r = Zg2, from which
one obtains (see, for instance, Ref. [2])

g2 = g2
r

1 − g2
r L

, (8)

where we have set

L =
∫

dω
G(ω)

(mV − ω)2
= − d�

dmV

. (9)

The value gr of the renormalized coupling constant is in
principle taken from experimental data [2,3]; the value of
g is correspondingly retrieved from Eq. (8). For a strong
renormalized coupling gr (i.e., larger than 1/

√
L), from Eq. (8)

one would obtain an imaginary bare coupling constant, g = ig0

(with g0 a real number); that is, the Hamiltonian of the
Lee model becomes non-Hermitian. This would imply that
probabilities are neither conserved nor are they necessarily
positive definite, which is generally viewed as an unacceptable
result. In addition, a new state with negative norm, which is
called a “ghost,” appears. Such predictions have been seen as
a fault of the Lee theory, which has been thus regarded as
nonphysical in the gr > 1/

√
L regime (the ghost regime) [3].

However, in Ref. [10], Carl Bender and collaborators showed
that, in the framework of PT quantum theories, the Lee model
can be an acceptable unitary quantum field theory for all
values of coupling gr . In the following, we will focus our
attention on the ghost regime of the Lee model, assuming
an imaginary bare coupling g = ig0. In this case, Ĥ is not
Hermitian (i.e., Ĥ �= Ĥ †); however, Ĥ is PT invariant and
one has Ĥ † = Ĥ ∗ (where ∗ stands for complex conjugation),
rather than Ĥ † = Ĥ . Therefore, for a couple of eigenstates
|ψ1〉 ≡ |mV 1,p1〉 and |ψ2〉 ≡ |mV 2,p2〉 of Ĥ the biorthogonal
relations 〈ψ∗

1 |ψ2〉 = δmV 1,mV 2δ(p1 − p2) should be satisfied.
From Eq. (3), it readily follows that

〈ψ∗
1 |ψ2〉 = Z(mV 1,p1)

(
1 − Lg2

0

)
δmV 1,mV 2δ(p1 − p2), (10)

where L is defined by Eq. (9). Hence the normalization
constant Z should be taken equal to

Z = 1

1 − g2
0L

. (11)

Therefore, in the non-Hermitian case the sign of Z is not
defined; that is, it can be positive (this is the case of the
physical V state and the physical N -θ scattering states), but
also negative, which is the case of the so-called ghost states.
For the usual shape of the spectral coupling f (k) and dispersion
relation �(k) of the bosonic field, as gr crosses the limiting
value 1/

√
L and Ĥ becomes non-Hermitian, in addition to the

physical V state, corresponding to a positive value of Z, a ghost
appears, with opposite sign of Z [2,3,10]. The appearance of
this new state can be visualized in the time domain as an
oscillatory behavior of the amplitude probability of the bare V

state. In fact, let us look for a solution to the time-dependent
Schrödinger equation i∂t |ψ(t)〉 = Ĥ |ψ(t)〉 in the form

|ψ(t) = c0(t)V̂ †|0〉 +
∫

dk�(k,t)N̂ †(p − k)â†
θ (k)|0〉. (12)

The evolution of the amplitude probabilities c0(t) and �(k,t)
of bare V and N -θ scattering states then reads

i
dc0(t)

dt
= mV0c0(t) + g

∫
dkf (k)�(k,t), (13)

i
d�(k,t)

dt
= ω(k)�(k,t) + gf (k)c0(t), (14)
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with g = ig0 in the ghost regime. Note that c0(t) represents
the amplitude probability of the bare V -particle state. Let us
assume that, at t = 0, the system is in the bare V -particle
state [i.e., c0(0) = 1, �(k,0) = 0], and that the interaction is
switched on at t = 0. The amplitude probability c0(t) can be
written in a closed form as a contour integral of the resolvent in
the complex plane. If Ĥ has two bound states, the physical V

state and the ghost state with masses mV1 and mV2 , then, after a
transient, two terms survive in the asymptotic behavior of c0(t),
which thus oscillates at the frequencies mV1 and mV2 . Hence
the appearance of a ghost state, in addition to the physical V

state, is responsible for a beating in the probability |c0(t)|2 at
the frequency |mV2 − mV1 |. Conversely, if only the physical V

state does exist, |c0(t)|2 settles down to a constant value and
does not oscillate. As will be discussed in Sec. III, the presence
or the absence of an oscillation in the evolution of |c0(t)|2 can
be easily visualized in our photonic simulator of the QFT Lee
model.

B. An exactly solvable case

Let us specialize the general analysis briefly reviewed in the
previous subsection to an exactly solvable model, which can be
rather simply implemented in a photonic system as discussed
in the next section. Let us assume the following forms for

the spectral coupling function f (k) and the dispersion relation
ω(k) = �(k) + mN0 :

f (k) =
√

2

π
sin k, ω(k) = ω0 − 2κ0 cos k, (15)

where the quantum number k varies in the range 0 < k � π ,
κ0 is a positive constant that determines the energy width
4κ0 of the N -θ scattered states, ω0 = μ + 2κ0 + mN0 , and
μ is the lower limit of the dispersion curve �(k) (it plays
the analogous role of the boson mass μ of Refs. [2,3,10]).
It should be noted that, for a real bare coupling g, this
model has been studied in different physical contexts as
well, such as in problems of Fano resonances and bound
states in the continuum (see, for instance, Refs. [21–24] and
references therein). A non-Hermitian extension of the model
was recently investigated in Ref. [25], where attention was
primarily devoted to the investigation of spectral singularities.
However, such a non-Hermitian model was not PT invariant
and the analysis was not related to the Lee model in the ghost
regime. Using Eq. (15), the spectral function G(ω) and �(mV )
can be calculated in a closed form and read

G(ω) =
{

1
πκ0

√
1 − (

ω−ω0
2κ0

)2
, |ω − ω0| < 2κ0

0, otherwise,
(16)

�(mV ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2κ2

0

[√
(mV − ω0)2 − 4κ2

0 + mV − ω0
]
, mV − ω0 < −2κ0

1
2κ2

0
(mV − ω0), |mV − ω0| < 2κ0

1
2κ2

0

[ −
√

(mV − ω0)2 − 4κ2
0 + mV − ω0

]
, mV − ω0 > 2κ0.

(17)

We will limit our analysis to the case mV0 < μ + mN0 ,
which ensures the stability of the physical V -particle state.
Using Eq. (17), the bound states of Ĥ below the continuum
(i.e., corresponding to mV < μ + mN0 ) can be readily calcu-
lated from Eq. (4), according to the graphical construction
shown in Fig. 1(a). The results in parameter space (mV0 ,g0)
are summarized in Fig. 1(b). In particular, three cases should
be distinguished.

(i) For (g0/κ0) <
√−2 + (ω0 − mV0 )/(2κ0) [domain I in

Fig. 1(b), delimited by curve 1], there exists a simple and
real-valued root mV = mV1 to Eq. (4), with Z > 0 (i.e.,
corresponding to the physical V particle) given by

mV1 = mN0 + μ − 2κ0(cosh μ1 − 1), (18)

where μ1 is defined by

exp(μ1) = −mV0 − ω0

2κ0
+

√
(mV0 − ω0)2

4κ2
0

− 1 −
(

g0

κ0

)2

(19)

[case I of Fig. 1(a)].
(ii) For

√−2 + (ω0 − mV0 )/(2κ0) < (g0/κ0) <√−1 + (ω0 − mV0 )2/(2κ0)2 [domain II in Fig. 1(b),
delimited by curves 1 and 2], there exist two real-valued roots

mV = mV1 and mV = mV2 > mV1 to Eq. (4), which are given
by

mVj
= mN0 + μ − 2κ0(cosh μj − 1) (20)

with j = 1 or 2 and where μ1 and μ2 are defined by

exp(μ1) = −mV0 − ω0

2κ0
+

√
(mV0 − ω0)2

4κ2
0

− 1 −
(

g0

κ0

)2

,

(21)

exp(μ2) = −mV0 − ω0

2κ0
−

√
(mV0 − ω0)2

4κ2
0

− 1 −
(

g0

κ0

)2

[case II of Fig. 1(a)]. For the former solution mV1 , one has
Z > 0, (i.e., it corresponds to the physical V -particle state);
however, for the latter solution mV2 , it turns out that Z < 0
(i.e., this additional solution corresponds to a ghost state).

(iii) For (g0/κ0) >
√−1 + (ω0 − mV0 )2/(2κ0)2 [domain III

in Fig. 1(b), delimited by curve 2], there are two complex-
conjugate roots to Eq. (4). In such a domain, the PT phase of
Ĥ is broken. This case will not be considered further here.

It should be noted that, as the boundary between domains II
and III is approached from domain II [curve 2 in Fig. 1(b),
corresponding to g2

0 = 1/L], the two states corresponding to
mV1 and mV2 coalesce [see the dashed curve in Fig. 1(a)] and
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FIG. 1. (Color online) (a) Graphical construction for the deter-
mination of bound states of the PT -symmetric Lee Hamiltonian
with spectral coupling and dispersion relation defined by Eq. (15).
The eigenvalues mV of bound states are obtained as the intersection
of the straight line mV − mV0 with the curve −g2

0�(mV ), where
�(mV ) is given by Eq. (17). In case I there is only one intersection,
corresponding to the physical V -particle state with a positive norm.
In case II there are two intersections, one with a negative norm
corresponding to a ghost state. The dashed straight line corresponds to
the boundary of PT symmetry breaking, where the two intersections
coalesce. (b) Domain of existence of bound states for the Lee
Hamiltonian in the (mV0 ,g0) plane. In domain I, there exists solely
one bound state, corresponding to the physical V -particle state. In
domain II there are two bound states, the additional one being a ghost
state. In domain III a pair of complex-conjugate energies appears
(broken PT phase). The analytical expression of curves 1 and 2,
that define the boundaries of the three domains, are given in the
text.

Z → ∞ according to Eq. (11): hence at the PT symmetry-
breaking boundary two complex-valued energies bifurcate
from the coalescence of the two real-valued branches (20) and
an exceptional point, signaled by the vanishing of 〈ψ∗

1 |ψ2〉,
appears [see Eq. (10)].

III. OPTICAL REALIZATION OF PT -SYMMETRIC
LEE MODEL

An optical simulation of the PT -symmetric Lee model,
described in Sec. II B, can be realized by mapping the
temporal evolution of the probability amplitudes c0(t) and
�(k,t) of bare V -particle and N -θ scattering states, governed
by Eqs. (13) and (14), into spatial propagation of light waves
in suitably engineered arrays of evanescently coupled optical
waveguides [26]. In fact, Eqs. (13) and (14) describe quite
generally the decay dynamics of a bound state coupled to
a continuum and, as shown in Refs. [24,27], this problem

can be simulated in an optical setup based on light transport
in a semi-infinite waveguide lattice. However, to simulate
the Lee model in the ghost regime, we need to realize an
imaginary coupling g = ig0 between the bound state and the
continuum of scattering states, and this possibility was not
addressed in such previous works. As we will show here,
an imaginary coupling g can be realized by considering
either second-order nonlinear interactions in the boundary
waveguide of the semi-array, or a suitable fast modulation
of both the real and imaginary parts of the refractive index of
the boundary waveguide.

To provide an optical simulation of Eqs. (13) and (14),
following Ref. [24] let us notice that, since k varies in the
range 0 < k < π , we can expand �(k,t) as a Fourier series of
sine terms solely according to

�(k,t) = −
√

2

π

∞∑
n=1

cn(t) sin(nk), (22)

and the inversion relation

cn(t) = −
√

2

π

∫ π

0
dk�(k,t) sin(nk) (23)

(n = 1,2,3, . . .) holds. Taking into account that∫ π

0 dk sin(nk) sin(mk) = (π/2)δn,m, the evolution equations
of the amplitudes cn can be readily derived using Eqs. (13),
(14), (22), and (23) and read

i
dcn

dt
= −κ0(cn+1 + cn−1) + ω0cn (n � 2), (24)

i
dc1

dt
= −κ0c2 − ig0c0 + ω0c1, (25)

i
dc0

dt
= −ig0c1 + mV0c0. (26)

In their present forms, Eqs. (24)–(26) describe light transport
of monochromatic light waves in a semi-infinite array of
optical waveguides [see Fig. 2(a)], in which κ0 is the coupling
constant and ω0 in the propagation constant of the guided
modes in the waveguides n � 1 (i.e., except for the boundary
waveguide), mV0 is the propagation constant of the boundary
waveguide n = 0, ig0 is the complex-valued coupling constant
between the waveguides n = 0 and n = 1 in the lattice, and t

is the longitudinal spatial coordinate of the array, as shown in
Fig. 2(a). A major issue that should be addressed for a physical
realization of the tight-binding lattice model Eqs. (24)–(26) is
the request to implement an imaginary coupling rate: in fact,
evanescent coupling of optical fields between two coupled
dielectric optical waveguides generally leads to an effective
real-valued coupling (after a suitable choice of the phase
of the propagating field amplitudes). To realize an effective
imaginary coupling, we must consider a non-Hermitian optical
setup.

A first possibility, briefly sketched in Fig. 2(b), consists
of considering a semi-array of waveguides manufactured in a
nonlinear χ (2) optical medium. The boundary waveguide of
the semi-array is designed to sustain three modes of different
frequencies ω1 (the signal field), ω2 (the idler field), and
ω3 = ω1 + ω2 (the pump field) which are phase matched
via a quasi-phase-matching (QPM) grating (see, for instance,
Ref. [28]). For a strong pump field and weak signal and idler
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FIG. 2. (Color online) (a) Schematic of the optical realization of
the PT -symmetric Lee model discussed in Sec. II B, based on light
transport in a semi-infinite array of evanescently coupled optical
waveguides. In the optical analog, the longitudinal propagation
distance t plays the role of time in the QFT model. The complex
coupling g = ig0 of the Lee Hamiltonian in the ghost regime requires
a complex coupling between the boundary waveguides in the semi-
array. Panels (b) and (c) show two possible optical implementations
of such a complex coupling. In panel (b), a semi-infinite array of
waveguides with a second-order χ (2) nonlinearity is considered, in
which parametric amplification between signal and idler fields at
frequencies ω1 and ω2 is allowed in the boundary waveguide via
a QPM grating. The signal field is then evanescently coupled to
the other waveguides in the array, where propagation is linear. In
panel (c) the complex coupling g = ig0 is realized by introduction of
a fast modulation of both real and imaginary parts of the effective
refractive index in the boundary waveguide, with spatial period
2π/�. As discussed in the text, in the fast modulation limit and
for appropriate modulation parameters, the waveguide lattice in
(c) effectively behaves as the lattice in (a).

fields, in the no-pump-depletion limit the signal and idler
modes in the boundary waveguide are coupled by an effective
imaginary coupling ig0, where g0 is the parametric gain which
is proportional to the intensity I3 of the pump field and to
the effective second-order susceptibility deff of the medium
according to the relation g0 = 2πdeff

√
2I3/(n1n2n3λ1λ2c0ε0),

where nk are the refractive indices of the signal, idler, and
pump waves at wavelengths λk (k = 1,2,3) [28,29]. The other
waveguides in the semi-array lack of the QPM grating, so
that frequency conversion does not take place there and light
propagates in the linear regime. The waveguides are designed
such as the field at frequency ω1 is close to a cutoff (i.e., it is
weakly confined), whereas the modes at frequencies ω2 and ω3

are well confined. In this way, evanescent coupling between
adjacent waveguides is mostly effective for the signal field at
frequency ω1, whereas it may be neglected for both the idler
and pump fields. Therefore, in such a system, light propagation
is described by Eqs. (24)–(26), where c0 and c1 correspond to
the modal amplitudes of the fields at frequencies ω2 and ω1,

respectively, propagating in the boundary waveguide, whereas
the cn (n � 2) correspond to the modal amplitudes of the
field at frequency ω1 trapped in the other waveguides of
the semi-array. The complex coupling ig0 is realized by the
parametric gain in the boundary waveguide, which can be
conveniently tuned by varying the intensity I3 of the pump
wave.

A second possibility consists of considering a semi-infinite
waveguide array in which a longitudinal modulation of both
optical gain or absorption and effective modal index in the
boundary waveguide is introduced, as schematically shown
in Fig. 1(c). In this case, in the tight-binding and nearest-
neighboring approximations, the coupled-mode equations
describing light propagation in the non-Hermitian waveguide
lattice of Fig. 1(c) read

i
dcn

dt
= −κ0(cn+1 + cn−1) + ω0cn (n � 2), (27)

i
dc1

dt
= −κ0c2 − κa0 + ω0c1, (28)

i
da0

dt
= −κc1 + [mV0 − A cos(�t)]a0, (29)

where κ is the real-valued coupling constant between waveg-
uides n = 0 and n = 1, � is the spatial modulation frequency
of the complex-valued modulated propagation constant in the
guide n = 0, A = AR + iAI is the modulation amplitude,
cn (n � 1) are the modal amplitudes of light trapped in
waveguides with index n � 1, and a0 is the modal amplitude
of light trapped in the boundary waveguide n = 0. Physically,
the real part of A accounts for the longitudinal sinusoidal
modulation of the effective modal index, whereas the imag-
inary part of A describes the longitudinal modulation of
the optical gain or absorption in the boundary waveguide.
The t-independent lattice model of Eqs. (24)–(26) can be
obtained as a first-order approximation from the t-periodic
lattice model of Eqs. (27)–(29) in the large-modulation limit
� 
 κ0,κ,|ω0 − mV0 |, with A/� finite and of order ∼1,
by a multiple-scale asymptotic analysis (see, for instance,
Ref. [30]). Let us introduce, in place of a0(t), the new variable
c0(t) = a0(t) exp[−i� sin(�t)], where we have set � = A/�.
Then Eqs. (27)–(29) can be written in the equivalent form

i
dcn

dt
= −κ0(cn+1 + cn−1) + ω0cn (n � 2), (30)

i
dc1

dt
= −κ0c2 − κ exp[i� sin(�t)]c0 + ω0c1, (31)

i
dc0

dt
= −κ exp[−i� sin(�t)]c1 + mV0c0. (32)

An exact analysis of Eqs. (30)–(32) would require the deter-
mination of quasi-energies by Floquet theory; in particular,
we are interested in exploring the parameter space where the
quasi-energies remain real (in spite of the non-Hermiticity
of the system); this would correspond to the unbroken PT
phase of the Lee model. In the fast-modulation limit, at leading
order in the analysis, the rapidly oscillating terms in Eqs. (31)
and (32) can be replaced by their averaged values over one
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oscillation cycle (see, for instance, [30]); that is, one can
write

i
dcn

dt
� −κ0(cn+1 + cn−1) + ω0cn (n � 2), (33)

i
dc1

dt
� −κ0c2 − κec0 + ω0c1, (34)

i
dc0

dt
� −κec1 + mV0c0, (35)

where we have set

κe = κJ0

(
A

�

)
, (36)

where J0 is the Bessel function of first kind of zero order.
Hence, if the ratio between the complex modulation amplitude
A and the modulation frequency � is chosen such that κe

is purely imaginary, the effective lattice model described by
Eqs. (33)–(35) reduces to that of Eqs. (24)–(26), with ig0 =
κe; that is, it realizes the PT -symmetric QFT Lee model
introduced in Sec. II B.

As discussed at the end of Sec. II A, the appearance of
a ghost state in addition to the physical V -particle state can
be monitored by the temporal evolution of |c0(t)|2, when the
system is initially prepared in the bare V state. In the optical
setting of Fig. 3(c), such an initial condition corresponds to the
excitation, at the input t = 0 plane, of the boundary waveguide
n = 0 [i.e., to cn(0) = δn,0 in Eqs. (30)–(32)], whereas in the
optical setting of Fig. 3(b) this corresponds to initial excitation
of the boundary waveguide by the idler field. In the parameter
region corresponding to domain I of Fig. 1(b), there is only one
bound state (the physical V state), and hence after an initial
transient |c0(t)|2 sets to a constant and nonvanishing value.
This is shown, as an example, in Fig. 3(a), which depicts the
evolution of |c0(t)|2 for parameter values g0/κ0 = 0.91 and
(mV0 − ω0)/κ0 = −4. In the figure, the behavior of |c0(t)|2,
predicted by the Lee model [Eqs. (24)–(26), dotted curve
in Fig. 3(a)], is compared with that obtained by numerical
analysis of the time-periodic system [Eqs. (30)–(32), solid
curve in Fig. 3(a)], corresponding to the optical realization of
Fig. 3(c). As g0 is increased to cross domain II, the appearance
of the ghost state, in addition to the physical V state, changes
the asymptotic behavior of |c0(t)|2, which is now oscillatory
at the frequency |mV1 − mV2 |, as shown in Fig. 3(b). As the
upper boundary of domain II is approached [i.e., if we move
toward curve 2 in Fig. 1(b)], the period of the oscillation
increases, as shown in Fig. 3(c). In the photonic realization of
the modulated lattice of Fig. 2(c), we assumed a modulation
frequency �/κ0 = 15 and a normalized complex modulation
parameter � = A/� � 2 − 1.996i, leading to an imaginary
value κe = ig0, according to Eq. (36). The increase of g0, from
Figs. 3(a) to 3(c), is obtained, in the realization of Fig. 3(b),
by simply increasing the parametric gain (i.e., by an increase
of the pump intensity I3), whereas in the optical realization of
Fig. 3(c) an increase of g0 can be achieved by simply increasing
the coupling constant κ , i.e., by diminishing the distances of
waveguides n = 0 and n = 1.

To get an estimate of the parameter values in physical
units corresponding to the simulations shown in Fig. 3, let us
consider for instance the optical implementation of Fig. 2(b),
based on a nonlinear waveguide array, which seems to be the

(a)

(b)

(c)

FIG. 3. (Color online) Behavior of |c0(t)|2; that is, evolution of the
probability of the bare particle state V̂ †|0〉 versus normalized time κ0t

for the initial condition c0(0) = 0, �(k,0) = 0, detuning mV0 − ω0 =
−4κ0, and for (a) g0/κ0 = 0.91, (b) g0/κ0 = 1.547, and (c) g0/κ0 =
1.638. The dotted curves are obtained by numerical analysis of
Eqs. (24)–(26), which exactly reproduce the PT -symmetric Lee
model and are implemented by the optical system of Fig. 2(b). The
solid curves in the figures refer to the numerical analysis of Eqs.
(30)–(32), which describe the optical implementation of Fig. 2(c)
based on fast modulation of the real and imaginary parts of the
refractive index in the boundary waveguide.

more accessible experimental system [31]. Let us consider
a semi-array of periodically poled lithium-niobate (PPLN)
waveguides, with pump, signal, and idler waves at wavelengths
λ3 = 532 nm, λ1 = 1.55 μm, and λ2 = 810 nm, respectively.
For the PPLN crystal at 25 ◦C, a QPM grating of the nonlinear
χ (2) susceptibility with spatial period � � 7.39 μm is required
in the boundary waveguide to phase match the frequency
conversion process (see, for instance, Ref. [29]). Let us
assume a typical coupling constant of adjacent waveguides
for the signal modes of κ0 = 2 cm−1. Correspondingly, the
physical unit of propagation length in the horizontal axis of
Fig. 3 is 0.5 cm, so that for a sample of length 10 cm the
dynamics shown in Fig. 3 can be observed up to κ0t = 20. The
levels of parametric gain g0 required to observe the dynamics
shown in Figs. 3(a)–3(c) are given by g0 � 1.820, 3.094, and
3.276 cm−1, respectively, whereas the detuning between the
propagation constant of the boundary waveguide, for the signal
field, and the other waveguides in the array turns out to be
4κ0 = 8 cm−1. Such a detuning can be readily achieved by a
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suitable waveguide design. A parametric gain of the order of
g0 ∼ 3 cm−1 requires a pump level I3 ∼ 22 MW/cm2 (taking
deff ∼ 17 pm/V for first-order QPM in PPLN [29]); for an
effective mode area Ae ∼ 6 μm2, this would correspond to a
continuous-wave pump power of P3 ∼ AeI3 � 1.32 W, which
is a reasonable level for PPLN waveguides.

IV. CONCLUSIONS

In this work, we have proposed theoretically an optical
realization of the QFT Lee model in the ghost regime, where
the Lee Hamiltonian is non-Hermitian but PT symmetric [10]
and ghost states appear. Our optical system is based on light
transport in an engineered semi-infinite waveguide lattice,
using either nonlinear parametric amplification in quadratic

χ (2) waveguides or suitable modulation of optical gain and
absorption to mimic a complex coupling in the Lee model. It
is envisaged that our results could stimulate further theoretical
and experimental studies aimed to realize an accessible and
feasible laboratory tool to simulate PT -symmetric quantum
field theories and to visualize the appearance and role of ghost
states.
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