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Quantum interferometry with and without an external phase reference
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We discuss the role of an external phase reference in quantum interferometry. We point out inconsistencies in
the literature with regard to the use of the quantum Fisher information (QFI) in phase estimation interferometric
schemes. We discuss the interferometric schemes with and without an external phase reference and show a proper

way to use QFI in both situations.
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Laws of quantum mechanics impose fundamental bounds
on measurement precisions of basic physical quantities such
as position, momentum, energy, time, phase, etc. Theses
bounds follow from the structure of the theory itself, which
contrasts the situation encountered in classical physics where
measurement uncertainties are due to factors that, in principle,
may be eliminated by improving the quality of measure-
ment procedures. One of the most important measurement
techniques where such bounds have been analyzed is optical
interferometry [1].

In a generic interferometric measurement using a Mach-
Zehnder setup and classical light sources the precision of
estimating the relative phase delay ¢ inside the interferometer
is bounded by the so-called standard quantum limit (SQL)
Sp =1/ N , where N is average number of photon-counts.
At the fundamental quantum level, the bound is a result of
an independent probabilistic behavior of individual photons
propagating through the interferometer.

Breaching the SQL requires the use of special nonclassical
states of light where photons can no longer be regarded as
independent. One of the first proposals in this direction was
the idea to mix coherent light with the squeezed vacuum at
the input beam splitter of the Mach-Zehnder interferometer
[2]. Thanks to the reduced vacuum fluctuations in one of the
quadratures of the squeezed state, it is possible to improve
the precision beyond the SQL. This observation prompted the
search for more fundamental bounds on achievable precision,
which would be obeyed by all quantum states [3].

In general, looking for the optimal phase estimation
protocols is difficult since one needs to optimize over the input
state |v,) that is fed into the interferometer, the measurement
{IT, } that is performed at the output, and the estimator ¢(n)—a
function that assigns a phase value to a given measurement
outcome. One of the popular ways to obtain useful bounds
in quantum metrology, without the need for cumbersome
optimization, is to use the concept of the quantum Fisher
information (QFI) [4] (for alternative approaches see, e.g.,
Ref. [5]).

The purpose of this paper is to give a proper interpretation
to the bounds obtained via the QFI and point out conflicting
approaches where seemingly equivalent physical models lead
to different quantitative statements. We show that the source of
the problem lies in the use of quantum states of light, which are
coherent superpositions of different total photon number terms
without properly taking into account the role of an external
phase reference beam.
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Let a and b be the anihilation operators of, respectively,
upper and lower input modes of the interferometer. For the
purpose of this paper, we consider the input state of the form
|V¥in) = |r,a), where |a) is the coherent state, a|a) = «la),
while |r) = exp[§r*a® — 1r(a’)?]|0) is the squeezed vacuum
state with squeezing parameter r (see Fig. 1). After it has
evolved through the beam-splitter with power transmission
7, and experienced the relative phase shift inside the inter-
ferometer U, the state becomes |Y,) = U, B;|¥in), where
B, = exp[—i asin(y/7)(a'b + ab")], U, = exp[—iga’al. Ina
standard Mach-Zehnder setup, one interferes the two modes
on another balanced beam-splitter and detects number of
photon clicks, n, and nj, in the two output modes. In an
idealized setup with no losses, perfect interferometer, and
100% detection efficiency, this leads to a phase-dependent
probability distribution of clicks:

P(na,np|@) = [(na,np|B1 Uy Be |rin) . (1)

Instead of looking for the best possible estimator of the
phase, which in general is a hard task, one can invoke the
Cramer-Rao bound [6], which states that for k repetitions of
an experiment and any locally unbiased estimator ¢(n,,n,) the
uncertainty of estimation is bounded from below by

1 1 dp(na,nple) ]
b > —, F = [ = } , (@
JkF nzm p(ng,nple) do

where F is the Fisher information. Moreover, the bound can be
saturated in the limit k¥ — oo, by making use of the maximum
likelihood estimator.

A prioriitis not obvious that this type of measurement is the
optimal way to extract phase information from the state [v,,).
The quantum Cramer-Rao bound [4] provides an answer to this
problem and states that whatever the measurement chosen, the
following bound on the estimation uncertainty holds:

1
VkFg'

where |I/fé;) = d‘d‘/;‘”, and Fy is called the quantum Fisher
information. Fp depends neither on the measurement nor on
the estimator and it is solely a function of the probing state,
which makes it an easy-to-calculate quantity. Moreover, one
can always find a measurement (that may depend on the true
value @) for which F' = Fy. In what follows, we will drop &

for simplicity and use notation where é¢ = 1/,/Fp.

do >

Fo =4((W,l¥,) — (W, l¥)), @)
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FIG. 1. An interferometric scheme with coherent and squeezed
vacuum states interfered at a beam-splitter, with arbitrary quantum
measurement potentially involving an additional reference beam. In
general, the QFI bounds on the phase-estimation precision depend
on the way the interferometer phase delay is modeled: (i) phase
shift only in the upper arm, (ii) phase shift distributed symmetrically,
(iii) phase shifts defined with respect to an additional reference beam.

A lot of work in quantum-enhanced interferometry has been
based on utilizing the Fp [7-9]. In a typical approach, one
maximizes Fp over a class of input states satisfying some
constraint (e.g., total energy) and in this way finds the input
states optimal for quantum interferometry.

Let us investigate the consequences of this approach in
our setup. The input state |v;,) = |o,7) has the mean number
of photons equal to 7 = |a|*> + sinh® . Having fixed 71, we
look for optimal « and r and the transmission coefficient T
that maximize Fy. If one follows this procedure rigorously,
then the solution depends strongly on the way the phase
shift between the beams is modeled inside the interferometer.
As a simple illustration of this counterintuitive behavior, the
relative phase shift ¢ may be modeled in, e.g., two ways
depicted in Fig. 1 as (i) and (ii). These two cases correspond
with U = exp[—iga'a] and US) = exp[—i$a'a 4+ i%b'b),
respectively. When plugged into Eq. (3), they yield

Fy) = 472|a|? + 2(1 — 1)? sinh®(2r) + 5, 4)
F? = (1 —20)[|a)? + } sinh®2r)] + 3, (5)

where § = 47(1 — 7)(|oe|?¢* + sinh® r), and in order to sim-
plify the formulas, we have put the relative phase between the
inputbeams tobe /2 (r = |r|, @ = i|a|), which is the optimal
choice for this and all the examples presented in this paper. The
formulas are clearly different, which becomes evident when we
set T = 1/2,r = 0, in which case Fg) =2/, Fg[) = |a|?.
To understand what lies behind this discrepancy, consider
an even more exotic case of T =1, r = 0. The coherent
state is simply transmitted to the upper arm so there is no
interferometer at all, yet Fg) = 4|a?, Fg’) = |a|?. To give
a meaning to these “unphysical” results, notice that QFI
simply depends on the change of the probe state under the
variation of the parameter ¢. Even if we send a coherent state
|a) to the upper arm alone, then under the phase shift ¢ it
evolves to |ae’?), which differs from |a) and in principle may
provide us with useful information on the value of phase ¢.
The physical content that is missing in this reasoning is that
the phase information is only available once we have access
to an additional reference beam with respect to which the
phase shift ¢ is defined. In other words, there is no such
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thing as an absolute phase shift—a seemingly obvious fact
that has nevertheless significant implications for the problem
considered and has been treated in contradicting ways in the
literature.

The whole problem revolves around quantum states that
are coherent superpositions of different photon number states
such as, e.g., coherent or squeezed states. Take a coherent
state ||a|e’?). Since all measurements in quantum optics rely
ultimately on photon counts, no measurable consequences
of these coherences may be observed unless these states
are interfered (as, e.g., in a homodyne measurement) with
a reference beam with respect to which the phase 0 is
defined. Otherwise, one is entitled to phase average the
state without any observable consequences, i.e., replace
llle’®) with p = [ 2|ja|e’)(|le’|, which is an inco-
herent mixture of photon number states with Poissonian
statistics [10].

Going back to our quantum interferometric setup, if we
indeed consider just the two modes of the interferometer
and do not allow any additional reference beam, then as an
input we should rather consider a phase averaged state of the
form

o . b aty bt
p(ra) = EVG Vi lra)(r,alV, 'V, ", (6)

where V' = exp(—ifxTx). Notice that squeezed and coherent
states are averaged over a common phase 6, which reflects
the fact there is a physical meaning in the relative phases
between them. Calculation of QFI for p(r,a)—F, g )__are more
involved since the state is mixed and instead of Eq. (3) one
needs to employ a general formula involving the concept of
the symmetric logarithmic derivative [4]. The resulting F’ (Qp )
is different both from F g) and F (Qii) and does not depend on
the choice of the phase shift generator—be it U or UY".
All that matters is the relative phase between the arms of the
interferometer. F’ (Qp ) achieves maximum for T = 1 /2 in which
case it takes a simple form:

max FY =Fy._,, = lafe’ +sinh’r. (7)

There is a great deal of confusion in the literature since
formulas Fg), F g’) are often used instead of F(Qp ) without
discussing the need of an additional reference beam [9,11,12].
Despite this, one sometimes arrives at the correct result, since,
e.g., for T =1/2, Fgl) = Fg), and that is why the results
in Ref. [9] are indeed correct. However, had one used a phase
shift generator (i) instead of (ii), one would arrive at a different
solution. Similar objections can be raised in the context of
Ref. [11], where Fg) is used, and Ref. [12], where one defines
standard quantum limit as 8> = (2|a|?)~! instead of (Ja|?)~",
which is again due to the use of F g) instead of F (Qp ), Making
use of F g), F gi) without mentioning the need of a reference
beam is misleading since it is not clear what experimental
setup these quantities really refer to.

Let us now consider a situation in which we indeed have
an access to an additional reference beam—represented by the
state |8) in Fig. 1—and want to properly analyze the quantum
interferometric setup. If the reference beam is strong, we can
treat it as a phase reference for the other two modes. Therefore,
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we introduce two phase shifts, ¢; and ¢, as in (iii) in Fig. 1,
which are defined with respect to the reference beam. In a
sense, we now face a two-parameter estimation problem. The
proper way to proceed is to employ a two-parameter Cramer-
Rao bound [4]:

S > F Fy = 4Re((910,9) — Q¥ 1¥)(¥10;¥), (8)

where %;;, i = 1,2 is the covariance matrix for parameters

©1, @2, F is the quantum Fisher information matrix (QFIM),

) =V, V(fz B |1, is the probe state after sensing the phase
i F]

bound on the uncertainty of ¢;, the proper formula reads

S¢i = V(F . )

Note that in general (F~Yii #* (Fi)~ L

In quantum interferometry we are interested in the phase
shift difference between the interferometer arms, i.e., ¢_ =
®1 — @2, SO it is more convenient to write QFIM in basis ¢ =
@1 £ ¢. Calculating QFIM in =+ basis yields

shifts ¢1, ¢, and |0;¢) = L;f). If one is now interested in the

1-2
]-'=|: © (1209 } (10)
1-20)9 (1-21)y&+F

where & = |o|? + sinh2(2r)/2, H= sinh2(2r)/2 — |a|?, and
finally the bound on estimation precision of ¢_ can obtained
easily via Eq. (9). The minimal uncertainty is obtained for

7 = 1 in which case 8¢_ > /(|a|2€? + sinh? 1)~

It is interesting to note that this is the same result as the
one obtained for the phase averaged state using F (Q” ) from
Eq. (7). This observation proves that in the setup considered
(witht = %) there is no advantage in using the reference beam
when estimating the phase difference between the two arms of
the interferometer. More generally, it can be shown that this is
a feature of all path-symmetric pure states, i.e., the states that
are symmetric with respect to an exchange of the arms of the
interferometer [13]. Itis also worth mentioning that the optimal
measurement in our setup when t = 1/2, and more generally
whenever we deal with a pure path-symmetric state in the
interferometer, is a standard photon count measurement after
the two modes are interfered on a balanced beam splitter [8,14].

As a summary of the discussion, in Fig. 2 we plot in black
the bounds on §¢ obtained using different QFIs. The bounds
are plotted as a function of the total number of photons 7 used,
and parameters (7, o, r) are chosen to maximize the respective
QFI. One can easily notice that the uncertainties calculated

using F, (Qi) and F gi) are overly optimistic. The reason behind

this is an implicit assumption that, e.g., in the case of F g), the
lower arm of the interferometer (where there is no phase shift
element) is perfectly aligned with the reference beam. Such an
assumption can hardly be justified in practice.

Things become more complicated when one takes into
account loss in the interferometer. Let 1 be the power
transmission coefficient in both arms of the interferometer. All
results presented in the paper may be rederived in this setup
although calculations are more involved. Figure 2 depicts in
gray the resulting uncertainties for exemplary loss coefficient
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FIG. 2. Bounds on the phase estimation precision calculated
using the QFI, in the cases of ideal (black) and lossy (n = 0.8,
gray) interferometers. Different curves correspond to QFI calculated
using different models: F(Qi) (dotted), ng) (dashed), F(Q” ) (solid).
In the case of a lossy interferometer, the additional reference
beam may improve the precision: (F~!')__(gray, solid, bottom) <
(Fg’ ))*l(gray, solid, top), while for the ideal interferometer these
quantities coincide.

1 —n =0.2. Apart from a similar observation that F g) and
F gi) yield overoptimistic results, we additionally observe that

(F~)-_ < (F)~", which is illustrated by a thick band
and proves that having an additional reference beam
helps in estimating the phase difference in a lossy
interferometer.

Itis interesting to understand deeper what we really mean by
strong reference beam. Clearly, if | 8] is not strong enough we
can hardly treat it as a phase reference. To solve this problem,
consider a phase-averaged three-mode state:

p(r,a,B) = / g—gvg VEVEIra,BY (e, BV VITVET (1)
Calculating the QFIM in this case can be done only nu-
merically. Finally, we can calculate the optimal estimation
strategy (optimal 7, «, r) and the resulting bound on precision
8¢_ > (F~1Y)__ as afunction of | 8|. With the increasing value
of | 8| we will approach the regime discussed before, where we
treated the reference beam as strong enough so it can serve as
a perfect phase reference. In the case of the example depicted
in gray in Fig. 2, this corresponds to improving the estimation
precision by going from the upper to the lower boundary of
the gray band with increasing |B|.

A deeper analysis [13] shows that a sufficient condition
for treating the reference beam as a perfect phase reference is
|8|% >> 7i%. The reference beam needs to have much more than
the square of the number of photons traveling in the proper
modes of the interferometer, a fact observed also in Ref. [15].

In summary, we have pointed out some possible flaws in the
interpretations of the results obtained using the QFI for states
that are superpositions of different total photon number terms
and showed that the full understanding of the problem is only
possible if the role of an additional reference beam is properly
taken into account.
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