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Evolution from BCS to BEC superfluidity in the presence of spin-orbit coupling
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We discuss the evolution from BCS to Bose-Einstein condensate (BEC) superfluids in the presence of spin-orbit
coupling for a balanced mixture of ultracold fermions. The dependence of several thermodynamic properties,
such as chemical potential, order parameter, pressure, entropy, isothermal compressibility, and spin susceptibility
tensor on the spin-orbit coupling and interaction parameter at low temperatures are analyzed. We studied both
equal Rashba and Dresselhaus (ERD) and the Rashba-only (RO) spin-orbit coupling. Comparisons between the
two cases reveal several striking differences in the corresponding thermodynamic quantities. Finally, we propose
measuring the isothermal compressibility and spin susceptibility as a way of detecting the effects of the spin-orbit
coupling.

DOI: 10.1103/PhysRevA.85.011606 PACS number(s): 67.85.Lm, 03.75.Ss

Superfluidity is a ubiquitous phenomenon that is encoun-
tered in nearly every area of physics, including condensed-
matter physics, nuclear physics, astrophysics, and atomic and
molecular physics. Superflow results from strong correlations
between particles, which for any given interacting Fermi
system could not be controlled externally until the recent
advent of ultracold atoms. In standard condensed matter,
there is a continuous search for new charged superfluids
(superconductors) since the type and strength of interactions
cannot be tuned even within the same class of materials. In
the cases of nuclear matter and neutron stars, the tunability
of interactions is extremely difficult. However, the situation
is much more favorable for ultracold Fermi atoms, where the
ability to control interactions between particles, via Feshbach
resonances, has been demonstrated in experimental studies of
the so-called crossover from BCS to Bose-Einstein condensate
(BEC) superfluidity.

Further control of interactions is now possible through
newly developed experimental techniques that allow the
production of fictitious magnetic fields which couple to neutral
bosonic atoms [1,2]. These fictitious magnetic fields are
generated through an all-optical process but produce real
effects like the creation of vortices in the superfluid state
of bosons. Furthermore, artificial spin-orbit coupling has
also been produced in neutral bosonic systems [3] where
the strength of the coupling can be controlled optically. In
principle, the same techniques can be applied to ultracold
fermions [3,4], which, when coupled with the control over
the interaction using Feshbach resonances, allows for the
exploration of superfluidity not only as a function of inter-
actions but also as a function of fictitious magnetic fields [6]
or as a function of spin-orbit coupling as discussed here. An
introduction to the effects of controllable fictitious magnetic
and spin-orbit fields can now be found in the literature [7].

It is in anticipation of experiments involving spin-orbit
coupling in fermionic atoms such as 6Li, 40K, 171Yb, and 173Yb
that we discuss here the evolution from BCS to BEC super-
fluidity in the presence of controllable spin-orbit couplings
for balanced fermions in three dimensions. We investigate
spin-orbit effects with Dresselhaus [8] and Rashba [9] terms
and analyze several thermodynamic quantities including the
order parameter, chemical potential, thermodynamic poten-

tial, entropy, pressure, isothermal compressibility, and spin
susceptibility tensor as a function of spin-orbit coupling and
interaction parameter at low temperatures.

Hamiltonian. To address the problem of the evolution from
BCS to BEC superfluidity in the presence of spin-orbit fields
for balanced or imbalanced Fermi-Fermi mixtures, we start
with the generic Hamiltonian density

H(r) = H0(r) + HI (r). (1)

The single-particle Hamiltonian density is

H0(r) =
∑
αβ

ψ†
α(r)[K̂αδαβ − hi(r)σi,αβ]ψβ(r), (2)

where K̂α = −∇2/(2mα) − μα is the kinetic energy in ref-
erence to the chemical potential μα , and hi(r) is the spin-
orbit field along the i direction (α =↑ , ↓, i = x,y,z). The
interaction term is HI (r) = −gψ

†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r), where
g is a contact interaction. In this Rapid Communication, we
set h̄ = kB = 1.

Effective action. The partition function at temperature T is
Z = ∫

D[ψ,ψ†] exp(−S[ψ,ψ†]) with action

S[ψ,ψ†] =
∫

dτdr
[ ∑

α

ψ†
α(r)

∂

∂τ
ψα(r) + H(r,τ )

]
. (3)

Using the standard Hubbard-Stratanovich transformation
that introduces the pairing field 	(r,τ ) = g〈ψ↓(r,τ )ψ↑(r,τ )〉,
we can write the intermediate action Sint[ψ,ψ†,	,	†] =
Sno[ψ,ψ†] + SI[ψ,ψ†,	,	†], where the no-interaction action
is

Sno[ψ,ψ†] =
∫

dτdr
[ ∑

α

ψ†
α(r)

∂

∂τ
ψα(r) + H0(r,τ )

]

and the action due to the auxiliary field is

SI =
∫

dτdr
[ |	(r,τ )|2

g
− 	ψ

†
↑ψ

†
↓ − 	†ψ↓ψ↑

]
.

Using the four-dimensional vector representation

†(r,τ ) = {ψ†

↑,ψ
†
↓,ψ↑,ψ↓}, the intermediate action becomes

Sint =
∫

dτdr
[ |	(r,τ )|2

g
+ 1

2

†M
 + 1

2
(K̃↑ + K̃↓)

]
.
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The 4 × 4 matrix M is

M =

⎛
⎜⎜⎜⎜⎝

∂τ + K̃↑ −h⊥ 0 −	

−h∗
⊥ ∂τ + K̃↓ 	 0

0 	∗ ∂τ − K̃↑ h∗
⊥

−	∗ 0 h⊥ ∂τ − K̃↓

⎞
⎟⎟⎟⎟⎠ , (4)

where h⊥ = hx − ihy corresponds to the transverse compo-
nent of the spin-orbit field, hz corresponds to the parallel
component with respect to the quantization axis z, K̃↑ =
K̂↑ − hz, and K̃↓ = K̂↓ + hz. Integration over the fields 


and 
† leads to the effective action

Seff =
∫

dτdr
[ |	(r,τ )|2

g
− T

2V
ln det

M
T

+ K̃+δ(r − r′)
]

,

(5)

where K̃+ = (K̃↑ + K̃↓)/2 is the average kinetic energy and
V is the volume of the system.

Saddle-point approximation. To proceed, we use the saddle-
point approximation 	(r,τ ) = 	0 + η(r,τ ) and separate the
matrix M into two parts. The first one is the saddle point matrix
M0, where the transformation 	(r,τ ) → 	0 takes M → M0.
The second one is the fluctuation matrix MF = M − M0,
which depends only on η(r,τ ) and its Hermitian conjugate.

Using the saddle-point approach, we write the effective
action as Seff = S0 + SF, where

S0 =
∫

dτdr
[ |	0|2

g
− T

2V
ln det

M0

T
+ K̃+δ(r − r′)

]
is the saddle-point action and

SF =
∫

dτdr
[ |η(r,τ )|2

g
+ L − T

2V
ln det

(
1 + M−1

0 MF
)]

is the fluctuation action for all orders in the fluctuation
field, with L = [	0η

∗(r,τ ) + 	∗
0η(r,τ )]/g. The effects of

fluctuations at both zero temperature and near the critical
temperature are discussed later.

A transformation to the momentum-frequency coordinates
(k,iωn), where ωn = (2n + 1)πT , leads to

S0 = V

T

|	0|2
g

− 1

2

∑
j,k,iωn

ln

[
iωn − Ej (k)

T

]
+

∑
k

K̃+
T

,

where Ej (k) are the eigenvalues of the matrix

H0 =

⎛
⎜⎜⎜⎜⎝

K̃↑(k) −h⊥(k) 0 −	0

−h∗
⊥(k) K̃↓(k) 	0 0

0 	∗
0 −K̃↑(−k) h∗

⊥(−k)

−	∗
0 0 h⊥(−k) −K̃↓(−k)

⎞
⎟⎟⎟⎟⎠ , (6)

which describes the Hamiltonian of the elementary ex-
citations in the four-dimensional vector basis 
†(k) =
{ψ†

↑(k),ψ†
↓(k),ψ↑(−k),ψ↓(−k)} defined in momentum space.

The spin-orbit field is h⊥(k) = hR(k) + hD(k), where the
first term is of the Rashba-type hR(k) = vR(−ky x̂ + kx ŷ)
and the second is of the Dresselhaus-type hD(k) = vD(ky x̂ +
kx ŷ). We assume, without loss of generality, that vR >

0 and vD > 0. The magnitude of the transverse field is

then h⊥(k) =
√

(vD − vR)2k2
y + (vD + vR)2k2

x. In the limit-

ing cases of Rashba-only (RO) with vD = 0 and of equal
Rashba-Dresselhaus (ERD) couplings with vR = vD = v/2,

the transverse fields are h⊥(k) = vR

√
k2
x + k2

y (vR > 0) and

h⊥(k) = v|kx | (v > 0), respectively.
Order parameter and number equations. The saddle-point

thermodynamic potential �0 = T S0 is obtained by integrating
out the fermions, leading to

�0 = V
|	0|2

g
− T

2

∑
k,j

ln{1 + exp[−Ej (k)/T ]} +
∑

k

K̄+,

with K̄+ = [K̃↑(−k) + K̃↓(−k)]/2. The order parameter is
determined via the minimization of �0 with respect to |	0|2,
leading to

V

g
= −1

2

∑
k,j

nF [Ej (k)]
∂Ej (k)

∂|	0|2 , (7)

where nF [Ej (k)] = 1/{exp[Ej (k)/T ] + 1} is the Fermi func-
tion for energy Ej (k). We replace the contact interac-
tion g by the scattering length as through the relation
1/g = −m+/(4πas) + (1/V )

∑
k[1/(2εk,+)], where m+ =

2m↓m↑/(m↓ + m↑) is twice the reduced mass, εk,α =
k2/(2mα) are the kinetic energies, and εk,+ = [εk,↑ + εk,↓]/2.

The number of particles at the saddle point is obtained by
Nα = −∂�0/∂μα , leading to

Nα = 1

2

∑
k

⎡
⎣1 −

∑
j

nF [Ej (k)]
∂Ej (k)

∂μα

⎤
⎦ . (8)

The self-consistent relations shown in Eqs. (7) and (8)
are general for arbitrary mass and population imbalances.
However, next we particularize our discussion to the case of a
balanced system with equal masses.

Balanced populations. In the case of mass and
population balanced systems, the four eigenvalues of
the matrix H0 are E1(k) =

√
[ε1(k)]2 + |	0|2,E2(k) =√

[ε2(k)]2 + |	0|2,E3(k) = −E1(k), and E4(k) = −E2(k).
Here, the auxiliary energies are ε1(k) = ξ (k) + h⊥(k) and
ε2(k) = ξ (k) − h⊥(k). The corresponding order parameter
equation at the saddle-point level is

V

g
= 1

2

∑
k

[
X1(k)

2E1(k)
+ X2(k)

2E2(k)

]
, (9)

where Xm(k) = tanh[Em(k)/2T ] (m = 1,2). Since the mix-
ture of equal mass fermions is balanced, the chemical poten-
tials are the same μ↑ = μ↓ = μ, and the associated number
equation is N = −∂�/∂μ that reduces to

N =
∑

k

[
1 − X1(k)

2E1(k)
ε1(k) − X2(k)

2E2(k)
ε2(k)

]
. (10)

In Fig. 1, we show the zero-temperature behavior of |	0|
and μ as a function of 1/(kF as) for various values of spin-orbit
coupling in the ERD and RO cases. In the ERD case, the order
parameter |	0| is independent of v, and the chemical potential
μ(v) is simply μ(v) = μ(0) − mv2/2, since the transverse
field h⊥(k) = v|kx | can be eliminated by momentum shifts
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FIG. 1. Order parameter |	0| and chemical potential μ (in units of
the Fermi energy εF ) as a function of interaction parameter 1/(kF as)
for different spin-orbit couplings vR/vF = 0 (solid), 0.8 (dashed), 1.0
(dotted), and 1.2 (dot-dashed) at T = 0 in the RO case. For the ERD
case |	0| corresponds to the solid line in (a), while μ corresponds
to the solid line in (b) shifted by −mv2/2. Here vF = kF /m is the
Fermi velocity and the Fermi system is balanced.

along the x direction, effectively gauging away spin-orbit
effects in the charge or momentum sector. This symmetry
also implies that the critical temperature Tc as a function of
1/(kF as) for finite v is the same as that for v = 0. However,
in the RO case, shifts in momentum cannot gauge away
the spin-orbit coupling, and |	0| increases with increasing
vR , while μ decreases as vR increases, exhibiting the same
tendency as in the ERD case. In the BCS regime, the increase
of |	0| with vR also leads to an increase of Tc with increasing
vR .

Momentum distribution and excitation spectrum. The mo-
mentum distribution n(k) is obtained from Eq. (10) using the
definition N = ∑

k n(k). At fixed momentum component kz =
0 and fixed interaction strength, the momentum distribution
n(k) shifts continuously with increasing spin-orbit coupling in
the BCS [1/(kF as) � −1] or unitarity regimes [1/(kF as) →
0]. For zero spin-orbit coupling, n(k) is that of a superfluid
degenerate Fermi system with identical single-particle bands
ξ (k) and has a nearly flat momentum distribution until the
Fermi momentum is reached. However, as the spin-orbit
coupling is turned on, nonidentical single-particle bands
ξ⇑(k) = ξ (k) − h⊥(k) and ξ⇓(k) = ξ (k) + h⊥(k) emerge in
the helicity basis [5] |k⇑〉,|k⇓〉 and produce a double structure
with a reasonably flat momentum distribution centered around
finite momenta in the kx-ky plane. In the BEC regime
[1/(kF as) � 1], the momentum distributions for weak and
strong spin-orbit coupling broadens substantially due to the
loss of degeneracy in the Fermi system when the chemical
potential goes below the minima of the helicity bands and
becomes large and negative. Even though there is a substantial
change in the momentum distribution as a function of the
spin-orbit coupling, we notice that the excitation energies
E1(k) and E2(k) are always gapped for all values of the
interaction parameter 1/(kF as) or the spin-orbit field h⊥(k),
immediately suggesting that thermodynamic properties, which
depend on the excitation energies, evolve smoothly from
the BCS to the BEC regime in the balanced case for fixed
values of spin-orbit coupling. The omnipresence of a gap
in the excitation spectrum shows that the evolution from
BCS to BEC superfluidity at finite spin-orbit coupling for
balanced systems is a crossover. The situation is different
for imbalanced systems, where gapless regions emerge in the
excitation spectrum and topological phase transitions occur,
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FIG. 2. (a) Compressibility κT [in units of 1/(nεF )] as a function
of interaction parameter 1/(kF as) at T = 0 and (b) entropy per
particle S0/N as a function of temperature T (in units of εF ) at
unitarity in the RO case, for vR/vF = 0 (solid), 0.8 (dashed), 1.0
(dotted), and 1.2 (dot-dashed). Here, n = N/V is the total particle
density.

so long as the system is stable [10,11]. A thermodynamic
signature of this crossover for balanced systems is seen in the
isothermal compressibility discussed next.

Isothermal compressibility. An important thermodynamic
property, which can now be measured experimentally using
the fluctuation-dissipation theorem, is the isothermal com-
pressibility

κT = − 1

V

(
∂P

∂V

)
T

= V

N2

(
∂N

∂μ

)
T

. (11)

As shown in Fig. 2(a), for the RO case, the isothermal
compressibility κT at fixed interaction parameter 1/(kF as)
increases with increasing spin-orbit coupling vR as the Fermi
system becomes less degenerate, reducing the Pauli pressure,
and thus more compressible. However, in the ERD case,
the isothermal compressibility for fixed interaction parameter
does not change with increasing spin-orbit coupling v. In this
high-symmetry situation, the momentum shift in the energy
spectrum and the accompanied shift in the chemical potential
do not affect the degeneracy of the Fermi system or the Pauli
pressure, leading to an isothermal compressibility which is
independent of the spin-orbit coupling v.

Equation of state and entropy. Since the thermodynamic
potential � = −PV , the saddle-point pressure is P0(T ,μα) =
−�0/V, which can be shown to be always positive for
arbitrary spin-orbit coupling. The general trend of the pressure
for fixed interaction parameter (from the BCS to the unitarity
regimes) is to decrease with increasing spin-orbit coupling for
both ERD and RO cases. The situation in the BEC regime
requires the inclusion of quantum fluctuations to recover
the corresponding Lee-Yang corrections in the presence of
spin-orbit effects. The entropy is then calculated from S =
−(∂�/∂T )V,μα

. In Fig. 2(b), we show the saddle-point entropy
S0 for the RO case at unitarity. For fixed T , S0 decreases
with increasing spin-orbit coupling due to the stabilization of
superfluidity by the spin-orbit field.

Spin susceptibility tensor. A rotation of the matrix H0

into the helicity basis |k⇑〉,|k⇓〉 introduces order parameters
	0,⇑⇑(k) and 	0,⇓⇓(k), which are controlled by the spin-orbit
coupling. The emergence of the triplet component affects
dramatically the spin susceptibility of the system. Using
standard linear response theory [12], the Pauli uniform spin
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FIG. 3. (a) Pauli spin susceptibility χzz (in units of μ2
Bn/εF ) as

a function of 1/(kF as) at T = 0 in the ERD case for vR/vF = 0
(solid), 0.8 (dashed), 1.0 (dotted), and 1.2 (dot-dashed). (b) Pauli
spin susceptibility χzz as a function of v/vF at T = 0 at unitarity in
the ERD case.

susceptibility tensor [13] per unit volume is

χij = −μ2
B

V

∑
k

[aij (k) − bij (k)], (12)

where the spin-spin correlations in the single-particle
channel are aij (k) = ∑

iω Tr[σiG(k,iω)σj G(k,iω)]
and in the pair (anomalous) channel are bij (k) =∑

iω Tr[σiF(k,iω)σT
j F†(k,iω)]. The matrices G and F

are the block matrices appearing in the inverse of M defined
in Eq. (4),

M̃−1(k,iω) =
(

G F
F† G

)
.

In Fig. 3(a), we show plots of χzz for the ERD case at
T = 0 as a function of 1/(kF as) for various values of spin-
orbit coupling, and the behavior of χzz for the RO case is
qualitatively similar. In Fig. 3(b), we show χzz versus v in the
unitary limit 1/(kF as) = 0. The maximum in χzz corresponds
to the largest possible spin response. For small and large v,χzz

is small.

In the ERD case χzz = χxx �= χyy , and in the zero-
temperature limit χyy(T → 0) = 0, while χzz = χxx remains
finite for nonzero spin-orbit coupling. In the RO case χzz �=
χxx = χyy , and in the T → 0 limit χxx(T → 0) = χyy(T →
0) = χzz(T → 0)/2. Lastly, for h⊥(k) = 0 (no spin-orbit cou-
pling) the spin susceptibilty tensor becomes χij = χδij , where

the scalar χ = [μ2
B/(2V T )]

∑
k sech2[

√
ξ 2

k + |	0|2/(2T )] is
the Yoshida function, which vanishes at zero temperature, that
is, χ (T → 0) = 0. The existence of nonzero spin response
even at T = 0 is a direct measure of the induced triplet
component of the order parameter due to the presence of
spin-orbit coupling, since a pure singlet superfluid at T = 0
must have zero-spin susceptibility when all fermions are paired
into a zero-spin state.

Conclusions. We have studied the effects of spin-orbit
coupling in the evolution from BCS to BEC superflu-
idity at low temperatures for balanced populations. We
discussed effects of spin-orbit coupling on thermodynamic
properties including the order parameter, chemical poten-
tial, pressure, entropy, isothermal compressibility, and spin
susceptibility tensor. Finally, we also proposed a way to
detect experimentally the effects of spin-orbit coupling
by measuring the isothermal compressibility and the spin
susceptibility.

Note added. Recently, we became aware of additional
papers [14–16] that discuss the effects of spin-orbit fields
during the evolution from BCS to BEC superfluidity for
balanced fermions. While these papers focus on the Rashba
spin-orbit coupling only, we also discuss the case of equal
Rashba-Dresselhaus coupling and compute the spin-orbit
dependence of several thermodynamic quantities including
the entropy, isothermal compressibility, and spin susceptibility
tensor.
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