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Continuous-variable nonlocality test performed over a multiphoton quantum state
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We propose to exploit a continuous-variable measurement, based on displacing the input field at different
points of the phase space, over a multiphoton state produced by a high-gain optical parametric amplifier. We
show that by correlating the different values of the displaced parity operators obtained from the two separated
parties, it is possible to violate a Bell’s inequality and thus demonstrate the nonlocality of the overall state. The
robustness of the results against two independent sources of error, loss and dephasing, is also discussed.
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I. INTRODUCTION

The discussion of nonlocality started by Einstein, Podolsky,
and Rosen (EPR) in 1935 [1] has yielded a definition of
entanglement as the most characteristic feature of quantum me-
chanics given by Erwin Schrödinger [2] up to the formulation
of the Bell’s inequality in order to test the nonlocal character
of quantum states [3]. Following Bohm’s scheme [4], the EPR
correlations have been analyzed by addressing singlet pairs of
two-level systems but not the two-particle continuous wave
function introduced by EPR in their argument about the com-
pleteness of quantum mechanics. Theoretical and experimental
studies of quantum nonlocality and entanglement have then
been carried out on discrete systems [5–8], and the generaliza-
tion of Bell’s inequalities to quantum systems with continuous
variables has represented a challenging issue for a long time.

Initially, it was believed that the possibility of observing
the violation of Bell’s inequality by addressing position
and momentum over the EPR state was prevented by the
non-negativity of its Wigner function. Indeed, according to
Bell, the positivity of the Wigner function would have allowed
the construction of a local-hidden-variable model simulating
correlations for any observable defined as a function of
phase-space points [9]. However, Banaszek and Wodkiewicz
showed that in spite of the positivity of the Wigner function,
the EPR state exhibits a high degree of nonlocality [10]. This
study was later extended by Chen et al. [11], who showed that
a maximal violation of Bell’s inequality can be obtained by
measuring pseudospin operators over the state produced by
a nondegenerate optical parametric amplifier (NOPA) when
the nonlinear gain of the amplifier grows and the NOPA
state tends to the original EPR one. The relation between
the positivity of the Wigner function and the possibility
of observing a violation of Bell’s inequality has then been
clarified by Rezven et al. [12]; they focused their attention
on the explicit assumptions that are made in a Bell’s test and
that involve the nature of the dynamical variables measured
in order to violate a Bell’s inequality. Reference [12] shows
that only “nondispersive” dynamical variables, i.e., variables
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whose representatives as functions of hidden variables take as
possible values the eigenvalues an such that |an| � 1, can be
considered good candidates for a local-hidden-variable theory.
The violation of a Bell’s inequality is then not only dependent
on the system’s Wigner function but also on the nature of the
measured dynamical variables.

From an experimental point of view, the demonstration
of Bell’s inequality involving the measurement of discrete
degrees of freedom requires the introduction of either the
locality or the detection loophole [13]. The adoption of atomic
systems allows one to close the detection loophole but not the
locality one [14], and conversely, light can be sent at large
distances but the inefficiency of detectors and the presence of
losses along the communication channel prevent the possibility
of closing the detection loophole. A path toward a Bell’s test
on bipartite multiphoton systems could involve the adoption of
homodyne measurements, which can be performed with very
high detection efficiency [15]. Recently, hybrid measurements
involving both discrete and continuous-variable observables in
order to demonstrate Bell’s test violations have been addressed
in Refs. [16] and [17]. The discussion of nonlocality in
continuous-variable systems is then still an open problem
in which the adoption of feasible measurements in reliable
systems turns out to be the key requirement.

We propose a further step toward the understanding of
the nonlocality problem in continuous-variable systems by
addressing the possibility of performing continuous-variable
measurements for a multiphoton system in order to observe
a Bell’s test violation. The exploited multiphoton-state source
can be considered a paradigmatic system since it is based on
an optical parametric amplifier, similar to the one analyzed
by Banaszek and Wodkiewicz in Ref. [10] [in which the
multiphoton state generated by a nondegenerate optical para-
metric amplifier was placed in relation with the continuous-
variable EPR state], but with an additional degree of freedom:
polarization. Recently, the quantum correlations present in
the multiphoton state obtained by the high-gain, spontaneous
parametric down-conversion process that cannot be read by a
fuzzy measurement performed on it have been analyzed [18].
Even if in principle the nonlocal nature of the state could be
observed for any value of the nonlinear gain of the amplifier,
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FIG. 1. (Color online) Scheme of the multiphoton source and of the detection apparatuses for the measurement of the continuous-variable
Bell’s test. The two spatial modes are split according to polarization, resulting in four modes which can be analyzed with independent detection
systems. Losses are modeled by an additional beam-splitter. (a)–(b) Apparatuses for the direct (a) and indirect (b) measurement of the displaced
parity operators.

i.e., for the increasing size of the system, the inability to
determine the structure of the state with a proper measurement
makes the observation of quantum correlations impossible. In
that paper the inability to measure the multiphoton state in an
efficient way was interpreted as one of the main causes for the
quantum-to-classical-transition phenomenon [19,20].

Here, we address the problem of analyzing the multiphoton
state through an efficient measurement method in order to
observe the violation of a Bell’s inequality. We study the
violation of the Bell’s test in the form proposed by Banaszek
and Wodkiewicz in Ref. [10] based on the measurement of
the displaced parity operators, which permit to analyze the
correlations at different points of the phase space. A similar
test, based on the measurement of the Q function, has been
analyzed in Ref. [21] in the state generated by a NOPA. By
correlating the average values of the displaced parity operators
at different points of the phase space, we study the possibility
of violating the Bell’s inequality either in the absence or in
the presence of losses, and we relate the results with the
value of the nonlinear gain of the amplifier, i.e., the size
of the measured state. In Sec. II we introduce the physical

system under investigation: the multiphoton state produced by
spontaneous parametric down-conversion working as an EPR
type-II source, and we address its Wigner function. In Sec. III
we analyze the possibility of performing a nonlocality test
upon the state generated by an optical parametric amplifier
(OPA) by adopting continuous-variable measurements. We
address both the lossless (in Sec. III A) and the lossy case (in
Sec. III B) by studying the amount of violation as a function
of the loss parameter for different values of the nonlinear gain
of the amplifier. Finally, in Sec. III C we analyze the action of
a dephasing channel.

II. MULTIPHOTON STATE GENERATED THROUGH
HIGH-GAIN PARAMETRIC DOWN-CONVERSION

The paradigmatic system over which we perform our
analysis is the one obtained by an optical parametric amplifier,
working through spontaneous parametric down-conversion
(SPDC) as an EPR type-II source [22,23] (see Fig. 1). The
low-gain regime of such a system has been experimentally
realized and deeply studied in the past few years [23,24].
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The polarization singlet state emitted in the single-pair regime
was first exploited by Kwiat et al. [22] in order to obtain
the violation of Bell’s inequalities. More recent works have
studied the increasing size-state properties; the presence of
polarization entanglement in states up to 12 photons has been
proved by studying the high-loss regime where at most one
photon per branch was detected [23]. Subsequently, Caminati
et al. [24] reconstructed theoretically and experimentally
the density matrix of this two-photon state, demonstrating
that it coincides with that of a Werner state (WS), i.e., a
weighted mixture of a maximally entangled singlet state with
a fully mixed state. However, no theoretical or experimental
demonstration of entanglement and nonlocality has been
given in the multiphoton regime while a study concerning
the possibility of observing quantum correlations through a
dichotomic measurement performed over the multiphoton state
has been recently addressed in Ref. [18]. We are now interested
in analyzing the possibility of violating a Bell’s test with such
a quantum system when its size is increased and the radiation
is measured through a continuous-variable measurement.

Let us introduce the effective interaction Hamiltonian of
the multiphoton system

Ĥint = ıh̄χ (â†
π b̂†π⊥ − â†

π⊥ b̂†π ) + H.c., (1)

where â†
π and b̂†π are the creation operators corresponding to

the generation of a π -polarized photon in spatial modes k1 and
k2, respectively, and χ is the constant describing the strength
of the interaction. The output state reads [23]

|�−〉 = 1

C2

∞∑
n=0

�n
√

n + 1||ψ−
n 〉, (2)

with

|ψ−
n 〉 =

n∑
m=0

(−1)m√
n + 1

|(n − m)π ,mπ⊥〉1|mπ,(n − m)π⊥〉2, (3)

where � = tanh g; C = cosh g (for future use, S = sinh g);
and g = χt is the nonlinear gain of the process. Hence,
the output state can be written as the weighted coherent
superposition of singlet-spin n

2 states |ψ−
n 〉. The mean number

of generated photons per polarization per mode is related to the
nonlinear gain g by the exponential relation n = S2, and the
overall number of photons per pulse is then given by 〈n〉 = 4n.
A maximum value of gexpt = 3.5, corresponding to 〈n〉 = 1080
per pulse, was experimentally reached in Ref. [18].

A. Wigner function of the multiphoton quantum state

The Wigner function of the multiphoton state can be
obtained in the same way as the one addressed in Ref. [25]. We
consider the presence of losses by introducing a lossy channel
with transmittivity T , simulated by the presence of a beam
splitter along the propagation of the radiation field. We assume
that the channel efficiency T is equal for the four modes of
the source. The Wigner function in this lossy scenario of the
state ρ̂− = LT (|�−〉〈�−|), where LT is the map describing
the action of a lossy channel with efficiency T , can then be

written as [25]

WT {α,β,g,T } = N exp

[
−ε

∑
π=H,V

(|απ |2 + |βπ |2)

]

× exp{−μ[2Re(αV βH ) − 2Re(αHβV )]}.
(4)

Here, the {απ }π=H,V quadratures correspond to the spatial
mode k1, the {βπ }π=H,V quadratures correspond to the spatial
mode k2, and

ε = ε(1 + 2S2) − μ2CS

ε2 − μ2
, (5a)

μ = ε2CS − μ(1 + 2S2)

ε2 − μ2
, (5b)

N = 1

π4

(
1

ε2 − μ2

)2

, (5c)

where
ε = 1

2 [1 + 2(1 − T )S2], (5d)

μ = (1 − T )CS. (5e)

The lossless case can then be recovered by setting T = 1.
We keep the same definitions of the calculation reported in
Ref. [25] in which many details can be found. We observe
that the four-mode Wigner function of the multiphoton state
produced by the OPA is positive as is the two-mode one pro-
duced by the NOPA addressed by Banaszek and Wodkiewicz
in Ref. [10]. We will show that in spite of such a positivity, it is
possible to demonstrate the violation of a Bell’s inequality by
performing continuous-variable measurements on the state.

III. VIOLATION OF THE BELL’S TEST

Let us recall briefly the test performed by Banaszek and
Wodkiewicz on the NOPA state in Ref. [10]. Their nonlocality
proof starts from the observation about the possibility of
writing the two-mode Wigner function as

W (α; β) = 4

π2
�(α; β), (6)

where �(α; β) = 〈�̂(α; β)〉 is the expectation value of the
displaced parity operator, i.e.,

�̂(α; β) = D̂1(α)(−1)n̂1D̂
†
1(α) ⊗ D̂2(β)(−1)n̂2D̂

†
2(β), (7)

where D̂1(α) and D̂2(β) are displacement operators for the
two spatial modes k1 and k2, respectively, and n̂1 and n̂2 are
the corresponding photon number operators. Since a parity-
operator measurement gives a ±1 result, it fits perfectly for
the CHSH inequality [26] and can be used to show nonlocality
of the NOPA wave function. Using displacements in the phase
space, the correlation between the two parties can be written
as

E(a; b) = �(α; β). (8)

The nonlocality parameter can then be written as

B = �(0; 0) + �(
√
I; 0) + �(0; −

√
I) − �(

√
I, −

√
I),

(9)
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where I is a positive parameter. For local theories, the
inequality −2 � B � 2 holds. In Ref. [10] it is shown that this
inequality is violated by the NOPA state even for the squeezing
parameter going to ∞ and for the NOPA state approximating
the EPR one.

In this work we investigate the nonlocality of a more
general multiphoton state produced by an OPA in which the
correlations are present in two degrees of freedom, the spatial
and the polarization ones. We then need to generalize Eq. (9)
to the four-dimensional case in which the Wigner function is
expressed as a function of α = (αH ,αV ) and β = (βH ,βV ),
where the subscripts H and V stand for the horizontal and
vertical polarizations, respectively. The B parameter can then
be rewritten as B(αH ,αV ; βH ,βV ), and the violation results
are functions of the nonlinear gain of the amplifier and the
displacement of the state in the eight-dimensional phase space.

Let us conclude this section by discussing how the displaced
parity operators can be experimentally realized. A direct
method to measure the displaced parity operators of Eq. (7)
exploits the displacement of the input field by a complex
parameter α, using a beam splitter to combine the incoming
field with a coherent state, and the measurement of the parity of
the output field. The (+1) and the (−1) outcomes are assigned
at each shot of the experiment at Alice and Bob sites. In
this scenario, no assumptions are required for both the state
and the detection apparatus; hence, the proposed inequality is
a genuine nonlocality test. An alternative approach exploits
the high detection efficiency of homodyne measurements and
relies on the connection between the displaced parity operators
and the Wigner function of the state. In this case, the value of
the nonlocality parameter B can be retrieved by performing a
homodyne measurement on the output field and by evaluating
B from the reconstructed Wigner function. This methodology
requires a physical assumption for the detection apparatus,
namely, it assumes that the Wigner function describes the
optical radiation, thus reducing the set of local-hidden-variable
models that can be rejected by the violation of Eq. (9).

A. Violation in absence of losses

We first analyze the perfect case in which the multiphoton
state is not affected by decoherence or loss. In this case the
Wigner function in Eq. (4) reads

W0{α,β,g}

=
(

2

π

)4

exp

[
− 2(1 + 2S2)

∑
π=H,V

(|απ |2+|βπ |2)

]

× exp{−2CS[2Re(αV βH ) − 2Re(αHβV )]}. (10)

The displaced parity can be written as

�0(αH ,αV ,βH ,βV ,g) =
(

π

2

)4

W0(αH ,αV ,βH ,βV ,g). (11)

Now the Bell parameter can be written as a function of eight
phase-space variables and the nonlinear gain:

B0(z1,z2,z3,z4,z5,z6,z7,z8,g)

= �0(z1,z2,z3,z4,g) + �0(z1,z2,z7,z8,g)

+�0(z5,z6,z3,z4,g) + −�0(z5,z6,z7,z8,g), (12)
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FIG. 2. Trend of the violation of Bell’s test in the absence of
losses as a function of the nonlinear gain g of the amplifier.

where zi , with i = 1, . . . ,8, represents the displacements in the
phase space for the fixed {πH ,πV } polarization basis, where
z1,z2 and z5,z6 are the displacements relative to the k1 mode
while z3,z4 and z7,z8 are relative to the k2 spatial mode.
We have then maximized the value of B with respect to zi

for different fixed values of the nonlinear gain g. We found
numerically that for g = 2 the maximum violation is obtained
for real displacements given by z1 = −0.0241, z2 = −0.0066,
z3 = −0.0066, z4 = 0.0241, z5 = 0.0725, z6 = 0.0198, z7 =
0.0198, and z8 = −0.0725 and corresponds to a violation
equal to

Bmax
0 = 2.32. (13)

Figure 2 reports the trend of the Bell’s inequality violation as a
function of the nonlinear gain. We observe that for low values
of g we have a small violation since Gaussian states with no
squeezing cannot violate this inequality. This can be shown
by noting that for g = 0 the Wigner distribution of the state is
Gaussian and equally distributed according to

W0(αi) = N exp

(
− 1

σ 2

∑
i

|αi |2
)

= N
∏

i

exp

(
−|αi |2

σ 2

)
,

(14)

and in such a case the B expression can be grouped as

B0(z1,z2, . . . ,z8)

= �0(z1,z2)[�0(z3,z4) + �0(z7,z8)]

+�0(z5,z6)[�0(z3,z4) − �0(z7,z8)]. (15)

As each displaced-parity mean value obeys |�0(z)| � 1, we
have |B0| � 2.

For g � 1, the amount of violation progressively saturates
and reaches its maximum value equal to Bmax

0 in Eq. (13). We
observe that the points at which we can observe the maximal
violation of the inequality depend on the nonlinear gain of
the amplifier since it changes the squeezing of the generated
state. Increasing the value of g, we obtain displacement values
closer to the origin of the phase space, creating an experimental
challenge.
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FIG. 3. (Color online) Trend of the violation of Bell’s test as a
function of the transmittivity T for different values of the nonlinear
gain g. Red dashed curve: g = 0.01. Green solid curve: g = 0.5.
Blue dotted curve: g = 1. Black dash-dotted curve: g = 1.5. Cyan
dash-dot-dotted curve: g = 2.

B. Violation in the presence of losses

Let us consider now the case in which the state undergoes
a loss process, simulated by the presence of a beam splitter
in Fig. 1. The loss contribution is taken into account by the
parameter T , and the Wigner function in the lossy case is given
by Eq. (4). The displaced parity of the phase space is given by

�(αH ,αV ,βH ,βV ,g,T ) =
(

π

2

)4

WT (αH ,αV ,βH ,βV ,g,T ),

(16)

and the violation turns out to be dependent on the loss
parameter. Similarly to the perfect case, we define a Bell
parameter by

B(z1,z2,z3,z4,z5,z6,z7,z8,g,T )

= �(z1,z2,z3,z4,g,T ) + �(z1,z2,z7,z8,g,T )

+�(z5,z6,z3,z4,g,T ) − �(z5,z6,z7,z8,g,T ), (17)

and we maximize it with respect to zi for fixed values of g and
T . In Fig. 3 we report the trend of violation as a function of T

for different values of the nonlinear gain. We observe that the
amount of violation decreases rapidly as a function of T , and
the maximum value of T = T ∗ for which we cannot observe a
violation strongly depends on g. Figure 4 reports the trend of
T ∗, function of g, such that B(z1,z2,z3,z4,z5,z6,z7,z8,g,T ∗) =
2 is a function of g. We observe that the value of T ∗ increases
with the increasing size of the system, and for high values
of g, it becomes practically impossible to observe a violation
even in the presence of a small loss. We stress that while the
increase of nonlinear gain g produces a larger squeezing of
the multiphoton state, the presence of loss is responsible for
the broadening of the Wigner function [27]. This interplay
between the two effects determines the points at which we can
see the maximal violation of the Bell’s inequality.

C. Violation in the presence of dephasing noise

In this section we consider the possibility of observing a
violation of the analyzed Bell’s inequality in the presence of

0.0 0.5 1.0 1.5 2.0
0.80

0.85

0.90

0.95

1.00

g

T

Nonlocal

Local

FIG. 4. (Color online) Limiting value of T = T ∗ for which B = 2
as a function of the nonlinear gain g. The white region identifies the
range of parameters where nonlocality can be detected.

dephasing noise. The main cause of dephasing for an optical
field is given by uncontrolled fluctuations in the optical path of
the beam. Hence, the action of this process can be modeled by
adding a random phase shift in the optical mode. This can be
evaluated by adding a unitary rotation Û (φ) in the field and by
averaging over φ with a Gaussian probability distribution. The
width σ of the Gaussian distribution is related to the strength of
the dephasing process. For large σ , this model corresponds to
the complete loss of the phase properties of the field, described
by the suppression of the nondiagonal elements of the density
matrix ρ̂ = ∑

m,n ρm,n|m〉〈n|, according to ρm,n → ρm,nδm,n.
Let us start by considering isotropic dephasing at one spatial

mode. The ideal ρ̂�− = |�−〉〈�−| is then degraded to

ρ̂σ
�− =

∫ ∞

−∞
dφpσ (φ)

(
Û

(A)
φ ρ̂�−Û

(A)†
φ

)
, (18)

where

Û
(A)
φ = ÛAH

φ ⊗ ÛAV
φ ⊗ 1BH ⊗ 1BV , (19)

and the superscripts i andj with i = A,B and j = H,V over
the rotation operators stand for the spatial and polarization
modes, respectively. The Wigner function for the state ρ̂σ

�− of
Eq. (18) after the action of dephasing noise can be written as

Wσ (αH ,αV ,βH ,βV ,σ )

=
∫ ∞

−∞
dφpσ (φ)W0(αHeıφ,αV eıφ,βH ,βV ). (20)

This model corresponds to the case in which the random phase
shift is equal for both polarization modes on each shot of the
experiment. We can then define a Bell’s parameter analogously
to the lossless case according to

B(z1,z2,z3,z4,z5,z6,z7,z8,g,σ )

= �(z1,z2,z3,z4,g,σ ) + �(z1,z2,z7,z8,g,σ )

+�(z5,z6,z3,z4,g,σ ) − �(z5,z6,z7,z8,g,σ ), (21)

where

�(αH ,αV ,βH ,βV ,g,σ ) =
(

π

2

)4

Wσ (αH ,αV ,βH ,βV ,g,σ ).

(22)
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FIG. 5. (Color online) Bell parameter B as a function of the
dephasing strength σ for different values of the gain g of the
amplifier. Red dashed curve: g = 0.01. Green solid curve: g = 0.5.
Blue dotted curve: g = 1. Black dash-dotted curve: g = 1.5. Cyan
dash-dot-dotted curve: g = 2.

We evaluated numerically the Bell’s parameter by maximizing
over the parameters {zi} as a function of the dephasing strength
σ . The results are shown in Fig. 5. We observe that the amount
of violation decreases with an increasing value of the noise
strength σ . One can note that asymptotically the classical value
2 is approached from above: B → 2+. This means that in the
presence of dephasing, the amount of violation detectable with
the present measurement strategy progressively decreases, and
the local-hidden-variable limit is reached for phase uncertainty
at about or above π .

The present model can also be extended to the nonisotropic
case, corresponding to phase fluctuations uncorrelated be-
tween the two polarization modes. We consider statistically
independent phase fluctuations of the same strength,

Û
(A)
φH ,φV

= ÛAH
φH

⊗ ÛAV
φV

⊗ 1BH ⊗ 1BV , (23)

implying that the Wigner function after the dephasing process
reads

W ′
σ (αH ,αV ,βH ,βV ,σ )

=
∫ ∞

−∞

∫ ∞

−∞
dφHdφV pσ (φH )pσ (φV )

×W0(αHeıφH ,αV eıφV ,βH ,βV ). (24)

We then analyzed numerically the violation of the Bell’s
inequality |B| � 2, where B is the parameter defined in
Eq. (21). We found that the results for the nonisotropic case
present the same trend as that of the isotropic case reported in
Fig. 5. Hence, the violation of the Bell’s inequality after the
action of a dephasing process is lost only for asymptotically
large values of the noise strength σ . These results show that
the present approach is robust to phase noise. This robustness

with respect to this source of decoherence is obtained since
the correlations in the output state of the noncollinear OPA
are imprinted both in the diagonal and in the nondiagonal part
of the state. The action of dephasing reduces the correlations
in the nondiagonal part without affecting the diagonal part of
the density matrix. For asymptotically large noise, only the
diagonal terms are left, leading to a value of |B| = 2 of the
Bell’s parameter lying at the boundary between the local and
the nonlocal regions.

IV. CONCLUSIONS

In conclusion, we have theoretically addressed the problem
of observing nonlocality by performing continuous-variable
measurements on a multiphoton paradigmatic state, the one
produced by an OPA showing correlations both in the
spatial and in the polarization degrees of freedom. We have
generalized the Bell’s test proposed in Ref. [10] for a NOPA
state for an enlarged four-mode multiphoton state. In Sec. II
we reviewed the basic notions about the quantum system
under investigation, and we have derived its Wigner function
(Sec. II A). We have then introduced the nonlocality test in
Sec. III by addressing both the lossless (Sec. III A) and the
lossy cases (Sec. III B). We have shown that in the lossless
case a maximum violation of Bmax = 2.32 can be reached for
the increasing size of the investigated system while in the
presence of loss, the amount of violation quickly decreases
by increasing the nonlinear gain or the parameter of loss.
This renders it extremely difficult to observe experimentally
the quantum features for a system of increasing size even
if an efficient measurement is performed on it. Finally, in
Sec. III C we considered the possibility of observing a violation
of the Bell’s inequality in the presence of dephasing noise. We
found that in the presence of dephasing, the investigated Bell’s
inequality is violated for any value of the number of photons,
approaching the classical bound for large noise. These results
demonstrate that the present approach is extremely robust to
phase noise and suggest that the adoption of a measurement
with high quantum efficiency seems to be a crucial requirement
to observe nonlocality in the present system. In conclusion, we
believe that our study should facilitate a deeper understanding
of the problem of the observability of nonlocality by adopting
continuous-variable measurements over quantum states of
increasing size.
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Università di Roma. M.T.C. acknowledges support from
the Brazilian CNPq and Fapemig and also the CNPq-CNR
collaboration program under project No. 490257/2009-7.

[1] A. Einstein, B. Podolski, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] E. Schrodinger, Naturwissenschaften 23, 807 (1935).

[3] J. S. Bell, Physics 1, 195 (1964).
[4] D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs,

NJ, 1965).

012104-6

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1007/BF01491891


CONTINUOUS-VARIABLE NONLOCALITY TEST . . . PHYSICAL REVIEW A 85, 012104 (2012)

[5] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804
(1982).

[6] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91
(1982).

[7] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and
A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).

[8] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett.
81, 3563 (1998).

[9] J. Bell, Speakable and Unspeakable in Quantum Mechanics
(Cambridge University Press, Cambridge, 1987).

[10] K. Banaszek and K. Wodkiewicz, Phys. Rev. A 58, 4345
(1998).

[11] Z.-B. Chen, J.-W. Pan, G. Hou, and Y.-D. Zhang, Phys. Rev.
Lett. 88, 040406 (2002).

[12] M. Revzen, P. A. Mello, A. Mann, and L. M. Johansen, Phys.
Rev. A 71, 022103 (2005).

[13] P. M. Pearle, Phys. Rev. D 2, 1418 (1970).
[14] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M.

Itano, C. Monroe, and D. J. Wineland, Nature (London) 409,
791 (2001).
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