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Coherent backscattering of ultracold matter waves: Momentum space signatures
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Using analytical and numerical methods, it is shown that the momentum distribution of a matter wave packet
launched in a random potential exhibits a pronounced coherent backscattering (CBS) peak. By analyzing the
momentum distribution, key transport times can be directly measured. The CBS peak can be used to prove
that transport occurs in the phase-coherent regime, and measuring its time dependence permits monitoring the
transition from classical diffusion to Anderson localization.
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Disorder has dramatic effects on the quantum transport
of matter. Spatial randomness and phase coherence together
can completely suppress diffusion, as demonstrated by the
paradigmatic phenomenon of Anderson localization [1]. Dur-
ing the past decade, there has been a growing body of evidence
for three-dimensional (3D) localization in random media with
different types of noninteracting waves: light [2], microwaves
[3], and ultrasound [4]. This ubiquitous and yet elusive
phenomenon has sparked considerable interest in the field of
ultracold atoms [5–7]. Key experimental achievements include
one-dimensional (1D) Anderson localization in speckle [8]
and quasiperiodic [9] potentials, as well as 3D localization in
momentum space with the kicked rotor [10]. Recently, 3D
Anderson localization of noninteracting ultracold fermions
[11] and bosons [12] in a laser speckle field was reported.

To claim Anderson localization, one needs to discrimi-
nate interference-induced absence of diffusion from classi-
cal trapping or slow diffusion. This requires evidence for
phase-coherent transport. Here, the coherent backscattering
(CBS) phenomenon is of key importance because it arises
by interference of waves in random media and measures
mesoscopic phase coherence [13]. With classical waves,
CBS appears as an enhancement of the diffuse intensity
reflected off a disordered medium around the backscattering
direction, and has been observed in numerous experiments
involving light [14,15], but also acoustic [16] and seismic
waves [17]. The interference causing CBS is also responsible
for weak localization, by reducing the diffusion coefficient
compared to its phase-incoherent, or classical, value [6,13].
In electronic systems, weak localization is invaluable for
a careful characterization of phase coherence [18]. With
cold-atomic clouds expanding in random potentials, however,
the diffusion constant extracted from real-space data hardly
shows clear evidence of localization corrections, because the
cloud contains many different momenta that combine to a
rather involved spatial profile [19,20].

With this Rapid Communication, we propose to study
the dynamics of a matter wave that is launched with an
initial momentum larger than its momentum spread in the
bulk of a two-dimensional (2D) or 3D random potential.
Combining a numerical and theoretical analysis, we show that

the CBS signal can be directly observed in the momentum
distribution and studied as a function of time. Ultracold atoms
are an invaluable asset as they offer the unique opportunity
to visualize the CBS effect on the momentum distribution
directly, measured inside the disordered medium. With this
setup, one avoids the boundary conditions that severely
complicate both theory and experiments of wave scattering
by random media [13,21]. Moreover, the momentum-space
analysis gives immediate access to key mesoscopic parameters
such as scattering and transport times. Lastly, we demonstrate
that the CBS measurement provides precious information on
the phase coherence of the matter wave, and finally permits to
monitor the transition from diffusion to localization.

Let a cloud of atoms with mass m be prepared at time
t = 0 in the state �(k,0) describing a wave packet with
mean momentum h̄k0 = mv0 and small spread �k � |k0|.
This can be achieved by releasing the atoms from a shallow
trap, and either launching them with mean velocity v0 or
moving the disorder potential with −v0 relative to the cloud.
We assume negligible interaction effects. This is the case in
practice for a very dilute cloud [8] or spin-polarized fermions
[11]. For concreteness, as realized by harmonic trapping of
noninteracting particles, we then take the initial distribution
ρ0(k) = |�(k,0)|2 to be an isotropic Gaussian,

ρ0(k) = (2π�k−2)d/2 exp[−(k − k0)2/2�k2], (1)

normalized to Tr ρ0 = ∫
ρ0(k)dk/(2π )d = 1. From time t =

0 onward, the matter wave then evolves according to the
Schrödinger equation with a single-particle Hamiltonian
H = p2/2m + V (r). A well-controlled random potential is
provided by laser speckle [22]. Without loss of generality,
V (r) = 0, where the overbar denotes the ensemble average
over disorder realizations. The random potential is then char-
acterized by its variance V (r)2 = V 2 and spatial correlation
length ζ . This length defines a correlation time τζ = mζ 2/h̄

and a correlation energy Eζ = h̄2/(mζ 2) [6].
First, we study the dynamics of the matter wave expanding

in a repulsive 2D speckle potential by solving numerically
the Schrödinger equation for a potential strength V = Eζ , and
initial condition k0ζ = 2, �k = 0.01k0/

√
2. For 87Rb atoms in
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FIG. 1. (Color online) Momentum distribution ρ(kx,ky,t) of a
matter wave packet launched with initial momentum k0 = (k0,0) in
a 2D random potential with correlation length ζ , averaged over 960
disorder realizations. The time unit is τζ = mζ 2/h̄. (a) t = 10τζ :
Elastic scattering depletes the initial wave packet, centered at k0 (peak
values not shown), and populates the disorder-broadened energy shell
along the circle |k| = |k0|, while the CBS peak emerges at −k0.
(b) t = 18τζ : The CBS peak is now the dominant feature, proving
phase-coherent multiple scattering.

a correlated potential with ζ = 1 μm, the absolute time scale
is τζ = 1.365 ms. Figure 1 shows the numerically computed,
ensemble-averaged momentum distribution ρ(kx,ky,t) at two
different times.

At short times [Fig. 1(a), t = 10τζ ], one sees a very narrow
peak at k0, a broad, ring-shaped anisotropic background,
and a rather smooth peak at −k0. The forward peak is the
remainder of the initial momentum distribution, which is
depleted because atoms are scattered out of the initial mode at
a rate given by the elastic scattering time τs [13]. The latter can
be extracted from the early-time decay ρ(k0,t) ≈ |�(k0,t)|2 ∝
exp(−t/τs). We find τs = 1.43τζ , with a corresponding mean
free path �s = v0τs such that k0�s = 5.72 for the parameters
used. Weak-disorder perturbation theory [6] predicts too low
a value (k0�s = 2.32), as known for rather strong, spatially
correlated disorder [21]. This shows how the early-time
momentum distribution can be used to measure the key
parameter τs , even in the strong-disorder regime where precise
analytical predictions are not available [23].

Atoms scattered out of the initial mode populate all
other accessible k-space modes on the energy shell and thus
appear along the circle |k| = |k0| in Fig. 1. Due to disorder
broadening, the energy shell has a finite width, of order �−1

s ,
which is larger than the initial width �k for the chosen
parameters. After a time of the order of the Boltzmann time
τB = 8.5τζ (k0�B = 34) [6], the dynamics turns from ballistic
to diffusive. As the memory about the initial direction of
propagation gets erased, the diffusive momentum distribution
then becomes isotropic on average. More precisely, for t � τB,
i.e., when diffusion is fully established, we find that the decay

FIG. 2. (Color online) CBS peak contrast C (blue circles) and
angular width �θ (red squares) as obtained from the numerics after
averaging over 960 disorder configurations and over a time window of
10τζ . Solid curves: Theoretical predictions (10) and (11), respectively.
Dashed horizontal line: Angular width �θ0 = 0.01/

√
2 of the initial

momentum distribution, asymptotically reached by the CBS width
for times much larger than the coherence time τ� = (2D�k2)−1 =
216τζ .

of the anisotropic Fourier components of the background is
well fitted by exp(−t/τ ), where τ is the transport time that
governs the diffusive dynamics. For the present parameters,
one finds τ = 5.8τζ (corresponding to a transport mean free
path k0� = 23.2). As expected, τ is smaller than τB, due to
weak-localization (WL) corrections [21] arising at early times
and caused by very short CBS loops. In Fig. 1(a), the peak at
−k0 is the incipient CBS signal.

At longer times [Fig. 1(b), t = 18τζ ], the initial state is
totally depleted, the diffusive background is fully isotropic, and
the CBS peak is the dominant feature. Both its contrast C, de-
fined as the height above the diffusive background, and its an-
gular width �θ slowly decrease with time, as shown in Fig. 2.

For a quantitative understanding of these observations, we
now turn to the analytical description of matter wave dynamics
in dimension d = 2,3. The ensemble-averaged momentum
distribution ρ(k′,t) at time t is given by [6]

ρ(k′,t) =
∫

dk
(2π )d

∫
dE

2π

kk′E(0,t)ρ0(k), (2)

where the intensity propagation kernel 
kk′E projects the
initial momentum k on the energy shell E, describes the
ensuing unitary dynamics generated by the Hamiltonian
H , and projects back onto the final momentum k′. For
long enough times t � τB, but well before the onset of
Anderson localization, the atomic dynamics is diffusive with
an energy-dependent diffusion constant D(E) = 2Eτ/(md)
that incorporates the short-range WL corrections. The intensity
propagation kernel then takes the form



(L)
kk′E(q,t) = A(k,E)A(k′,E)

2πν(E)
exp[−D(E)q2t]. (3)

The spectral function A(k,E) = 2π 〈k| δ(E − H ) |k〉 is the
average probability density that a plane-wave state |k〉 has
energy E. It also determines the average density of states
ν(E) = ∫

A(k,E)dk/(2π )d+1. Using (3) at momentum trans-
fer q = 0 in Eq. (2) results in a time-independent isotropic
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FIG. 3. Ladder (a) and maximally crossed (b) multiple scattering
Feynman diagrams, giving rise to the diffusive and CBS contributions,
Eqs. (3) and (5), respectively.

diffusive background:

ρ (L)(k′) =
∫

dk
(2π )d

∫
dE

2π

A(k,E)A(k′,E)

2πν(E)
ρ0(k). (4)

This contribution to the momentum distribution describes
scattering processes that do not rely on long-range phase
coherence; the label “L” refers to the ladder topology of the
underlying Feynman diagrams—see Fig. 3(a) [13]. Phase-
coherent multiple scattering leads to an additional contri-
bution, given by the maximally crossed diagrams shown
in Fig. 3(b). These diagrams describe the interference of
amplitudes that propagate along the same set of scatterers,
but in opposite directions, and give rise to the CBS effect.
Its contribution ρ (C)(k′,t) is obtained from Eq. (2) after the
substitution q = k + k′ in Eq. (3),



(C)
kk′E(0,t) = 


(L)
kk′E(k + k′,t). (5)

Because this coherent kernel peaks at k′ = −k, the CBS signal
will appear at −k0 if the initial distribution is centered around
k0, as borne out by Fig. 1. For an initial plane-wave state
(�k = 0), the CBS contribution at exact backscattering is at all
times exactly equal to the background level, and thus enhances
the diffusive density at that point by a factor of 2. This has been
observed in optical and acoustical experiments [14,16].

If, however, the initial state has a finite momentum spread,
the CBS signal is reduced because Eq. (2) convolves the
plane-wave kernel (5) with the initial momentum distribution.
In order to be able to detect other dephasing processes, we
therefore need to analyze in detail the CBS signal for matter
wave packets with finite momentum spread. From here on, we
assume

k−1
0 � �s � � � �k−1. (6)

The first inequality implies the weak-disorder condition
k0�s � 1 [13], whereas the last one requires the atom coher-
ence length �k−1 to span many mean free paths, a necessary
condition to observe the CBS peak (see below).

Let us first discuss the diffusive contribution (4). The regime
of interest (6) implies �k � �−1

s , i.e., an initial distribution
ρ0(k) much narrower than the spectral density. This is apparent
in Fig. 1(a) where the initial peak is much narrower than the
diffusive background. Therefore, the result of their convolution
in Eq. (4) can be approximated by A(k0,E) ≈ Aγ (E0 − E) =
h̄γ /[(E0 − E)2 + h̄2γ 2/4], where γ = τ−1

s and E0 = Ek0 =
h̄2k2

0/(2m) [6,13]. The remaining integration over E gives

ρ (L)(k′) = A2γ (Ek′ − E0)

2πν(E0)
. (7)

The background reaches its maximum ρ (L)(k0) =
τs/[πh̄ν(E0)] on shell. Spectral broadening results in a
relative half-maximum width of h̄γ /E0 = 2/(k0�s).

Consider now the CBS contribution, Eq. (2) with (5). Since
D(E) is a smooth function of E on the scale of h̄γ , one can
approximate∫

dE

2π



(C)
kk′E(t) = A2γ (Ek − Ek′)

2πν(Ek)
e−D(Ek )(k+k′)2t . (8)

The exponent on the right-hand side introduces the CBS
k-space width �kc = 1/

√
2Dt , which is the inverse of the

diffusive spread in real space. Written as �kc = �−1√τd/(2t),
this width is seen to be always smaller than the spectral
width �−1

s in the diffusive regime t � τB. It is therefore never
permissible to approximate the spectral function A2γ (Ek −
Ek′) by its clean limit 2πδ(Ek − Ek′) when calculating the
CBS peak resulting from a wave packet of finite width.

Within the regime delimited by inequalities (6), the CBS
contribution at k′ = −k0 + q around backscattering then
follows directly by Gaussian integration,

ρ (C)(q − k0,t) = ρ (L)(k0)
exp[−q2/2�q2(t)]

(1 + t/τ�)d/2
. (9)

Here, τ� = (2D�k2)−1 is the time it takes the matter wave to
spread diffusively over the coherence length. The CBS contrast
C(t) = ρ (C)(−k0,t)/ρ (L)(k0) is found to decrease as

C(t) = (1 + t/τ�)−d/2. (10)

The CBS signal can only be observed if this contrast is not
too small at time τ . The corresponding condition τ� � τ

requires the initial wave packet to be coherent over a distance
�k−1 � �, as stated in Eq. (6). As a function of q, the
diffusive CBS signal (9) is an isotropic Gaussian. Its variance
�q2(t) = �k2 + (2Dt)−1 = �k2(1 + τ�/t) is the sum of
the variances of the initial momentum distribution (1) and the
interference kernel (8). Expressed as a function of the angle
θ away from backscattering at fixed radius k′ = k0, the CBS
peak width decreases as

�θ (t) = �θ0

√
1 + τ�/t, (11)

where �θ0 = �k/k0 is the angular width of the initial state
in momentum space. In Fig. 2, the predictions (10) and (11)
for d = 2 are plotted together with the numerical data (τ� =
216τζ ). The agreement is excellent in the diffusive regime,
validating our analytical description of matter wave CBS in
bulk disorder.

We now discuss the behavior of the CBS peak at the
Anderson localization onset. In 2D, this occurs when the
diffusive spread

√
2Dt reaches the localization length ξ =

�B exp(πk0�B/2), i.e., around the time τloc = ξ 2/D. This
regime is not visible in Fig. 2 since τloc = 1024τζ for the param-
eters used. Applying the self-consistent theory of localization
[24], we predict two possible scenarios. If the initial coherence
length is much smaller than the localization length, (�k)−1 �
ξ , the CBS peak width saturates at �θ0 already around the
time τ� � τloc. The contrast continues to decrease as (τ�/t)d/2

until it reaches Cloc = (τ�/τloc)d/2 � 1. If, on the contrary, the
coherence length exceeds the localization length, (�k)−1 � ξ ,
then the CBS interference becomes sensitive to the localization
of the wave amplitudes around the time τloc � τ�, and the
width freezes at �θloc = (k0ξ )−1, with contrast, Eq. (10), of
order unity. Observing this effect in an actual experiment
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would provide compelling evidence for Anderson localization,
and the CBS peak could serve as an independent measure
for the localization length. Supplementary evidence would be
gained by perturbing the phase coherence deliberately, for
example, by varying the speckle potential over the course
of time, in order to dephase the CBS signal and suppress
localization in a controlled manner.

Let us conclude by showing that the proposed experiment is
immediately feasable with current techniques. Reference [12]
uses condensed bosons at finite temperature, with a momentum
spread (�k)−1 of thermal and condensed components that we
estimate at 2.5 and 1.6 μm, respectively. To ensure a good
CBS contrast, these values should not be smaller than �,
according to Eq. (6). For our choice of k0 = 2/ζ , we find
� 
 2.3 μm and k−1

0 
 0.1 μm for ζ 
 0.2 μm of Ref. [12],
such that k−1

0 � � ∼ (�k)−1. We thus predict that for a slightly
more coherent cloud or a slightly smaller k0 under the same
conditions, CBS should be clearly observable. Finally, we

briefly comment on atomic interactions, leaving their detailed
study for future investigation. Their primary effect is to
decrease the CBS contrast [21]. For a ratio of order 10 between
disorder strength and atomic interaction energy, as in Ref. [12],
preliminary numerical calculations show a reduction of C by
only 10% at time t = 18τζ . The CBS effect of matter waves is
therefore a robust phenomenon that offers a unique opportunity
to characterize key transport parameters and to monitor the
transition from diffusion to Anderson localization.
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