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Exact localized eigenstates for an extended Bose-Hubbard model with pair-correlated hopping
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We show that a Bose-Hubbard model extended with pair-correlated hopping has exact eigenstates, quantum
lattice compactons, with complete single-site localization. These appear at parameter values where the one-
particle tunneling is exactly canceled by nonlocal pair correlations, and correspond in a classical limit to compact
solutions of an extended discrete nonlinear Schrödinger model. Classical compactons at other parameter values,
as well as multisite compactons, generically get delocalized by quantum effects, but strong localization appears
asymptotically for increasing particle number.
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Introduction. Intrinsically localized modes (“discrete
breathers”) appear as generic excitations in classical non-
linear Hamiltonian lattices [1], and a basic model describ-
ing the (quasi)particle localization is the discrete nonlinear
Schrödinger (DNLS) equation [1,2]. For applications, seeking
an optimal localization may be important. In this respect,
compactons, first discovered as classical waves with compact
support in presence of nonlinear dispersion [3], are interesting
as their tail-less nature prohibits mutual interactions unless
they are in direct contact. In generic classical oscillator lattices
discreteness destroys the compactness into superexponential
decay [1], but for certain models the amplitude at a given site
may be tuned to exactly vanish the coupling to its neighbor,
yielding exact “discrete compactons” [4]. In particular, com-
pactons localized on one or several sites were found, under
certain parameter restrictions, for an extended DNLS model
of an optical waveguide array with nonlinear coupling [5]. It
was recently suggested [6] that stable compactons analogous
to those of Ref. [5] could be experimentally realized in the
mean-field regime of a BEC in an optical lattice, using a rapidly
time-varying magnetic field to effectively create nonlinear
dispersion.

However, to our knowledge, the question as to whether
discrete compactons in (semi)classical (mean-field) models
can be continued into strictly localized exact solutions of
a corresponding quantum lattice model was not addressed
up to now. A basic quantum lattice model, describing a
variety of phenomena for interacting bosonic (quasi)particles
in deep periodic potentials, is the Bose-Hubbard (BH) model.
It is a standard tool for analyzing the many-body physics
of strongly correlated cold atoms in optical lattices [7,8],
where predictions such as superfluid-insulator transition of
the ground state [9,10] were experimentally realized [11].
The same model was introduced to describe local-mode
molecular vibrations [12,13] and “quantum discrete breathers”
[14], which are quantum counterparts to classical intrinsically
localized modes. When the number of particles per lattice
site becomes large, a mean-field approach treating the Bose
condensate as a classical field can be employed [15], leading
to a lattice Gross-Pitaevskii equation equivalent to the DNLS
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equation [16]. Several effects predicted from the classical
DNLS theory were also experimentally observed with cold
atoms [1,15].

The BH model essentially describes the competition be-
tween one-particle tunneling and on-site interactions. How-
ever, in some situations more complicated processes must
be taken into account. In particular, atom-atom interactions
are finite ranged, leading to pair correlations in the tunneling
between neighboring lattice sites which have been shown to
be relevant in various setups and described by an extended
Bose-Hubbard (EBH) model in several theoretical [17–21] as
well as experimental [22] works. Taking the mean-field limit
of this EBH model turns the pair tunneling into nonlinear
coupling terms, and the semiclassical dynamics is described
by an extended DNLS equation [23,24] equivalent to that of
Ref. [5].

In this Rapid Communication we prove that the classical
one-site compactons of Ref. [5], under an additional param-
eter restriction, correspond to exact eigenstates of the EBH
model with complete single-site localization, quantum lattice
compactons (QLCs). We also show that exact localization is
generically destroyed by quantum fluctuations for classical
multisite compactons, as well as for one-site compactons not
fulfilling the additional parameter condition, and demonstrate
this effect numerically. A two-site compactonlike eigenstate,
consisting mainly of two-site basis states with Gaussian
distribution, is shown to appear asymptotically for increasing
particle number.

Model. We consider the EBH Hamiltonian [17–22]:

ĤEBH = 1

2

∑
i

{
Q1N̂i + Q2â

†
i+1âi + Q3N̂

2
i

+ 2Q4[2N̂iN̂i+1 + (â†
i+1)2(âi)

2]

+ 4Q5[(â†
i )2 + (â†

i+1)2]âi âi+1
} + H.c. (1)

Here â
†
i (âi) is the bosonic creation (annihilation) operator and

N̂i = â
†
i âi the corresponding number operator for particles

at site i (H.c. is the Hermitian conjugate). With a notation
analogous to Ref. [5], the model contains five Q parameters
connected to different processes; e.g., â

†
i+1âi and (â†

i+1)2(âi)2

can be interpreted as one particle and a particle pair, respec-
tively, tunneling from site i to i + 1, and (â†

i+1)2âi âi+1 as
tunneling of one particle from site i to i + 1, but only if
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there already resides at least one other particle at i + 1. The
other terms can be interpreted in similar fashions [18]. Putting
Q4 and Q5 to zero retrieves the original BH model. Since
N̂ ≡ ∑

i N̂i commutes with ĤEBH, the Q1 term can be removed
by a shift of the zero energy. One more parameter can be fixed
by rescaling the energy and the other parameters, reducing the
number of independent Q parameters to three [25]. Here we set
Q3 = 1, leaving Q2, Q4, and Q5 as independent variables [26].
Thus, our discussion will be in the context of a repulsive on-site
interaction, but the attractive case (Q3 = −1) is also covered
via the simple transformation â

(†)
i → (−1)i â(†)

i , Q4 → −Q4,
ĤEBH → −ĤEBH.

To compare with the classical model [5], a finite limit of
(1) for N ≡ 〈N̂〉 → ∞ must be properly defined. For this,
we consider relative rather than absolute particle numbers

by redefining the annihilation (creation) operator as â′(†) =
â(†)/

√
N and number operator N̂ ′ = N̂/N , and rescale the

Hamiltonian as Ĥ ′
EBH = ĤEBH/N2 (i.e., proportional to the

energy per particle pair in the classical limit). Dropping
the primes then gives the rescaled Hamiltonian expressed in
the rescaled variables the same form as (1) with Q1 = 0 and
Q3 = 1, but with Q2 replaced by Q2/N . Thus, to have a well-
defined, finite classical limit, Q2/N must be of the same order
as Q4 and Q5, i.e., Q2/N ∼ Q4 ∼ Q5 ∼ 1 [27]. With these
rescalings, replacing operators with expectation values turns
(1) into the classical Hamiltonian of Ref. [5]. The classical
model is known to have exact one-site and symmetric two-site
compactons under the parameter restrictions Q2/N = −4Q5

and Q2/N = −2Q5, respectively [5].
Quantum lattice compactons. Consider N bosons in a

one-dimensional periodic lattice (e.g., a ring) with f sites.
We then define a (hypothetical) m-site QLC as an eigenstate
to Hamiltonian (1) with absolute certainty of finding all N

particles on m consecutive sites. For a translationally invariant
system all eigenstates must satisfy the Bloch theorem. Using
the translation operator T̂ and its eigenvalues τk (with τ

f

k = 1;
k integer, 0 � k � f − 1), a QLC with a given τk must
therefore have the form

|�c〉 =
∑

γ

cγ

1√
Mγ

f −1∑
j=0

τ
j

k T̂ j
∣∣n(γ )

1 , . . . ,n(γ )
m ,0, . . . ,0

〉
. (2)

Here γ denotes the different ways of placing N particles at
the m first lattice sites, n

(γ )
p denotes the number of particles

at site p for the γ th basis state, and Mγ its normalization
factor [28]. States that are almost compactons will contain
small contributions from additional states, denoted |ψλ〉, that
are not located on m sites. Using (2), we may express such
eigenstates as

|�〉 = |�c〉 +
∑

λ

dλ|ψλ〉, (3)

where d is used instead of c for the probability amplitude
of states not located on m sites. For a true m-site QLC,∑

γ |cγ |2 = 1. The quantity |cmsite|2 ≡ ∑
γ |cγ |2 is therefore

a good measure of how compactonlike a state is, and will be
called the (m-site) compactness.

Since states with a high degree of localization (quantum
breathers) for attractive nonlinearity generally appear among

the lowest-energy eigenstates [13,14], we expect to find them
among the highest-energy states in the repulsive case. In
particular, for the repulsive version of the classical model of
Ref. [5], the highest-energy stationary state has, depending
on parameter values, its main peak either on one or two
sites (the transition corresponds to exchange of stability
between one-site and two-site states [5]), and for special
parameter values it compactifies into either a one-site or a
two-site compacton [5]. Therefore, we should expect to see, in
different regimes, quantum counterparts to one-site as well as
two-site classical compactons in the highest-energy state of the
repulsive (1) (equivalent to the ground state of the attractive
model).

Let us stress that, in contrast to their classical counter-
parts but analogously to quantum breathers, the QLC (2) is
translationally invariant, but compact in terms of correlations.
Moreover, similarly to classical discrete compactons, the QLC
(2) is compact in the space of Wannier functions defining the
lattice of the EBH model, but generally not strictly compact in
real (continuous) space due to the finite decay rate of Wannier
functions [29].

One-site compacton. The one-site QLC is the simplest
possible, since there is only one way to place all particles
at one site, and thus Eq. (2) takes the form

|�c〉 = 1√
f

f −1∑
j=0

τ
j

k T̂ j |N,0, . . . ,0〉. (4)

To search for conditions to have exact QLC eigenstates, we
rewrite the Hamiltonian (1) in the form ĤEBH = ∑

p(Ĥ (0)
p +

Ĥ (1)
p + Ĥ (2)

p ), where

Ĥ (0)
p =Q1N̂p + Q3N̂

2
p + 4Q4N̂pN̂p+1,

Ĥ (1)
p = (â†

pâp+1 + â
†
p+1âp)

[
Q2

2
+ 2Q5(N̂p + N̂p+1 − 1)

]
,

Ĥ (2)
p =Q4[(â†

p+1)2(âp)2 + (â†
p)2(âp+1)2].

The superscript indicates how many particles the operator ef-
fectively tunnels. Obviously, when the parts of the Hamiltonian
that tunnel one and two particles [Ĥ (1) and Ĥ (2)] act on the
QLC state (4), states with particles spread over more than
one site are generated. Thus, if (4) should be an eigenstate,
then Ĥ (1)|�c〉 = 0 and Ĥ (2)|�c〉 = 0, yielding the parameter
conditions

Q2

2
+ 2Q5(N − 1) = 0, (5a)

Q4 = 0. (5b)

Taking the classical limit, condition (5a) corresponds to the
condition to have classical one-site compactons [5], while
there are no restrictions at all on Q4 in the classical model.
The disappearance of the last condition in the classical limit
can be understood by considering the scaling of the different
terms in ĤEBH with N (for Q2/N ∼ Q4 ∼ Q5 ∼ 1) when
acting on a one-site QLC: The terms associated with Q2 and
Q5 scale as N

3
2 , while those associated with Q4 only scale

as N . Thus, for a one-site QLC, Q4 terms become negligible
compared to the others for large N .
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FIG. 1. (Color online) |c1site|2 for the highest-energy eigenstate as
a function of Q2/N and Q5 with Q4 = 0 for f = 4 and (a) N = 16
and (b) N = 26 particles. τk = 1.

To illustrate the effects of deviations from conditions (5), we
first show in Fig. 1 numerically obtained one-site compactness
of the highest eigenstate when Q4 = 0, for a small lattice
with f = 4 (close to compactness, increasing the number of
sites affects the results only marginally). For |Q5| � 0.37,
a maximum with |c1site|2 = 1, corresponding to condition
(5a), is clearly seen. The one-site QLC is always an exact
eigenstate when conditions (5) are fulfilled, but the location
of the corresponding eigenvalue in the spectrum (highest, next
highest, etc.) depends on the precise parameter values, so that
when |Q5| � 0.37 it has moved to a lower eigenstate.

The effect of violating condition (5b) is illustrated in
Fig. 2, showing the compactness of the highest eigenstate with
condition (5a) fulfilled (i.e., Q2 is varied along with Q5).
Comparing Figs. 1 and 2 evidences, just as the classical model
indicates, that the compactness depends more on condition
(5a) than (5b). The sharp transition into black regions in Fig. 2
shows where the QLC, or a compactonlike state with |c1site|2
close to 1, moves to a lower eigenvalue. As for the classical
model [5], the location of this transition depends strongly
on Q4.

The fact that the exact one-site QLC (4) only consists of
one (translationally invariant) basis state gives rise to some
distinct features. Due to the orthogonality of eigenstates,
no other (noncompact) eigenstate can contain this specific
basis state. Therefore, there will be no mixing between the
QLC and other states, causing sharp transitions between the
QLC and other eigenstates rather than the normally observed
smooth transitions as parameters are varied. Thus, while
avoided crossings typically are observed between eigenvalues
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FIG. 2. (Color online) |c1site|2 for the highest eigenstate when
condition (5a) is fulfilled, for N = 16 and f = 4. Black regions have
|c1site|2 < 0.9. τk = 1.

corresponding to noncompact states, exact crossings appear
for the QLC when conditions (5) are fulfilled [30].

Multisite compactons. To search for exact multisite QLCs
is more complicated, since an m-site QLC (2) can be a
superposition of different ways of placing all particles at m

consecutive sites.
Let us first attempt a similar strategy as for the one-

site QLC, assuming that the Hamiltonian does not couple
different basis states in the superposition (2) with each other.
If parameters are tuned so that the coupling is turned off
between the boundary sites [sites 1 and m in (2)] and the first
empty sites [sites f and (m + 1)] then, since the coupling
is a function of the number of particles at the boundary
sites, we need to have a boundary symmetric eigenstate, i.e.,
n

(γ )
1 = n

(γ )
m = nboundary, ∀ γ . But the Hamiltonian will also try

to tunnel particles inwards within the QLC [from site 1 to 2
and from site m to (m − 1)], which will generate states that
are not boundary symmetric. The only way to avoid this is
to demand that n2 = nm−1 = 0, implying that we have two
isolated one-site QLCs at sites 1 and m, and not an m-site
QLC. Repeating this argument shows that we cannot have a
QLC with particles distributed on more than one consecutive
site, in the absence of basis state coupling.

If one takes interactions between basis states into account,
some exact multisite QLCs may indeed be found. However,
by explicitly working through all possible tunneling processes
[30], one finds that these QLCs must have very special forms.
It can be proven that, as soon as Q2 �= 0, a QLC (2) in a lattice
that is more than twice as big as the QLC itself (f > 2m)
can contain at most three particles [30]. Thus, few-site QLCs
with macroscopic occupation numbers (large N ) can exist only
for small lattices. Moreover, such QLCs generally are very
asymmetric [e.g., for m = 2 and f = 4 a QLC containing
only states of the form |N − 1,1,0,0〉 exists under the same
conditions (5) as the one-site QLC [30]]. Therefore, classical
multisite compactons generally cannot correspond to exact
QLCs.

To illustrate how classical multisite compactons may appear
from noncompact quantum states, we show numerical results
for m = 2 and f = 4. Figure 3 shows how the maximum
two-site compactness for the highest-energy state increases
with particle number N . The global maximum, obtained
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FIG. 3. (Color online) Maximum values of |c2site|2 for the highest-
energy state. Blue line (stars): Global max under independent param-
eter variations; red line (circles): max when Q2 = −4Q5(N/2 − 1).
f = 4, τk = 1.

011603-3



RAPID COMMUNICATIONS

PETER JASON AND MAGNUS JOHANSSON PHYSICAL REVIEW A 85, 011603(R) (2012)

(a)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

Q /N

Q
5

0

0.2

0.4

0.6

0.8

1
(b)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

Q /N

Q
5

0

0.2

0.4

0.6

0.8

1

(c)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

Q2/N

Q
5

0

0.2

0.4

0.6

0.8

1
(d)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

Q2/N

Q
5

0

0.2

0.4

0.6

0.8

1

2 2

FIG. 4. (Color online) |c2site|2 for the highest-energy state with
N = 16 and (a) Q4 = 0; (b) Q4 = 0.2; (c) Q4 = 0.3; (d) Q4 = 0.4.
f = 4, τk = 1.

from independent parameter variations of all Q parameters,
is compared to the maximum under the parameter restriction
Q2 = −4Q5(N/2 − 1), corresponding to the classical two-
site compacton condition [5]. In the classical limit, there
is indeed a parameter regime where a two-site compacton
maximizes the Hamiltonian [5], so we should expect both
curves in Fig. 3 to approach unity as N → ∞.

Figure 4 shows the two-site compactness of the highest
eigenstate as a function of Q2/N and Q5, for N = 16 and
different values of Q4. Note that |c2site|2 becomes close to unity
only for Q4 sufficiently large, reflecting the classical result
that a threshold value of Q4 is needed for a two-site localized
state to become an energy maximizer [5]. The complementary
nature of Figs. 4 and 1 thus gives a quantum mechanical
illustration of the classical stability exchange between one-
and two-site states. Note also the region with high compactness
in Fig. 4 around the classical two-site compacton condition
Q5 ≈ −Q2/2N .

A two-site compactonlike state (3) is mainly built up of two-
site basis states, which we label as |n〉 = f −1/2 ∑

j τ
j

k T̂ j |N −
n,n,0, . . . ,0〉. Figure 5 shows numerically obtained probabil-
ity distributions for these basis states in compactonlike highest-
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FIG. 5. (Color online) Probability distributions of two-site basis
states (stars), matched with Gaussian functions (line), in the highest-
energy eigenstates when f = 4, τk = 1, Q2 = −5, Q5 = 0.08, N =
30, and (a) Q4 = 0.4 (|c2site|2 = 0.9760); (b) Q4 = 0.6 (|c2site|2 =
0.9645).

energy states for two sets of parameter values with N = 30,
which are almost perfectly matched with Gaussian distribu-
tions exp[− (N/2−n)2

2σ 2 ]. Thus, symmetric basis states (equally
many particles on both sites) are the most probable, and
asymmetric ones get less probable with increasing asymmetry.
Note, however, that the eigenstate with the highest compact-
ness [Fig. 5(a)] is generally not associated with the narrowest
Gaussian curve [Fig. 5(b)]. Consequently, one set of parameter
values might give a state with higher probability to find all
particles on two consecutive sites, while another set gives a
state with higher probability to find the particles symmetrically
distributed.

Conclusions. In conclusion, we have introduced the concept
of QLC, and shown the correspondence between exact one-site
QLC in an EBH model, and classical compactons of an
extended DNLS model. Multisite compactons generically do
not correspond to exact QLC, but were shown numerically to
appear as superpositions dominated by states with all particles
located on consecutive sites, with probability amplitudes
following a Gaussian distribution. These results should pave
the way for further theoretical investigations of QLC in other
quantum lattice models and in higher dimensions, as well
as stimulate an experimental search for signatures of strong
bosonic quantum localization in lattice setups with significant
pair correlation tunneling effects.
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http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69500.

011603-5

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1016/0009-2614(86)80687-X
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/PhysRevLett.86.2353
http://dx.doi.org/10.1103/PhysRevA.73.013625
http://dx.doi.org/10.1103/PhysRevA.73.013625
http://dx.doi.org/10.1088/0953-4075/43/6/065303
http://dx.doi.org/10.1103/PhysRevA.77.063603
http://dx.doi.org/10.1103/PhysRevA.77.063603
http://dx.doi.org/10.1088/1367-2630/11/9/093028
http://dx.doi.org/10.1103/PhysRevA.79.033617
http://dx.doi.org/10.1103/PhysRevA.79.033617
http://dx.doi.org/10.1103/PhysRevA.81.045601
http://dx.doi.org/10.1103/PhysRevA.81.045601
http://dx.doi.org/10.1103/PhysRevA.80.013605
http://dx.doi.org/10.1103/PhysRevA.80.013605
http://dx.doi.org/10.1103/PhysRevA.80.013404
http://dx.doi.org/10.1103/PhysRevA.80.013404
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1063/1.1577271
http://dx.doi.org/10.1103/PhysRevA.68.023613
http://dx.doi.org/10.1103/PhysRevA.68.023613
http://dx.doi.org/10.1103/PhysRevE.77.016604
http://dx.doi.org/10.1103/PhysRevE.77.016604
http://dx.doi.org/10.1016/j.physd.2005.12.018
http://dx.doi.org/10.1088/1674-1056/17/11/051
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69500

