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Perfect quantum state transfer in two- and three-dimensional structures
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We introduce a scheme for perfect state transfer in regular two- and three-dimensional structures. The
interactions on the lattices are of the XX spin type with uniform couplings. In two dimensions, the structure
is a hexagonal lattice, and in three dimensions, it consists of hexagonal planes joined to each other at arbitrary
points. We will show that compared to other schemes, much less control is needed for routing, the algebra of
global control is quite simple, and the same kind of control can upload and download qubit states to or from
built-in read-write heads.
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Introduction. Since the inception of the fields of quantum
information and computation, the task of coherently trans-
ferring quantum states through long and short distances has
been of the utmost importance. While photons are the ideal
carriers of quantum information over long distances, it has
become evident that the best possible method for transferring
quantum information over short distances, i.e., through regular
arrays of qubits, is to exploit the natural dynamics of the
many-body system. This idea was first introduced in the
work of Bose [1] who showed that the natural dynamics of
a Heisenberg ferromagnetic chain can achieve high-fidelity
transfer of spin states over distances as long as 80 lattice
units.

This has led to an active view in the study of the dynamics of
many-body systems, traditionally studied in condensed-matter
physics from a passive point of view. For example, scientists
have tried to engineer the couplings in such a way that the
natural dynamics of a spin chain achieve state transfer with
perfect [2–5] or with arbitrary high fidelity [4,6–10]. In some
protocols, the natural evolution is interrupted by some minimal
control to achieve this task [12–15].

To overcome the necessity of engineered couplings, which
usually restricts the experimental realization of such protocols,
some kind of control was reintroduced in the scheme [16],
where it was shown that quasi-one-dimensional chains with
uniform ± couplings can achieve perfect transfer. The con-
version of these linear structures to star configurations and
arranging them in two-dimensional structures was shown to
achieve perfect state transfer (PST) in two and higher dimen-
sions. However, the nature of subsystems introduced in [16]
required multiple control on external nodes of each subsystem,
and different types of control for matching subsystems with
each other. A different type of control was also necessary for
loading and extracting the states to or from the lattice.

In this Rapid Communication, we introduce a very simple
scheme for perfect transfer in two- and three-dimensional
lattices. In addition to having all of the properties of the
protocol of [16], like linear scaling of time with distance,
and robustness to errors, this scheme has very desirable extra
properties, namely,

(i) very simple global operations are needed for routing
arbitrary states through arbitrary paths, that is, to each route a
very simple sequence of operations corresponds,

(ii) the lattice has natural built-in local read-write (RW)
heads for uploading and downloading qubit states, and

(iii) the same kind of global control which is used for routing
is also used for uploading and downloading states to or from
input and output heads.

(iv) As we will see, all of these properties are based on the
geometry of hexagonal lattice and on a concept (or device)
which we introduce here. The important point is that the
effective Hamiltonian on these two- and three-dimensional
hexagonal lattices, when written in the right basis, turns out
to be the direct sum of one-dimensional PST chains, and the
Hadamard switches allow us to route the particles by very
simple controls through these chains in different directions.

Preliminaries. The prototype of many-body systems, which
has been used in many protocols, is the XX spin chain,

H =
N∑

m,n

1

2
Km,n(XmXn + YmYn). (1)

This type of interaction preserves spin, [H,
∑

m Zm] = 0, and
does not evolve the uniform background state of all spin-ups,
i.e., H⊗N |0〉N = 0. This leads to the simple result that for
transferring an arbitrary qubit state such as α|0〉 + β|1〉, it
is enough to perfectly transfer only the state |1〉 through the
lattice. Such a transfer occurs in the single excitation sector,
which is spanned by N states of the form |m〉, where |m〉 means
that the single spin in the mth place is down (or the local qubit
is in the state |1〉).

The scheme. We start with the hexagonal lattice shown
in Fig. 1. Let v denote a vertex of the lattice. On the three
links connected to this vertex, there are three qubits, which we
denote by v + e1, v + e2, and v + e3. The vectors e1, e2, and
e3 denote the three vectors directed along the links connected
to a vertex. A fourth qubit v + e0, called the read-write (RW)
head, is also connected to this vertex, although we emphasize
that the vector v + e0 does not necessarily mean a vector in the
plane. This RW head need only be near the vertex, and it can
have any geometrical relation with respect to the main lattice.
At each vertex v, there is a four-level quantum system, which
will be specified later on. The Hamiltonian that governs the
interaction on this system is of the form

H =
∑

v

Hv, (2)

where Hv is the local Hamiltonian connecting each vertex
to its neighboring links and through these links to the other
vertices.

010302-11050-2947/2012/85(1)/010302(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.010302


RAPID COMMUNICATIONS

V. KARIMIPOUR, M. SARMADI RAD, AND M. ASOUDEH PHYSICAL REVIEW A 85, 010302(R) (2012)

v

v+e

v+e v+e

v+e

0

3

1

2

A

B

C

FIG. 1. (Color online) The hexagonal plane. Each edge is a PST
chain of length 3, but it can also be replaced with PST chains of
arbitrary length. The RW heads are the small black circles. The
links accommodate qubit states (small white circles). The Hadamard
switches (the big circles at the vertices) are used to switch the qubit in
different directions and the RW head (if necessary). For transferring
a state from A to B, we can take a longer (bold) path to route around
an imperfection at C.

Now we describe the quantum system at each vertex. At
each vertex v, there are four qubits which we denote by v

α
, i.e.,

v0 , v1 , v2 , and v3 . These qubits are arranged on four different
layers or four different global registers. In particular, the qubits
v0 for different v’s lie in the hexagonal plane and the other
qubits lie in different layers which we call control layers, or the
control registers, to distinguish them from the main hexagonal
plane.

Actually the qubits in the control layers need not have a
fixed geometrical relation with the main layer, as Fig. 2 only
shows the pattern of connections between different qubits.
The geometry depends on the actual implementation (i.e.,
superconducting qubits, etc.).

As we will see later, the only control that we need is
the possibility of applying a uniform magnetic field on each
control layer or global register. No control on any individual
qubits is necessary. The local Hamiltonian Hv is of the simple

FIG. 2. (Color online) The Hadamard switch. The four spins in
the middle (the colored circles) have an XX interaction with the four
spins around, according to the pattern of ± signs in the Hadamard
matrix J in (4). The white circles are the spins on the link and the
black one is the RW head.

XX type,

Hv =
3∑

α,β=0

J αβ(Xvα
Xv+eβ

+ Yvα
Yv+eβ

), (3)

where J αβ are the entries of the Hadamard matrix in four
dimensions, namely,

J = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ . (4)

Therefore, this is an XX spin lattice with uniform ± couplings
between the four spins vα in each vertex and the neighboring
spins v + eβ . Note that while α indexes the four qubits on the
same vertex, β indexes the four qubits on the links and the RW
head.

In the above matrix, the rows and columns are numbered
from 0 to 3, from left to right and from top to bottom,
respectively. Note that the vertex v0 is connected with each
of the three links and also the RW head with equal couplings.
We call this structure, described by the Hamiltonian Hv , a
Hadamard switch. As we will see later, it can be used in
a very effective way for routing states through two- and
three-dimensional structures. Figure 2 shows this switch. In
Fig. 1, these switches have been depicted as big colored circles
at vertices of the hexagonal lattice.

A crucial step in our scheme is to show that this spin
lattice, when written in an appropriate basis, is in fact the
direct sum of uniformly coupled, perfect transfer chains, each
pointing in a different direction. Figure 3 shows this effective
structure where the Hadamard switch (the big bulb) puts the
state in the initial node of a PST chain depending on the global
control pulse. States are transferred between these blue bulbs,
and in each bulb only global control pulses applied to the
whole system determine whether the state should go to a given
direction or else be downloaded to the RW head near the bulb.
We also emphasize that the PST chains need not be of length 3;
any type of PST chain [2–5] can be joined by these switches.

To show the decoupling, in Fig. (3) we note that the local
XXHamiltonian on spins m and n, Hm,n := 1

2 (XmXn + YmYn),
has the following simple action: Hm,n|m〉 = |n〉, Hm,n|n〉 =
|m〉, where Hm,n|p〉 = 0 for p �= m, n. This means that Hm,n,
when restricted to a single-particle subspace, has the following
expression:

Hm,n = |m〉〈n| + |n〉〈m|. (5)

This allows us to rewrite the total Hamiltonian in the form

H =
∑
v,α,β

J α,β (|vα〉〈v + eβ | + |v + eβ〉〈vα|). (6)

We now consider the four orthogonal states |ξα
v 〉 :=∑3

β=0 J α,β |vβ〉, that is,
∣∣ξ 0

v

〉
:= 1

2 (|v0〉 + |v1〉 + |v2〉 + |v3〉),∣∣ξ 1
v

〉
:= 1

2 (|v0〉 + |v1〉 − |v2〉 − |v3〉),
(7)∣∣ξ 2

v

〉
:= 1

2 (|v0〉 − |v1〉 + |v2〉 − |v3〉),∣∣ξ 3
v

〉
:= 1

2 (|v0〉 − |v1〉 − |v2〉 + |v3〉).
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FIG. 3. (Color online) Decomposition of Hv into PST chains in
different directions. The 2-chain transfers the particle between the
RW head (the black circle) and the state |ξ 0〉. A state |ξ i〉 perfectly
goes in the direction i. Global control on the plane of spins v1,v2, and
v3 changes the states |ξα〉 as desired.

The Hamiltonian can now be rewritten as

H =
∑
v,α

(∣∣ξα
v

〉〈v + eα| + |v + eα〉〈ξα
v

∣∣). (8)

This means, for example, that the three qubit states |ξ 1
v 〉, |v +

e1〉, and |ξ 1
v+e1

〉 form an XX chain of length 3 with equal
couplings, hence a PST. Therefore, as shown in Fig. 3, in this
new basis, the Hamiltonian has been decomposed into a direct
sum of the XX spin chains with uniform couplings of length
2 (for the RW heads) and 3 (for the links). Such chains are
capable of the perfect transfer of qubits in times t0 = π

2 and
t1 = π√

2
, respectively [2].

To switch the particle in different directions, we note the
important property of the states |ξα

v 〉, which are turned into
each other by global unitary operators. Let Z1, Z2, and Z3 be
the Pauli operators acting on spins 1, 2, and 3 on vertex v.
Then, it is readily seen that

Z1Z2 : |ξ 1〉 ←→ |ξ 2〉, |ξ 0〉 ←→ |ξ 3〉,
Z1Z3 : |ξ 1〉 ←→ |ξ 3〉, |ξ 0〉 ←→ |ξ 2〉, (9)

Z2Z3 : |ξ 2〉 ←→ |ξ 3〉, |ξ 0〉 ←→ |ξ 1〉.
The crucial point is that the Zi operations can be applied
globally on all of the qubits in the ith control layer, since
on the empty sites it has no effect, and on an occupied site
it has the phase effect that we want. Therefore, there is no
need to address single spins in each control layer, only the
possibility of access to each layer is required. Such a control
should be applied in a time much shorter than the time scales
t0 and t1. We can also route many particles at the same time,
in which case we have to control different regions of control
layers differently, depending on the paths of these particles.
In those time intervals when the paths become parallel, global
(not regional) control pulses guide the particles through the
lattice.

Now a clear and very simple method for perfect state
transfer in the lattice emerges. A single particle α|0〉 + β|1〉
is uploaded to a given input head vin. The part α|0〉 does not
evolve and indeed is ready for downloading at any output head.
We only have to transfer the single-particle state |1〉, which in
view of our notation has made the whole lattice be in the
state |vin + e0〉. After a time t0, this state evolves to |ξ 0

vin
〉, i.e.,

the particle has moved to the nearest vertex vin in the form
of the linear superposition |ξ 0〉. Once in a state |ξ 0

v 〉, we can
make a global control according to (9) to switch this vertex
state to either of the states |ξ i

v〉 (i = 1,2,3), depending on the
direction in which we want to route the state. For example, if
we switch it to |ξ 1

v 〉, then, according to Fig. 3, after a time t1,
the state will be transferred perfectly to the other end of the
3-chain in direction e1. Continuing in this way, we can move
the state via any path that we like to any other vertex, say
vout , where the final state will be one of the three states |ξ i

vout
〉,

(i = 1,2,3). Switching this state to |ξ 0
vout

〉 will move this state
to the nearest output head in the form |vout + e0〉, where it will
be read off. The total time for routing is 2t0 + Nt1, where N is
the number of links which connect the input and output heads
along the chosen path. The sequence of control operations is
very simple. For uploading and downloading a qubit to or from
a link ei to its nearest head, the operation Ẑi is applied when
Ẑi means that Zi is removed from the triple Z1Z2Z3, and at
each vertex for routing a particle from direction ei to direction
ej , the operation ZiZj is applied. Except for uploading and
downloading operations where a time lapse of t0 is needed, all
of the other control operations are applied at regular intervals
of time t1. We restate it as follows:

(i) for turning from direction i to j , apply ZiZj ; and
(ii) for uploading and downloading a qubit to or from a RW

head to direction i, apply Ẑi .
Perfect transfer in three dimensions. The Hadamard switch

can be used in a natural way for achieving PST in three-
dimensional structures. Figure 4 shows a Hadamard switch
connecting two hexagonal planes. Such planes can be joined
by any number of switches. The number and positions of
Hadamard switches are determined to optimize the accessi-
bility of all of the heads in the two planes by the shortest

X

X

X +e0

1

2

FIG. 4. (Color online) The Hadamard switch can transfer a state
between planes. The leg which was previously connected to RW heads
is replaced by a PST chain to connect two switches in two different
planes.
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possible paths. When used in this way, the RW head gives its
role to the qubit on the link which joins the two planes. For
example, when the two planes are joined to each other at points
x1 and x2 on the two planes (Fig. 4), the effective Hamiltonian
for the states |x + e0〉 on the joining link, and the states |ξ 0

x1
〉 on

plane 1 and |ξ 0
x2

〉 on the upper plane, is nothing but a perfect XX
3-chain. This effective Hamiltonian transforms the state |ξ 0〉
perfectly between the two planes. This time we should wait
for time t1 instead of t0. Therefore, we route a particle within
each plane as before and bring it to the position of the nearest
switch, where by appropriate control we move it to another
plane and continue there.

A note on implementation. Solid-state qubits are attractive
due to their inherent scalability using well-established micro-
fabrication techniques. The main challenge is obviously to
implement the ± couplings. It has been shown that these kinds
of tunable couplings can be implemented in charge-based [17]
and flux-based [18] superconducting qubits. In the latter case,
the coupling strength is adjusted by the current bias applied to
the superconducting quantum interference device (SQUID)
and can be varied continuously from positive to negative
values.

Imperfections. It has been shown that a modest amount
of static and dynamic disorder in couplings does not affect
the optimal transfer time [19] and has little effect on transfer
fidelity in the chains [20]. For a linear chain of size up to
N = 51, a randomness of strength σJ = 0.1 J decreases the
fidelity of perfect state transfer by only 10% [20]. Moreover,
there are recent proposals for achieving PST via certain classes
of random, unpolarized (infinite-temperature) spin chains [4].
These kinds of chains can be joined to each other in a hexagonal

lattice via Hadamard switches, in which case longer chains up
to the point where localization will be important can be used.
In such schemes, fewer switches will be used and when any
of them fails, it can be routed around as in Fig. 1 at the cost of
taking a slightly longer path.

In summary, we have developed a scheme on a hexagonal
lattice with uniform ±1 XX couplings for perfect state transfer
in two and three dimensions. In this scheme, qubit states
are uploaded from RW heads, routed via specific paths, and
downloaded to RW heads by a very simple sequence of control
pulses applied to global registers. No individual addressing is
required. The transfer time scales linearly with the path length.
The simple features of the scheme, namely, the hexagonal
lattice, the RW head, single-step controls, and the uniform
couplings, are all naturally linked with the beautiful mathemat-
ical fact of a unique Hadamard matrix (4) in four dimensions.
(Such matrices exist only in certain dimensions.) We believe
that once the challenge of implementing ± couplings is solved,
for example, in arrays of Josephson junctions [21], which have
been shown to allow tunable ± couplings [17,18], this will be
the natural choice for state transfer in two and three dimen-
sions, and it will be worthwhile to investigate other issues,
such as the optimal control sequences for the simultaneous
routing of many particles, independence of the initial state,
the effect of static and dynamic random couplings, random
magnetic fields, and temperature fluctuations, in this scenario.
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