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We analyze the security and feasibility of a protocol for quantum key distribution (QKD) in a context where
only one of the two parties trusts his measurement apparatus. This scenario lies naturally between standard QKD,
where both parties trust their measurement apparatuses, and device-independent QKD (DI-QKD), where neither
do, and can be a natural assumption in some practical situations. We show that the requirements for obtaining
secure keys are much easier to meet than for DI-QKD, which opens promising experimental opportunities. We
clarify the link between the security of this one-sided DI-QKD scenario and the demonstration of quantum
steering, in analogy to the link between DI-QKD and the violation of Bell inequalities.
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Quantum key distribution (QKD) allows two parties (Alice
and Bob) to establish secret keys at a distance, with security
guaranteed by the laws of quantum mechanics [1]. In standard
QKD (S-QKD), the security is typically proven under the
assumption that Alice and Bob can trust the physical func-
tioning of their preparation and measurement apparatuses. For
instance, standard security proofs for the Bennett-Brassard
1984 (BB84) protocol [2] assume that Alice sends qubits
to Bob, prepared in some eigenstates of the σz or σx Pauli
operators, and that Bob measures them in one of those two
bases. Recent demonstrations of hacking of the devices has
shown the importance and weakness of this assumption [3].
Moreover, since QKD is becoming commercially available,
Alice and Bob may end up buying their devices from untrusted
providers.

Remarkably, there are ways to guarantee security with fewer
assumptions. The minimal set of assumptions is the one used
in device-independent QKD (DI-QKD) [4,5]. There, Alice and
Bob can certify the security of QKD based only on the observed
violation of Bell inequalities [6]: the measurement apparatuses
are untrusted black boxes, with a knob supposedly related to
the measurement settings. Alice and Bob have only to trust the
random number generator with which they vary the positions of
the knob and, of course, the integrity of their locations. While
the qualitative understanding “Bell violation implies security”
is certainly true, the derivation of quantitative security bounds
is challenging. The most recent results report on security
against the most general attacks (“coherent attacks”) under
the assumption that previous measurements do not feed any
information forward to subsequent ones [7,8] (or, to put it
simply, that the devices are memoryless). In addition to these
(hopefully temporary) limitations of the theoretical studies,
DI-QKD imposes very demanding requirements on practical
demonstrations. In particular, the Bell test would need to close
the detection loophole [9], which requires very high detection
efficiencies [10].

Intermediate scenarios between S-QKD and DI-QKD re-
quire less trust than the former and will be easier to implement

than the latter [11]. Imagine for instance that a bank wants to
establish secret keys with its clients; the bank could invest a
lot of money to establish one trustworthy measurement device,
but the clients at the other end of the channel would certainly
get cheap (and insecure) detection terminals. This leads us
to study one-sided DI-QKD (1SDI-QKD): we consider an
entanglement-based scenario in which Bob’s measurement
apparatus is trusted, while Alice’s is not. In the entanglement-
based setup the source is also untrusted, although we will also
discuss prepare-and-measure (P&M) implementations where
the source is trusted. We present a security bound against
coherent attacks with similar assumptions as in Refs. [7,8],
in particular that the devices are memoryless, as this enables
the strongest security analysis presently available. Focusing
on practical implementations, we show that the detector
efficiencies required for a practical implementation of 1SDI-
QKD are much lower than for DI-QKD, making it feasible
with existing devices. Before that, let us start by stressing a
link with a hierarchy of tests of quantum nonlocality [12].

QKD and quantum nonlocality. It is known that no secret
key can be extracted in a QKD experiment if the channel
between Alice and Bob is entanglement-breaking [13]. Hence,
in order to demonstrate security, one must show that the chan-
nel preserves entanglement. The three different assumptions
on Alice’s and Bob’s devices mentioned above correspond
naturally to three different criteria for quantum nonlocality
[12] (see Fig. 1): S-QKD or DI-QKD require the observed
correlations to violate a separability criterion or a Bell
inequality respectively; 1SDI-QKD requires the correlations
to violate an EPR-steering inequality as defined in Ref. [14].
That is, if one imagines that Bob’s system has a definite (albeit
unknown to him) quantum state, the protocol must prove that
Alice, by her choice of measurement, can affect this state.
This sort of nonlocality, first discussed by Einstein, Podolsky,
and Rosen [15], was called “steering” by Schrödinger [16]. In
Ref. [12] these concepts of nonlocality arose from considering
entanglement verification with untrusted parties. However,
even if Alice and Bob trust each other, as in QKD, they may
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FIG. 1. Link between the three concepts of quantum nonlocality
as classified in Ref. [12] and the three scenarios of S-QKD, 1SDI-
QKD (this paper), and DI-QKD. In order to obtain a secret key, (i) if
Alice and Bob trust their measurement devices (transparent boxes),
then they must necessarily demonstrate entanglement; (ii) if Alice’s
measurement device is untrusted (black box), while Bob’s is trusted,
then Alice must demonstrate steering of Bob’s state; (iii) if both
Alice’s and Bob’s measurement devices are untrusted, then they must
demonstrate Bell nonlocality. In all cases, Alice and Bob must trust
their random number generator (RNG), and the integrity of their
location.

not trust their devices, which is an analogous situation. From
this perspective, our scenario of 1SDI-QKD can thus be seen
as a practical application of the concept of quantum steering.

A 1SDI-QKD protocol. We consider the following 1SDI
version of the Bennett-Brassard-Mermin 1992 (BBM92)
entanglement-based protocol [17]: Alice and Bob receive some
(typically photonic) quantum systems from an external source.
Alice can choose between two binary measurements, A1 and
A2; since she does not trust her measurement device, she
treats it as a black box with two possible settings, yielding
each time one of two possible outputs. Bob, on the other
hand, trusts his device to make projective measurements B1

or B2 in some qubit subspace, typically corresponding to the
operators σz and σx , respectively. After publicly announcing
which measurements they chose for each system, Alice and
Bob will try to extract a secret key from the conclusive results
of the measurements A1 and B1; as explained below, the results
of measurements A2 and B2 will allow them to estimate Eve’s
information.

Alice and Bob might not always detect the photons sent
by the source, because of losses or inefficient detectors. Since
Bob trusts his detectors, he trusts that Eve cannot control his
detections. Also, Eve cannot get any useful information from
Bob’s (null) result if the photons going to him are lost or
if she keeps them. Cases where Bob gets ambiguous results
(e.g., double clicks) can be dealt with using the techniques of
Ref. [18]—see the supplementary material [19] for details.
Hence, we can safely consider only the cases where Bob
gets detections. On the other hand, since Alice’s measurement
device is untrusted, Eve could control whether her detectors
click depending on the state she receives and on her choice
of measurement setting. We can therefore not simply discard
Alice’s no-detection events. In case her detectors do not click,
she records a bit value of her choice as the result of her

measurement, keeps track of the fact that her detectors did
not click, and tells Bob (so that they can later postselect
the raw key on Alice’s detections); Eve has access to that
information.

We denote by Ai and Bi the strings of classical bits Alice
and Bob get from measurements Ai and Bi (and where Bob
got a detection, as discussed above). Among the bits of A1,
some correspond to actual detections by Alice, and some,
corresponding to nondetections, were simply chosen by Alice
herself. Everyone knows which ones are which. The detected
bits form a string Aps

1 (they will be postselected by Alice and
Bob), while those that were not actually detected form a string
Adis

1 (they will be discarded for the key extraction), so that
A1 = (Aps

1 ,Adis
1 ). Bob’s corresponding bit strings are Bps

1 and
Bdis

1 , respectively, so that B1 = (Bps
1 ,Bdis

1 ). We denote by N

the length of the strings A1 and B1 and by n the length of the
strings Aps

1 and Bps
1 .

Security proof and key rate. Recently,Tomamichel and
Renner [20], together also with Lim and Gisin [21], have devel-
oped an approach to QKD based on an uncertainty relation for
smooth entropies, which enables one to prove security against
coherent attacks in precisely this 1SDI-QKD scenario; note
however that one also needs (as in Refs. [7,8]) the assumption
that the devices are memoryless [22]. To prove the security
of our protocol in realistic implementations, we extend their
analysis by considering imperfect detection efficiencies [23].

From the n-bit strings Aps
1 and Bps

1 , on which Eve may
have some (possibly quantum) information E, Alice and Bob
can extract, through classical error correction and privacy
amplification (from Bob to Alice), a secret key of length [24]

� ≈ Hε
min

(
Bps

1

∣∣E
) − nh

(
Q

ps
1

)
. (1)

Here Hε
min(Bps

1 |E) denotes the smooth min entropy [25] of Bps
1 ,

conditioned on quantum side information E; h is the binary en-
tropy function: h(Q) ≡ −Q log2 Q − (1 − Q) log2(1 − Q);
and Q

ps
1 is the bit error rate between Aps

1 and Bps
1 .

To bound Hε
min(Bps

1 |E), we will use the uncertainty relation
introduced in Ref. [20], which bounds Eve’s information on
B1 given Alice’s information on the incompatible observable
B2. However, we need to use the full strings B1,B2, as post-
selection may lead to an apparent violation of the uncertainty
relation. Using the chain rule [24] and the data-processing
inequality [26] for smooth min-entropies, we first bound Eve’s
information on Bps

1 relative to her information on B1:

Hε
min(B1|E) = Hε

min

(
Bps

1 ,Bdis
1

∣∣E
)

(2)

� Hε
min

(
Bps

1

∣∣Bdis
1 E

) + log2

∣∣Bdis
1

∣∣ (3)

� Hε
min

(
Bps

1

∣∣E
) + N − n. (4)

Now, consider a hypothetical run of the protocol where the
bits of A1 and B1 would be measured in the second basis; we
denote by A2 and B2 the corresponding hypothetical strings.
From the generalized uncertainty relation of [20], one has

Hε
min(B1|E) � qN − Hε

max(B2|A2), (5)

where q is a measure of how distinct Bob’s two mea-
surements are; for orthogonal qubit measurements, q = 1.
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Here, Hε
max(B2|A2) is the smooth max entropy [25] of B2,

conditioned on A2. It satisfies the following [21]:

Hε
max(B2|A2) � Nh(Q2), (6)

where Q2 is the bit error rate between A2 and B2. Now, since
the choice of basis was made randomly, Q2 is the same as
the bit error rate observed—without postselection—when the
second basis was actually chosen (no matter how rarely) by
both Alice and Bob.

Substituting (4)–(6) in Eq. (1), we obtain

� � n
[
1 − h

(
Q

ps
1

)] − N [h(Q2) + 1 − q]. (7)

In the asymptotic limit of infinite key lengths, the above
approximate inequality becomes exact [21,27]. The fraction
n/N of photons which Alice detects, given that Bob detected
one, will be denoted ηA. This allows us to write the secret key
rate r ≡ �/N (the number of secret bits obtained per photon
detected by Bob, measured in the first basis), as

r � ηA

[
1 − h

(
Q

ps
1

)] − h(Q2) − (1 − q). (8)

Relation to EPR steering. As we recalled before, the
secret key rate above can only be positive if Alice and
Bob can check that they share entanglement. In our 1SDI
scenario, this amounts to demonstrating quantum steering.
Hence, the inequality ηA[1 − h(Qps

1 )] − h(Q2) − (1 − q) � 0
can be understood as an EPR-steering inequality [14]. In the
supplementary material [19], we give a more direct proof
of this claim, starting from the so-called local hidden state
model [12].

Experimental prospects. We now turn to the feasibility
analysis. Consider a typical experimental setup, where a
source sends maximally entangled two-qubit states to Alice
and Bob, through a depolarizing channel with visibility V ,
and where, as in the BBM92 protocol, A1 = B1 = σz and
A2 = B2 = σx , with Alice’s detection efficiency being ηA as
above. (We emphasize that this is simply a model for Alice’s
measurements, which are implemented in a black box.)

The secret key rate that Alice and Bob can extract is then
bounded by (8), with q = 1 and

Q
ps
1 = (1 − V )/2, Q2 = (1 − ηAV )/2.

Figure 2 shows the values of the bound (8) as a function of ηA

and for different values of V . For a perfect visibility V = 1,
one gets a positive secret key rate for all ηA > 65.9%.

This detection probability threshold is much lower than
those required for DI-QKD. For instance, if Alice and Bob have
the same detection efficiency η, then they require η > 94.6%
for the protocol studied in Ref. [7], when they extract their
key from the nonpostselected data. If the key is extracted from
the postselected data (as we considered here for 1SDI-QKD),
the threshold remains quite high, η > 91.1% (see Fig. 2
and supplementary material [19]). The much lower efficiency
threshold for 1SDI-QKD compared with DI-QKD is related
to the fact that it is much easier to close the detection
loophole in a steering experiment [28–30] than in a Bell
test, for which there are no photonic detection-loophole-free
demonstrations to date. Heralding efficiencies of ∼62% have
recently been reported [30] in an experiment demonstrating
detection-loophole-free quantum steering; our 1SDI-QKD
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FIG. 2. (Color online) Solid curves: bounds (8) on the secret key
rate r in a typical implementation of 1SDI-QKD, as a function of
Alice’s detection efficiency ηA, for visibilities V = 1,0.99,0.98,0.95
(from top to bottom) and q = 1. Dashed curve: for comparison,
bounds (for V = 1) for DI-QKD, obtained by adapting the security
analysis of Ref. [7], when Bob has the same detection efficiency
ηB = ηA as Alice (see supplementary material [19]).

protocol could be demonstrated with a very similar (but slightly
improved) experimental setup.

Note also that, in the 1SDI-QKD case, the losses between
the source and Bob’s laboratory do not affect the security of the
protocol; they only decrease the key rate proportionally to the
decrease of Bob’s detection rate (as long as the noise in Bob’s
detectors does not become prominent). Hence, long distances
can in principle be reached if the source stays close to Alice;
this is in contrast to the fully DI-QKD case, where the limit
on the detection efficiencies imposes a limit on the allowed
distance between Alice and Bob (although some proposals
have been suggested to overcome this problem [31–33]).

Comparison of different scenarios. Key rate bounds for
entanglement-based QKD also apply to P&M schemes, as
long as the preparation device can be trusted to produce a
certain average state independent of Alice’s (or Bob’s, as the
case may be) choice of preparation basis (e.g., the completely
mixed state, regardless of whether σx or σz is the chosen basis).
A preparation device with this property can be envisaged as
a trusted entanglement source situated in Alice’s (or Bob’s)
laboratory, with a trusted channel between it and the local
detector. In this picture it still makes sense to consider the
case where the local “hypothetical” detector is untrusted, as
this is equivalent to saying that we cannot trust the preparation
device to prepare the desired state. Here the efficiency (which
we will denote as η∗) of the hypothetical detector models the
probability that the preparation device registers to the sender
which of the two states (in the chosen basis) was sent. For
a well-functioning device this can be close to unity; even if
the preparation does use a probabilistic photon-pair source
and a detector, the sender can generate many pairs within
the time window for each system and switch out the system
(one photon, ideally) only when its preparation is heralded by
the detection of the other. A greater experimental challenge is
the loss of the heralded photon (within the sender’s laboratory
or en route), which must be factored into the receiver’s
efficiency.
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TABLE I. Best known bounds on secret key rates for QKD (secure
against coherent attacks) with privacy amplification from Bob to Alice
and memoryless devices—both P&M and entanglement-based. The
second column tells which of the components—Alice’s detectors
(AD), the source (S), Bob’s detector (BD), and each of the channels
(C) between the source and the detectors—are trusted (T) or untrusted
(U). Thick vertical lines in each row separate Alice’s laboratory, the
channel open to Eve, and Bob’s laboratory. In the P&M cases, the
detector plus source in a laboratory is a formal model for a preparation
device; the efficiency η∗ in these cases models the probability that
the preparation device registers which state is prepared, and would
typically be close to unity (for details see text). In column three, the
bounds on key rates (here, per photon pair produced by the source;
that is, per preparation event in the P&M cases) are given in terms
of the functions r0(Qps

1 ,Q
ps
2 ) ≡ ηBηA[1 − h(Qps

1 ) − h(Qps
2 )] from S-

QKD, r1(Qps
1 ,Q2) ≡ ηB{ηA[1 − h(Qps

1 )] − h(Q2)} from Eq. (8), and
r2(Qps

1 ,S) ≡ ηAηB [1 − h(Qps
1 )] − log2[1 + √

2 − (S/2)2] (see sup-
plemental material [19]). Here S is the value of the CHSH polynomial
[34], while Q1 and Q2 are bit error rates. The superscript ps
means postselection on coincident detections; Q2 in r1(Qps

1 ,Q2)
is postselected on Bob’s detections, but not on Alice’s; S must
be estimated from the whole nonpostselected data. The efficiency
thresholds (column four) are calculated with everything else perfect.
In row four, we assumed η∗

B → 1 (the threshold we quote is therefore
a lower bound on the thresholds for η∗

B < 1), while in row seven,
ηA = ηB = η.

Based on AD C S C BD Key rate bound Eff. thresh.

P&M T T T U T r0

(
Q

ps
1 ,Q

ps
2

)
none

P&M U T T U T r1

(
Q

ps
1 ,Q2

)
η∗

A > 65.9%

P&M U U T T T r1

(
Q

ps
1 ,Q2

)
ηA > 65.9%

P&M U U T T U r2

(
Q

ps
1 ,S

)
ηA > 83.3%

Entang. T U U U T r0

(
Q

ps
1 ,Q

ps
2

)
none

Steering U U U U T r1

(
Q

ps
1 ,Q2

)
ηA > 65.9%

Bell U U U U U r2

(
Q

ps
1 ,S

)
η > 91.1%

Considering all nontrivial permutations of device trust-
worthiness, there are eight P&M scenarios and four genuine
entanglement-based scenarios whose security can be analyzed

using the methods of Refs. [7,20]. We remove mirror-image
scenarios by keeping only the version which is better (or
equally good) under the assumption of the privacy amplifi-
cation being from Bob to Alice, as shown in Table I. Note
that P&M by Bob with a fully trusted preparation device
(row 3) does not improve the threshold efficiency required
for Alice’s untrusted detector, as compared to steering-
based 1SDI-QKD with an untrusted entanglement source
(row 6).

Conclusion. We have introduced the scenario of 1SDI-
QKD and analyzed its security against coherent attacks in a
practical situation where losses are taken into account. Our
analysis shows that the assumptions of 1SDI-QKD allow
one to significantly lower the necessary detection efficiencies
compared to fully DI-QKD, and that the requirements for
obtaining secure key rates in an experiment are within the
range of current technology.

We have also stressed that 1SDI-QKD requires the violation
of an EPR-steering inequality, in analogy with the requirement
of violation of a Bell inequality for security of DI-QKD.
The relation between the QKD hierarchy and the nonlo-
cality hierarchy introduces some open questions: (i) It has
recently been shown that steering can be demonstrated with
arbitrarily low efficiencies [28]. Can one find (and prove the
security of) 1SDI-QKD protocols that would also tolerate
arbitrarily low efficiencies? (ii) With two measurement settings
per party, steering can be demonstrated for efficiencies ηA >

50% [28,30]. There is a large gap between this and the
threshold of ∼66% for our 1SDI-QKD protocol. The same
situation occurs for fully DI-QKD, where there is also a gap
between the threshold of η > 82.8% for a violation of the
CHSH inequality [34] and that for the security of DI-QKD.
How small can these be made in general? Another topic for
further research is to extend our results to finite keys; for
instance, along the lines of Ref. [21].

Note added. Recently, we became aware of a related
work [35] where similar bounds on the detection efficiency
thresholds are derived.
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