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Optimal measurement bases for Bell tests based on the Clauser-Horne inequality
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The Hardy test of nonlocality can be seen as a particular case of the Bell tests based on the Clauser-Horne (CH)
inequality. Here we stress this connection when we analyze the relation between the CH-inequality violation,
its threshold detection efficiency, and the measurement settings adopted in the test. It is well known that the
threshold efficiencies decrease when one considers partially entangled states and that the use of these states,
unfortunately, generates a reduction in the CH violation. Nevertheless, these quantities are both dependent on the
measurement settings considered, and in this paper we show that there are measurement bases which allow for an
optimal situation in this trade-off relation. These bases are given as a generalization of the Hardy measurement
bases, and they will be relevant for future Bell tests relying on pairs of entangled qubits.
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I. INTRODUCTION

In 1992, Hardy [1] showed that an experiment with
electrons and positrons could be used to test nonlocality when
certain types of joint measurements are considered. Later,
his observations were presented in a theoremlike form that
holds for pure systems of two nonmaximally entangled qubits
(“quantum bits”), regardless of the degree of freedom used
to encode the qubits [2,3]. The logic of Hardy’s argument,
which is discussed in more detail in [4], can be described
as follows: suppose that one can perform joint measurements
in this composite system and that the measurement settings
of the two apparatuses are denoted by the parameters θ1, θ2,
θ3, and θ4. Consider also the following probabilities of joint
detection: (i) P (θ̃1,θ3), (ii) P (θ1,θ4), and (iii) P (θ2,θ̃4), where
θ̃1 denotes the orthogonal configuration to the setting defined
by θ1. For any nonsymmetric entangled state, it is always
possible to find the parameters’ θ ’s such that (i), (ii), and
(iii) are null and P (θ2,θ3) �= 0. This creates a contradiction
between quantum mechanics and local theories, for which the
fact of having (i), (ii), and (iii) null implies that P (θ2,θ3) = 0.
The difference between the value predicted by quantum
mechanics for P (θ2,θ3) and the value predicted by local
theories is known as the “Hardy fraction” [5–8].

As it was discussed by Mermin and Garuccio in [4,9],
Hardy’s test can be generalized when it is written in terms
of the following inequality:

P (φ2,φ3) � P (φ̃1,φ3) + P (φ1,φ4) + P (φ2,φ̃4), (1)

which holds for any choice of φ1, φ2, φ3, and φ4, while
the Hardy’s test is valid only for special values of φ’s. This
inequality is equivalent to the Clauser-Horne (CH) inequality
[9,10]. The quantum violation of the CH inequality is the dif-
ference between the value of P (φ2,φ3) predicted by quantum
mechanics and the value given by the sum of the probabilities
on the right-hand side of Eq. (1), which is the maximum value
allowed for P (φ2,φ3) by local hidden-variable theories [11].
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In this work, we study the dependence of the CH-inequality
violation with the measurement bases used in the Bell
tests, and we analyze how these measurements affect the
required efficiency for closing the detection loophole in these
experiments [12]. It is well known that the required efficiencies
decrease when one works with partially entangled states, but,
unfortunately, the use of these states generates a reduction in
the CH-inequality violation. Nevertheless, the CH-inequality
violation and the required efficiency are both dependent on the
measurement settings adopted, and here we show that there are
measurement bases that allow for an optimal situation in this
trade-off relation. These bases are given as a generalization of
the Hardy measurement bases.

The relevance of studying such properties of the CH
inequality comes from the fact that it usually outperforms
most of the known bipartite Bell inequalities, especially when
systems of two entangled qubits are considered [13]. In fact,
as far as we know, for symmetric Bell tests, it is only slightly
outperformed when high-dimensional entangled systems and
multisetting Bell inequalities are considered [14].

II. THE CH-INEQUALITY VIOLATION AND
MEASUREMENT BASES

To obtain the quantum violation of the CH inequality for
a pure system of two entangled qubits, we first write the
general state of this system in terms of the Schmidt basis
{| ± 〉(1),| ± 〉(2)} [15]:

| � 〉 = α| +(1),+(2) 〉 + β| −(1),−(2) 〉, (2)

where the coefficients α and β are real and positive.
Then, we consider the following general measurement

basis:

| v(k) 〉φ = sin φ| +(k) 〉 + eiνφ cos φ| −(k) 〉, (3)

where k = 1,2 denotes the particles subspaces and the or-
thogonal vector | u(k) 〉φ is given by | u(k) 〉φ = cos φ| +(k) 〉 −
eiνφ sin φ| −(k) 〉.
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In terms of this basis, the measurement with the experi-
mental apparatus in the orientation φ is represented by the
projector P

(k)
φ = | v(k) 〉φ〈 v(k) |, and the measurement φ̃, which

is done with the apparatus in a configuration orthogonal to φ, is
represented by the projector P

(k)
φ̃

= | u(k) 〉φ〈 u(k) |. The proba-

bilities for coincidence detection P (φ,γ ), P (φ̃,γ ), and P (φ,γ̃ )
are given by |φ〈 v(1) |γ 〈 v(2) || � 〉|2, |φ〈 u(1) |γ 〈 v(2) || � 〉|2,
and |φ〈 v(1) |γ 〈 u(2) || � 〉|2, respectively. The operator corre-
sponding to the CH inequality can be written as ÎCH =
(P (1)

φ2
− P

(1)
φ̃1

) ⊗ P
(2)
φ3

− P
(1)
φ1

⊗ P
(2)
φ4

− P
(1)
φ2

⊗ P
(2)
φ̃4

.
When the measurements done in the experiment are

characterized by the states | v(1) 〉φ1 , | v(1) 〉φ2 , | v(2) 〉φ3 , and
| v(2) 〉φ4 given in the particular form of

| v(1) 〉φ1 = β
1
2 | +(1) 〉 − α

1
2 | −(1) 〉√

α + β
,

| v(1) 〉φ2 = β
3
2 | +(1) 〉 + α

3
2 | −(1) 〉√

α3 + β3
,

(4)

| v(2) 〉φ3 = β
3
2 | +(2) 〉 − α

3
2 | −(2) 〉√

α3 + β3
,

| v(2) 〉φ4 = β
1
2 | +(2) 〉 + α

1
2 | −(2) 〉√

α + β
,

we get P (φ̃1,φ3) = P (φ1,φ4) = P (φ2,φ̃4) = 0 and
P (φ2,φ3) = ( αβ(α−β)

1−αβ
)2, which is exactly the fraction

deduced by Hardy in Ref. [2]. It has the well-known
maximum value of approximately 9% when α/β ≈ 0.46. We
refer to Eq. (4) as Hardy measurement bases, and the curve
for the Hardy fraction is plotted in Fig. 1 as a function of α/β.
This parameter α/β is directly linked with the concurrence of
the state of Eq. (2), and it has been widely used for studying
Hardy’s proof of nonlocality [2,6–8]. Obviously, a maximally
entangled state has α/β = 1, and the degree of entanglement
of Eq. (2) decreases whenever α/β → 0.

Now, it is interesting to note that by considering rather
similar measurement bases, one can already see important
changes in the CH-inequality violation curve. We can obtain a
generalization of the previous case [Eq. (4)] by doing the values
of the sines and cosines of the measurement bases [Eq. (3)] as

sin φ1 = sin φ4 = β
n
2√

αn + βn
,

cos φ1 = − cos φ4 = − α
n
2√

αn + βn
,

(5)

sin φ2 = sin φ3 = β
m
2√

αm + βm
,

cos φ2 = − cos φ3 = α
m
2√

αm + βm
,

and νφ1 = νφ2 = νφ3 = νφ4 = 0 with n �= m. In this case, we
obtain curves which have distinct values for their maximum
and are maximized for different entangled states. The curves
for the new measurement bases defined by n = 1, m = 7 and
for n = 3, m = 10 are also plotted in Fig. 1. For this last case,
the fraction of the pair of photons that violates the local realism
has a maximum of 18.8% when α/β = 0.74.
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FIG. 1. (Color online) The CH-inequality violation. The dashed
(green) curve is obtained when one considers the Hardy measurement
bases given in Eq. (4). The dotted (red) curve and the dash-dotted
(black) curve are obtained when the measurements are done with
the experimental apparatuses in the orientations defined by the
generalized Hardy measurement bases defined by Eqs. (3) and (5)
with n = 1; m = 7 and n = 3; m = 10, respectively. The solid (blue)
curve is the maximum allowed for the CH violation for a given value
of α/β.

The maximum of the CH-inequality violation for each
entangled state (i.e., for each value of α/β) can be obtained
numerically by means of the well-known conjugate gradient
(CG) method [16]. For doing this, we first considered an
eight-variable function,

B({φi},{νi}) = 〈�|ÎCH |�〉, (6)

with i = 1,2,3,4 defining the parameters of the operator ÎCH .
The heuristic of the CG method is to use the local gradient,
in a point of the parameter space (the space defined by the
variables {φi} and {νi}), to reach the closest maximum point
(for finding a minimum, the target function is multiplied by
−1). The algorithm converges when the gradient is null. To
map all the local maxima and decide which is the global
maximum, we run the CG method for a large uniform sample of
points in the parameter space. In order to certify that a global
maximum has been reached, for each α/β, we ran the CG
method for samples of sizes 103, 104, and 105. The solid (blue)
curve shown in Fig. 1 is the maximal CH violation allowed for a
given value of α/β. We can see that it approximates to 20.7%
( 1√

2
− 1

2 ) when the degree of entanglement increases [17].
This bound in the quantum violation of the Clauser-Horne
inequality, or of the equivalent inequality of Clauser et al. [18],
is well known and its existence was deduced in Ref. [19].

III. THE THRESHOLD DETECTION EFFICIENCY AND
MEASUREMENT BASES

The original Bell inequality [20] is a constraint on the
correlations of the measurements that can be performed on
a composite system. It is obeyed by any local and determin-
istic description used for the system and the measurement
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apparatuses, and was deduced by assuming certain types of
measurement results. It seems to be unsuitable to account for
the inefficiencies of the detectors and the noisy background
surrounding the experiment. Nevertheless, it is important to
note that there is a generalization of this type of limit which
accounts for detection efficiencies, and that, in the case of
perfect detectors, it simplifies to a form which resembles the
original Bell inequality [21]. The CH inequality, however, is
a relation between the probabilities of having some events
recorded in the experiment, and these probabilities can be
easily modified to account for both: the inefficiencies of the
detectors used and the noisy background [21–23]. Here we
consider the Eberhard approach, where the CH inequality is
rewritten as [9,23]

P (φ2,φ3) � P (φ̃1,φ3) + P (φ1,φ4) + P (φ2,φ̃4)

+ 1 − η

η
[P (φ2) + P (φ3)], (7)

where η is the detection efficiency of the measuring ap-
paratuses. Let us now define Q ≡ P (φ2,φ3) − P (φ̃1,φ3) −
P (φ1,φ4) − P (φ2,φ̃4). When the value of Q is positive, it
represents the quantum violation of the CH inequality. For
such cases, the detection efficiency η must be greater than
a certain critical value to allow the violation of inequality (7)
without resorting to any supplementary assumption. This value
is given by [9]

ηcrit = P (φ2) + P (φ3)

Q + P (φ2) + P (φ3)
, (8)

and one usually refers to ηcrit as the required efficiency for a
detection-loophole-free Bell test, or, also, threshold detection
efficiency.

This expression emphasizes a behavior between the thresh-
old detection efficiency and the quantum violation of the
CH inequality (Q), which is intuitive: it shows that the
required efficiency is inversely proportional to the quantum
CH violation. Nevertheless, to completely understand the
real behavior of ηcrit, one has also to take into account its
dependence on the probabilities P (φ2) and P (φ3) that appear
on the right-hand side of Eq. (8). These probabilities are given
by P (γ ) = tr(ρredP

(k)
γ ) = α2 sin2(γ ) + β2 cos2(γ ), where ρred

is the reduced density operator of the composite system. It
is clear, therefore, that the point of the minimal efficiency
does not necessarily happen at the point where the quantum
violation of the CH inequality is maximal. As demonstrated
numerically by Eberhard [23] and later analytically by Larsson
and Semitecolos [24], this minimum occurs for an almost
product state and it has the value of ηmin = 2

3 . The important
property that Eq. (8) emphasizes is that the value of ηcrit

depends on the measurement settings considered, as is also
the case with the CH violation.

In Fig. 2, we now show the dependence of ηcrit with the
same measurement bases considered in Fig. 1 to study the
CH-inequality violation. The solid (blue) curve of Fig. 2
represents the required efficiency for a set of measurement
bases that maximizes the CH violation for each value of
α/β. By analyzing Figs. 1 and 2 together, some interesting
conclusions can be reached: (i) From the solid (blue) curves,
one can see that some measurement bases, which generate
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FIG. 2. (Color online) The threshold detection efficiencies for
the same measurement bases considered in Fig. 1. The dashed
(green) curve is obtained when one considers the Hardy measurement
bases given in Eq. (4). The dotted (red) curve and the dash-dotted
(black) curve are obtained when the measurements are done with
the experimental apparatuses in the orientations defined by the
generalized Hardy measurement bases given by Eqs. (3) and (5)
with n = 1; m = 7 and n = 3; m = 10, respectively. The solid (blue)
curve is obtained numerically with the measurement bases in the
general form of Eq. (3) and with a program maximizing the CH
violation.

the maximal CH violation for a given value of α/β, do not
necessarily allow the experiment to work with the lowest
required efficiency for closing the detection loophole. In fact,
they may even require the efficiencies of the detectors to be
100% when the entanglement degree of the state considered
in the test is low. (ii) From the dashed (green) curves, one
can see that to perform a Bell test in the regime of lowest
required efficiency, ηmin = 2

3 , one can do the measurements in
the directions defined by Hardy measurement bases [Eq. (4)]
and an entangled state for which α/β ≈ 0.01. Unfortunately,
the corresponding violation of CH inequality is very low at
this point (see Fig. 1), and the experimental errors involved
will probably invalidate the experiment as a conclusive test of
nonlocality, even if the detection efficiencies of the detectors
are higher than ηmin. (iii) The most interesting feature, however,
is the behavior of the dash-dotted (black) curves at Figs. 1
and 2. One can see from these curves that the minimum
of the required efficiency ηcrit, which is around α/β = 0.7,
corresponds to a point where the CH violation is very high.
It is, therefore, legitimate to ask if there are measurement
bases that can, at the same time and for each entangled
state (for each value of α/β), give the highest possible
CH violation, while requiring the lowest possible detection
efficiency for a loophole-free experiment. Hereafter, we refer
to these measurement bases as optimal. Moreover, it is also
reasonable to assume that these optimal measurement bases
could be generalizations of the bases used to draw these
dash-dotted (black) curves.
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IV. OPTIMAL MEASUREMENT BASES

To investigate this, we considered more general measure-
ment bases, which are defined through Eq. (3), and did the sine
and cosine functions as

sin φ1 = β
k1
2√

αk1 + βk1
, cos φ1 = − α

k1
2√

αk1 + βk1
,

sin φ2 = β
k2
2√

αk2 + βk2
, cos φ2 = α

k2
2√

αk2 + βk2
,

(9)

sin φ3 = β
k3
2√

αk3 + βk3
, cos φ3 = − α

k3
2√

αk3 + βk3
,

sin φ4 = β
k4
2√

αk4 + βk4
, cos φ4 = α

k4
2√

αk4 + βk4
,

and νφ1 = νφ2 = νφ3 = νφ4 = 0. This set of measurement bases
can be seen as a generalization of the set defined in Eq. (5),
because here we do not force degeneracies on the measurement
settings. That is, we do not require that the measurement
orientations on the Alice side coincide or be symmetric to
those used by Bob.

A new computer program was then written to minimize
the threshold detection efficiency with these bases [Eq. (9)]
for each value of α/β. The program performed an exhaustive
search at the parameter space defined by the exponents k1, k2,
k3, and k4, for each α/β, with the values of these exponents
varying from 1 to 1024. The program also recorded the CH-
violation curve corresponding to the bases used. A surprising
observation was that the bases defined above in Eq. (9) are
actually the bases which give, for most of the values of α/β,
the maximum possible CH violation and require the lowest
possible ηcrit.

The curves obtained with these bases for the CH violation
and the required detection efficiency are given in Figs. 3 and
4, respectively. The values of the coefficients ki are shown in
Fig. 5 for each state considered in the calculations. Some of
the values of these coefficients are given explicitly in Table I.
From Fig. 5, one can see that the optimal measurement bases
are not necessarily degenerated or symmetric.

TABLE I. Some of the calculated coefficients ki of the optimal
measurement bases [Eq. (9)]. It is interesting to note that for
every value of the parameter α/β, the exponent k2 is such that φ2

goes to π/2. This means that the measurement orientation | v(2) 〉φ

asymptotically reaches the logical state | +(2) 〉. The point α/β = 0.99
provides the optimal measurement bases for an almost maximally
entangled state.

α/β k1 k2 k3 k4 sin φ1 sin φ2 sin φ3 sin φ4

0.20 1 4 4 1 0.91 0.99 0.99 0.91
0.39 1 6 4 2 0.84 0.99 0.98 0.93
0.61 2 8 8 2 0.85 0.99 0.99 0.85
0.80 4 15 16 4 0.84 0.98 0.98 0.84
0.90 4 46 23 12 0.77 0.99 0.95 0.88
0.95 3 133 39 31 0.73 0.99 0.93 0.91
0.99 11 1024 200 167 0.72 0.99 0.93 0.91
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FIG. 3. (Color online) The CH-inequality violation of the gen-
eralized Hardy measurement bases defined by Eq. (9). The dashed
(green) curve is obtained when one considers the Hardy measurement
bases given in Eq. (4). The solid (blue) curve is the maximum
allowed for the CH violation. The star-marked (pink) curve is the
CH violation obtained when the measurements are done with the
measuring apparatuses in the orientations defined by the Hardy
generalized measurement bases of Eq. (9), and with the values of
the coefficients ki given in Fig. 5 and Table I.

In Fig. 3, one can see that the measurement bases of
Eq. (9) can generate the maximal CH-violation curve. There
are small discrepancies between the solid (blue) curve and the
star-marked (pink) curve, but they can be made even smaller
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FIG. 4. (Color online) The threshold detection efficiency for the
same measurement bases considered in Fig. 3. The dashed (green)
curve is obtained when one considers the Hardy measurement bases
given in Eq. (4). The solid (blue) curve is obtained numerically with
the measurement bases in the general form of Eq. (3) and with the
program maximizing the CH violation. The star-marked (pink) curve
is obtained when the measurements are done with the measuring
apparatuses in the orientations defined by the Hardy generalized
measurement bases of Eq. (9), and with the values of the coefficients
ki given in Fig. 5 and Table I.
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FIG. 5. (Color online) The coefficients ki of the optimal measure-
ment bases. These coefficients are plotted for each state considered in
our calculations. The values considered are k1 (blue points), k2 (red
stars), k3 (green circles), and k4 (pink squares). For higher values of
α/β, it is necessary to consider higher values of ki , since at least one
of the measurement projections tends to be always at the logical base
{|−(i) 〉,| +(i) 〉}.

by increasing the time of computation on the generation of the
star-marked (pink) curve; that is, by effectively increasing the
parameter space. This can be done by considering the values of
the coefficients ki in a larger interval range, or by considering
the values of νφi

�= 0. Nevertheless, it is clear that for the
majority of the entangled states considered, the bases given by
Eq. (9) were sufficient to generate the corresponding maximal
CH violation. For the other cases, these bases allow for almost
maximal CH violations.

In Fig. 4, there are three distinct curves. The solid (blue)
curve and the dashed (green) curves are the same curves
discussed above. The star-marked (pink) curve is the curve
for the required efficiency when considering our measurement
bases of Eq. (9) to define the orientation of the measuring
apparatuses. This curve starts at the minimum efficiency of
ηmin = 2

3 and slowly increases to ηcrit = 0.828, when the
composite system is a maximally entangled state. One can
see that the required efficiency is much smaller in this case
than it is when one chooses the bases that maximize the CH
violation without worrying with ηcrit (solid blue curve).

Equation (9) is, in fact, a reparametrization of the mea-
surement bases of Eq. (3) as a function of α/β. It is not
clear that this parametrization can indeed generate the lowest
curve possible for the required detection efficiency for a
loophole-free experiment. There could exist a curve for which
the points between 66.7% and 82.8% would be below those
of the star-dotted (pink) curve of Fig. 4. To check this, we
searched for the lowest curve possible for ηcrit. We used again
the CG method to calculate the minimum of the required
efficiency for each value of α/β. This was done in the same
way described before, with the program running with a large
uniform sample of points in the parameter space defined by
the variables {φi} and {νi}. The required efficiencies obtained
are shown with a solid (red) curve in Fig. 6. In this figure,
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FIG. 6. (Color online) The lowest value allowed for ηcrit for
a given value of α/β. The solid (red) curve is obtained using
the CG method. The star-marked (pink) curve is obtained when
the measurements are done with the measuring apparatuses in the
orientations defined by the optimal measurement bases given by
Eq. (9) and the coefficients ki shown in Fig. 5 and Table I.

there is also the curve of the required efficiencies of the
generalized Hardy measurement bases given by Eq. (9) (ki

are given in Fig. 5 and Table I). Again, there are small
discrepancies between these curves. Whenever these curves
superpose, one can say that the measurement bases given by
Eq. (9) with the coefficients of Fig. 5 are indeed the optimal
measurement bases for Bell-type experiments based on the CH
inequality. At the other points, we still have the curves close
together, which shows that experimentally these bases are still
a good choice for the tests of nonlocality based in the CH
inequality.

To demonstrate the relevance of the numerical results
obtained, we show in the Appendix the complexity of the
analytical calculation of the measurement bases that maximize
the CH violation for a certain threshold detection efficiency.
This calculation was presented by some of us in [28], and here
we review it. Starting at a given value of ηcrit, the calculation
in the Appendix obtains the optimal measurement bases and
the corresponding value of α/β analytically. The calculation,
while possible, does not add understanding (or accuracy) to
the numerical procedure presented here. In particular, the
numerical method presented here easily adapts to the case
where the efficiencies are not symmetric, as opposed to the
analytical calculation.

V. CONCLUSION

In this work, we investigated the relation between the
violation of the CH inequality, the efficiencies of the measuring
apparatuses required for closing the detection loophole, and
the measurement settings. It is well known that the required
efficiency decreases when one considers partially entangled
states and that the use of these states, unfortunately, generates
a reduction in the quantum violation of CH inequality. Both
quantities are dependent on the measurement settings used in
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the Bell test, and here we showed that there are measurement
bases which allow for an optimal situation in this trade-off
relation.

We have found the analytical form of these optimal
measurement bases. The term optimal is used here to refer
to the fact that these bases allow, for a given entangled
state, the maximal possible CH-inequality violation, while
demanding the lowest possible detection efficiency for a
loophole-free experiment. These measurement bases are,
therefore, of extreme relevance for future Bell experiments
aimed to test nonlocality without assuming any supplementary
assumption [25]. This result is especially important when one
deals with systems of pairs of entangled qubits, since the
CH inequality outperforms most of the known bipartite Bell
inequalities [13].

In this study, we have considered the case for which the
efficiencies of the measuring apparatuses involved in the test of
nonlocality are equal. However, as discussed in Refs. [26,27],
the consideration of distinct efficiencies for the detectors may
have an important practical consequence. They showed that
when Alice’s detectors are optimal, Bob’s detectors may have
an efficiency of 50% for performing a conclusive Bell test
based on the CH inequality. The same analysis that we have
done can be extended to the asymmetric Bell tests, and it
is possible to demonstrate that the bases considered optimal
in the symmetric case are also optimal for the asymmetrical
tests.
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APPENDIX: ANALYTICAL DERIVATION OF THE
MAXIMUM VIOLATION OF CH INEQUALITY

Here, we derive an expression for the maximal violation
of the CH inequality given a certain threshold detection
efficiency. This is done by maximizing the eigenvalue of the
CH-inequality operator.

For the sake of simplicity, we use the projectors corre-
sponding to the Schmidt basis, {| ± 〉(1),| ± 〉(2)} [15], as the
computational basis. We assume that the results of these
projectors are a1 and b1, so that

�a1 =
(

1 0
0 0

)
⊗ I, �b1 = I ⊗

(
1 0
0 0

)
. (A1)

The rotations from a1 to a0 and from b1 to b0 can be

parameterized conveniently by

Ua =
(√

1 − s
√

s

−√
s

√
1 − s

)
, Ub =

(√
1 − t

√
t

−√
t

√
1 − t

)
. (A2)

The Ua rotation coincides with Eq. (3) when
√

s = cos φ and
νφ = 0. We consider the CH inequality with the use of the
following projectors:

�a1b1 = �a1 ⊗ �b1 ,

�a1b0 = �a1 ⊗ U−1
b �b1Ub,

(A3)
�a0b1 = U−1

a �a1Ua ⊗ �b1 ,

�a0b0 = U−1
a �a1Ua ⊗ U−1

b �b1Ub.

The CH-inequality operator including efficiency, under the
assumption of independent errors at equal rate, is given by

B = η2(�a1b1 + �a1b0 + �a0b1 − �a0b0 ) − η(�a1 + �b1 ).

(A4)

It is worthwhile to remark that the quantum probabilities at the
expected value of the CH-inequality operator on state (2) are
equivalent to Eq. (8); see [24]. The eigenvalues of this operator
are the solutions of

stη5[−stη3 + (s + t)η(2η − 1) − 3η + 2]

+ 2(η − 1)η3[st(η2 − η) − 1]λ

− η2(4η − 5)λ2 − 2η(η − 2)λ3 + λ4 = 0. (A5)

Local realism bounds the eigenvalues below zero, so any
positive eigenvalues will give a violation. Seeking a maximum
violation, we need to find the parameter values of s and t that
give this maximum. We can also view this as finding s + t and
st that give the maximum. s + t only occurs in the constant
term in the polynomial so that, for a given value of st , the
maximum λ is obtained when s + t is minimal, i.e., when
s = t . This reduces the unknowns, and we have

t2η5[−t2η3 + 2tη(2η − 1) − 3η + 2]

+ 2(η − 1)η3[t2(η2 − η) − 1]λ

− η2(4η − 5)λ2 − 2η(η − 2)λ3 + λ4 = 0. (A6)

The singlet state | +(1) ,−(2)〉 − | −(1) ,+(2)〉 is an eigenvector
of the operator B with the eigenvalue λ4 = η2t − η, which
is always negative. The remaining three eigenvalues can be
obtained by solving the third-degree equation,

λ3

η3
+ [η(t − 2) + 3]

λ2

η2

+ [
η2(t2 − 2t) + 2η(t − 1) + 2

] λ

η

+η3t3 − 3η2t2 + 2ηt2 = 0. (A7)

Solving the above equation using the trigonometric method
gives us

λ1 = −1

3
η[3 + (−2 + t)η] + 2

3
η
√

3 − 6η + (4 + 2t − 2t2)η2

× cos

⎡
⎣1

3
arccos

⎛
⎝η[9 − 18η + 8η2 − 10t3η2 + 3t(3 − 6η + 2η2) − 3t2(9 − 18η + 4η2)]√{

3 − 2η[3 + (−2 + t)(1 + t)η]3
}

⎞
⎠

⎤
⎦ . (A8)
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The other solutions can be obtained by adding 2π/3 and 4π/3
to the arccos angle. These will be lower than λ1 above. The
next step is to use Eq. (A7) as an implicit definition of λ1 as a
function of t , and do implicit differentiation with respect to t .
Since we are seeking the maximum value, λ′(t) = 0, and the
resulting second-degree equation can be substituted back into
(A7) to obtain

λ = η

2(η − 1)2
[2t2η3 − 3tη(2η − 1) + 3η − 2]. (A9)

This can now be used in the second-degree equation to give a
fourth-degree polynomial equation for t as

4η6t4 + 4η4(2η2 − 10η + 5)t3

+η2
(
4η4 − 48η3 + 156η2 − 132η + 33

)
t2

+ 2(2η − 1)2(5η2 − 16η + 8)t

− (η − 2)(2η − 1)2(3η − 2) = 0. (A10)

In principle, the solution of this equation gives us the
parameters of the rotation from a1 to a0 and from b1

to b0 that determine the maximum violation of the CH-
inequality operator including efficiency. The eigenvectors
will give us the optimal quantum state. However, the
analytic solution of the above expression can be very
long.

The asymmetric case (ηA �= ηB) can be treated in the
same manner, but naturally the procedure will be much more
complicated. The main complication is that the singlet state
will not be an eigenvector anymore, and the polynomial
equation for t will be of a higher degree than four. Here,
one may have to resort to a numerical solution of the equation,
in which case any benefit from solving the system analytically
disappears.
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