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Multimode Gaussian quantum light, which includes multimode squeezed and multipartite quadrature entangled
light, is a very general and powerful quantum resource with promising applications in quantum information
processing and metrology. In this paper, we determine the ultimate sensitivity in the estimation of any parameter
when the information about this parameter is encoded in such light when the mean photon number is large,
irrespective of the information extraction protocol used in the estimation and of the measured observable. In
addition, we show that an appropriate homodyne detection scheme allows us to reach this ultimate sensitivity. We
show that, for a given set of available quantum resources, the most economical way to maximize the sensitivity
is to put the most squeezed state available in a well-defined light mode. This implies that it is not possible to take
advantage of the existence of squeezed fluctuations in other modes, nor of quantum correlations and entanglement
between different modes.
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Optical techniques are widely used in many areas of
science and technology to make accurate measurements
and diagnostics, from microscopy, spectrography, chemical
analysis, to gravitational wave detection and ranging. There are
many reasons for this: Light allows us to extract information
in a remote and nondestructive way, it carries information in a
massively parallel way, and, perhaps more importantly, optical
measurements can reach very high precision and sensitivity
levels.

It is therefore important to know what is the ultimate limit
of sensitivity that can be possibly achieved in the estimation of
a parameter θ that is encoded by one way or another in a light
beam, given some constraints, such as a fixed mean photon
number N . This limit is imposed by the unavoidable quantum
fluctuations of light and depends on the quantum state of light
which conveys the information about θ . When the light is in
a coherent state, this limit is called “standard quantum limit”
and scales as 1/N1/2.

Many studies have been devoted to finding ways to enhance
the sensitivity of parameter estimation beyond the standard
quantum limit using quantum resources. It has been shown that
enhanced sensitivity can be achieved by using squeezed light
[1] or entangled light [2]. This has been first experimentally
demonstrated for measurements in which the information
about the parameter θ is carried by the total intensity [3]
or by the phase [4] of a light beam. Later situations were
considered where the parameter θ does not change the total
intensity of the light but modifies the details of the repartition
of light in the transverse plane [5] (for example, to estimate a
very small lateral displacement of a beam [6]). As the energy
of the squeezed state increases with the squeezing factor, the
ultimate limit with squeezed state for a fixed total energy scales
as 1/N3/4.

Better scaling can be achieved with so-called Heisenberg-
limited (HL) measurements, for which the ultimate precision
scales as 1/N . In the context of phase estimation, it has

been demonstrated [7,8] that a squeezed-state interferometry
scheme in a single-mode setting without entanglement can
reach the HL. Such a limit can also be reached with
entangled states, such as NOON states [9]. However, in the
present state of technology, real measurement schemes using
these states do not lead to very high sensitivities, because of
the small values of N experimentally reachable, and decoher-
ence tends to rapidly destroy these states, therefore limiting
the performance of the measurement to a 1/N1/2 scaling for
large N [10–12]. More recently, a scheme was proposed that
reaches the HL without the use of an entangled state [13].

This Rapid Communication tackles the problem of opti-
mized parameter estimation in a more practical way. Light is
considered as a probe to measure a parameter of a physical
system (see Fig. 1). As in that case, all quantum limits
scale as some inverse power on N , and only “intense”
light, described by quantum states with very high N values,
is worth considering when one wants to reach ultrahigh
measurement sensitivities. It turns out that, so far, only
multimode Gaussian states are the available nonclassical
states of light with a very high mean photon number. They
include quantum resources such as multimode squeezing and
multipartite entanglement that are widely used in quantum
optics and quantum information processing. These states are
already generated experimentally with impressive amounts
of squeezing [14] and entanglement [15] shared by many
modes [16]. When they include a coherent state in one of
the modes, the mean photon number N can be easily as large
as 1016 [17].

The originality of the present approach is its multimodal
character. A multimode quantum state is defined not only
by the value of the coefficients of its decomposition on the
multimode Fock state basis |n1,n2, . . . ,n�〉 but also on the
spatiotemporal shape of the different modes on which these
Fock states are defined. This leaves us two kinds of degrees of
freedom on which to act: As we will see below, the ultimate
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FIG. 1. (Color online) General scheme for estimating light
parameters.

sensitivity is obtained not only by choosing the best possible
Gaussian quantum state, but also by putting this state in an
optimized mode basis.

Expression of the quantum Cramér-Rao bound for pure
states. Our aim is to measure the smallest possible variation
of a parameter θ around a given value that we take to be 0
by an appropriate change of origin. The quantum state which
contains the information about this parameter is described by
a density matrix ρ̂θ . The error in the estimation of θ based on
Q repeated measurements of an observable Â on this state is
given by [18]

δθ =
〈
δA2

est

〉1/2
θ√

Q
∣∣ ∂
∂θ

〈Aest〉θ
∣∣ , (1)

where Aest is an unbiased estimator of θ that depends on
the results of the measurements of Â. By optimizing over all
estimators Aest and all measurements, Braunstein and Caves
[18] showed that the best achievable sensitivity for measuring
a small variation of θ is bounded by the so-called quantum
Cramér-Rao (QCR) bound

δθ � δθmin ≡
(

2
√

Q
s(ρ̂θ ,ρ̂θ+dθ )

dθ

)−1

, (2)

where s(ρ̂θ ,ρ̂θ+dθ ) is the Bures distance between ρ̂θ and ρ̂θ+dθ ,
which, in the case of pure states |ψ1〉 and |ψ2〉, is equal to√

2(1 − |〈ψ1|ψ2〉|).
Let us now consider a pure quantum state of light |ψθ 〉

spanning over M different spatial or temporal modes {vi(r,t)}
(i = 1, . . . ,M). For mixed states with parameter-independent
mixing probabilities, the sensitivity can at most be as good
as for the pure states from it is mixed [19]. We call âi the
annihilation operator in the mode vi , and introduce the quadra-
ture operators x̂i = âi + â

†
i and p̂i = i(â†

i − âi). We define the
column vectors x̂ = (x̂1, . . . ,x̂M )�, p̂ = (p̂1, . . . ,p̂M )�, and
X̂ = (x̂,p̂)�.

The overlap between the states |ψθ 〉 and |ψθ+dθ 〉 reads

|〈ψθ |ψθ+dθ 〉|2 = (4π )M
∫

Wθ (X)Wθ+dθ (X)d2MX, (3)

Wθ being the Wigner function of |ψθ 〉:

Wθ (x,p) = 1

(2π )M

∫
eiξ .p〈x − ξ |ψθ 〉 〈ψθ | x + ξ 〉dMξ . (4)

At second order in dθ , it is equal to

|〈ψθ |ψθ+dθ 〉|2 � 1 − dθ2

2

(
(4π )M

∫
[W ′

θ (X)]2d2MX
)

. (5)

The first order vanishes because the states are pure. Throughout
this Rapid Communication, for any function depending on the

parameter θ , we use the convention f ′
θ ≡ ∂f

∂θ
|θ=0, regardless of

what other explicit variables f might depend on.
This leads to the QCR bound for pure states

δθmin =
(

2Q(4π )M
∫

[W ′
θ (X)]2 d2MX

)−1/2

. (6)

This intermediate result is very interesting as it gives a simple
expression of the QCR bound for any pure quantum state. In
the remainder of this Rapid Communication, we will apply
this formula to Gaussian states.

QCR bound for pure Gaussian states. For a Gaussian state
|ψθ 〉, the Wigner function takes the form

Wθ (X) = 1

(2π )M
exp

(
−1

2
(X − Xθ )��−1

θ (X − Xθ )

)
, (7)

where Xθ is the column vector of the expectation values of the
quadratures for the different modes, and �θ the symmetrized
covariance matrix. As we treat the problem in all its generality,
both possibly depend on θ . One finds from (6)

δθmin = Q−1/2

⎛⎝X
′�
θ �−1

θ X
′
θ +

tr
((

�′
θ�

−1
θ

)2
)

4

⎞⎠−1/2

. (8)

The expression in the large parentheses of Eq. (8) corresponds
to the quantum Fisher information IFisher for a pure Gaussian
state. It is made of two terms which represent the information
about θ that can be extracted respectively from the mean
field and from the noise. In the limit of very large values
of N , more precisely, when the quantum field fluctuations
are so small compared to N that one can treat them to first
order, the second term turns out to be negligible compared
to the first, and we will neglect it from now on. This
approximation is a consequence of the practical approach we
consider in this Rapid Communication and corresponds to
realistic experimental implementations. Let us stress that such
a linearization procedure has been widely used in the literature
to determine the Gaussian quantum state which is produced
by nonlinear effects such as parametric down-conversion or
four-wave mixing.

Let us now use our freedom of choice of the mode basis in
which to describe the quantum state: We will see that IFisher

can be expressed in more physical terms if one introduces a
mode basis {̃vi(r,t)} specific to our problem. We first define
the normalized mean photon field mode as

uθ (r,t) = aθ (r,t)
‖aθ‖ , (9)

where â(r,t) = ∑
i âivi(r,t) is the local annihilation operator,

aθ (r,t) = 〈ψθ | â(r,t) |ψθ 〉 the mean photon field, and ‖aθ‖ its
norm:

‖aθ‖ =
(∫

|aθ (r,t)|2 d2r dt

)1/2

, (10)

where the spatial integration is made over a surface perpen-
dicular to the light beam propagation, and the time integration
over the detection time. In the limit of a narrow-band field, the
mean photon field mode uθ is proportional to the mean value
of the electric field in the θ -dependent quantum state.

010101-2



RAPID COMMUNICATIONS

ULTIMATE SENSITIVITY OF PRECISION . . . PHYSICAL REVIEW A 85, 010101(R) (2012)

We can now define the detection mode by

ṽ1(r,t) = a′
θ (r,t)
‖a′

θ‖
. (11)

One then completes the basis starting with mode ṽ1 by other
orthonormal modes ṽn>1. The modes ṽn do not depend on θ

since the derivative in (11) has been taken at the value θ = 0.
The expression for the Fisher information in the {̃vi(r,t)}

mode basis is very simple as it involves only one matrix
element of �−1

θ :

IFisher = 4�−1
θ=0,[1,1]‖a′

θ‖2, (12)

where �−1
θ=0,[1,1] is the first left, top element of the matrix �−1

θ

in the basis {̃vi(r,t)} taken at the value θ = 0 of the parameter.
In particular, the Fisher information for a single measure-

ment involving a coherent state (�θ = 1), which we will call
I0, is found to be

I0 = 4‖a′
θ‖2 = Nθ

[
4‖u′

θ‖2 +
(

N ′
θ

Nθ

)2
]

, (13)

where Nθ = ‖aθ (r,t)‖2 is a quantity that tends to the mean
photon number N in the high N limit where fluctuations can
be linearized. We obtain finally the following expression of the
QCR bound for parameter estimation using quantum Gaussian
states:

δθmin =
{

QNθ

[
4‖u′

θ‖2 +
(

N ′
θ

Nθ

)2
]

�−1
θ,[1,1]

}−1/2

. (14)

It depends on three factors: The first one is as usual the mean
total number of photons measured QNθ . The second one is
related to the variation as a function of θ of the displacement
of the mean-field mode and the mean photon number. The
more the light properties are affected by the variation of θ ,
the better the sensitivity one can expect for its estimation.
While the general argument is obvious, the explicit formula
(14) is not. The last factor is the influence on the measurement
of the quantum fluctuations of the state, which is remarkably
contained in a single element of the inverse covariance matrix
in our specific mode basis.

Optimized multimode Gaussian state for parameter estima-
tion. Let us now discuss under which conditions nonclassical
multimode Gaussian states can be put to best use in the
estimation of θ . We will take the point of view of an ex-
perimentalist who wants to use the minimum possible amount
of quantum resources that allow him to reach the QCR bound.
He will start from the simplest way known to date to generate
multimode quantum Gaussian states [20], which consists in
linearly mixing several single-mode squeezed beams produced
by independent “squeezers,” such as degenerate parametric
amplifiers. We will call σ 2

min the smallest quadrature noise
among all these squeezed modes. σ−2

min is the largest eigenvalue
of the inverse covariance matrix in the initial basis of the
independent squeezed modes. With the help of linear couplers,
i.e., of a θ -dependent unitary transformation of the mode basis,
the multimode squeezing can be transformed into a multimode
entangled and/or squeezed Gaussian state in a mode basis, the
spatiotemporal shape of which can also be tailored at will [21].
One can show that, under such unitary transformations, the

diagonal matrix elements of the inverse of the covariance
matrix are bound by the spectral radius of �−1

θ=0, which is equal
to 1/σ 2

min. Equality is reached only if the detection mode 1 is an
eigenmode of the covariance matrix with the eigenvalue σ 2

min,
and thus when the most squeezed state is put in the detection
mode, with no quantum correlations with any other mode. The
QCR bound corresponding to the quantum resources that we
have just described is thus

δθmin = σmin√
QNθ

[
4‖u′

θ‖2 +
(

N ′
θ

Nθ

)2
]−1/2

. (15)

We have shown here an important result: The only way to
saturate the Cramér-Rao bound in the configuration that we
have just described is to put the most squeezed state available
into the detection mode and not to have correlations with
the other modes. The presence of other squeezed modes, or
of any kind of entanglement, will not help to improve the
sensitivity: One cannot take advantage of squeezed fluctuations
or quantum correlations coming from different modes to
improve the estimation of a single parameter when dealing
with intense light [22]. We therefore advise experimentalists
to produce a single vacuum squeezed state, to put it in the
detection mode, and to mix it with a coherent state of high
mean photon number N in the mean photon field mode uθ (r,t).
Doing that, they will be sure that nobody else will make a more
sensitive estimation of the variation of θ around 0 for a given
shape uθ (r,t) of the mean field.

A possible experimental implementation that reaches the
QCR bound. The determination of the quantum Cramér-Rao
bound is very general and does not tell us which kind of
detection, and which kind of measurement strategy, is to be
used in order to reach it. We show here that a homodyne
detection scheme in which the local oscillator is precisely taken
in the detection mode allows us to reach the QCR bound. We
stress that this is not the only possible detection that achieves
the QCR bound; for example, a phase-conjugate interferometer
reaches the QCR bound for phase estimation [7]. However, a
homodyne detection scheme is a more general technique that
reaches the QCR bound for any arbitrary parameter θ .

If one uses an intense local oscillator in mode ṽ1, the
balanced homodyne detection operator, for a null relative phase
between the local oscillator and the measured beam, is given
by D̂ = ˆ̃x1

√
NLO, where NLO is the mean photon number of

the local oscillator and ˆ̃x1 the real quadrature operator of the
mode ṽ1. A balanced detection setup therefore allows us to
measure the projection of a multimode field on the oscillator
mode, even in the presence of many other modes.

For a small variation of the parameter θ around 0 the mean
value of the homodyne signal is given by

〈D̂〉θ =
√

NLO〈 ˆ̃x1〉θ
= 2

√
NLO Re

(∫
ṽ∗

1aθ d2r dt

)
(16)

using the orthonormality properties of the mode basis {̃vi(r,t)}.
As

aθ ≈ aθ=0 + θ a′
θ , (17)

one finally gets by using the orthonormality properties of the
mode basis {̃vi(r,t)}, and the fact that

∫
u∗

θu
′
θ d2r dt is a purely
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imaginary number,

〈D̂〉θ =
√

NLO

(√
I0θ + 2

N ′
θ√
I0

)
. (18)

The homodyne signal, suitably calibrated, is therefore an
estimator of θ . Because of the additional term in (18), the
estimation is biased. We then introduce the unbiased estimator
θ̃ of θ ,

θ̃ = 〈D̂〉θ − D0√
NLOI0

, (19)

where D0 is the mean value of D̂ for θ = 0. Considering the
case when the light state is squeezed in the detection mode by
a factor σ 2

min and assuming a unity signal-to-noise ratio, the
sensitivity of the homodyne measurement can be shown to be

δθhomodyne = σmin√
Nθ [4‖u′

θ‖2 + (N ′
θ /Nθ )2]

, (20)

which is indeed equal to the QCR bound (15) for a single
measurement.

In conclusion, we have derived the expression of the
ultimate limit for parameter estimation using pure Gaussian
intense multimode states. We have shown that this limit can
be reached with the help of a balanced homodyne detection
scheme. We have also shown that multimode squeezing and
multipartite entanglement are of no help, and that it is very
important to shape in the best way the mode in which to
put the nonclassical Gaussian state in order to reach the
ultimate limit in the most economical way. These results
are good news for the experimentalists because single-mode
highly squeezed Gaussian states can be readily generated
experimentally and because a simple homodyne detection
scheme, easily achievable in a laboratory, is sufficient for
reaching the best possible sensitivity.
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