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Three-body hyperspherical method with infinite angular expansions

Hui-Li Han, Li-Yan Tang, and Ting-Yun Shi
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
(Received 12 October 2010; published 16 December 2011)

The hyperspherical method based on infinite angular expansions is introduced. We approximate the cusp
behavior of a wave function using B-spline techniques. Calculations for the ground-state energies of the
atomic helium and the e+Li system are presented as two examples for testing this method. The computed
ground-state energy of He is −2.903 724 a.u. with single particle orbitals lmax = 8. For the e+Li system, with
lmax = 9, the ground-state energy is −0.250 83 a.u., which is better than the configuration interaction result of
−0.250 107 82 a.u. with lmax = 30.
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I. INTRODUCTION

Configuration interaction (CI) is one of the most popular
methods in atomic structure calculations for systems involving
several electrons. In CI the electron-electron potential is
expanded as
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4π
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rλ
<
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>
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Y ∗
λm(r̂1)Yλm(r̂2), (1)

where r< = min(r1,r2) and r> = max(r1,r2). The above ex-
pansion indicates that many partial waves are needed to achieve
an accurate result, which makes radial and angular calculations
converge very slowly.

To improve the rate of convergence of CI, Goldman
introduced the modified CI (MCI) method which has two major
changes to the standard CI: (1) building r> and r< in a basis
set to represent the cusp behavior of the wave function and
(2) mixing a large number of spherical configurations through
optimizing a set of nonlinear variational parameters [1,2]. As
a result, a better convergence has been obtained over CI. The
main problem with MCI is that when the number of angular
functions is very large, such as around 300, it becomes difficult
to maintain numerical accuracy. This problem was overcome
by using the infinite angular expansion method (IAE), in which
a vast simplification is introduced using nonlinear functions in
the angular basis [3].

On the other hand, the hyperspherical method is an efficient
way to study strongly correlated few-body systems. It has
been used successfully in atomic and molecular three-body
systems [4–8]. However, the application of the hyperspherical
method to four-body systems has not yet reached the level
of accuracy compared to three-body systems because the
hyperspherical method in a body-fixed frame is complicated
and cannot be easily extended to a four-body system. The
hyperspherical approach in a laboratory frame, however, can
be applied to four-body systems directly with angular basis
sets expanded using CI. There is, therefore, an important issue
of how to improve angular convergence if one wants to extend
the hyperspherical method to a four-body system.

In this Brief Report, we apply the IAE-based hyperspherical
method to calculate the ground state energies of He and e+Li.
Our intention is to show the efficiency of the present approach

applied to three-body systems and the possibility of extension
to four-body systems.

II. FORMULATION

In hyperspherical coordinates, the distances of two elec-
trons from the nucleus, r1 and r2, are replaced by the hyper-
radius R =

√
r2

1 + r2
2 and the hyperangle α = arctan(r2/r1).

The angle α together with the usual polar coordinates (θ1,φ1)
and (θ2,φ2) of the two electrons are represented collectively as
� = (α,θ1,φ1,θ2,φ2). The Schrödinger equation is as follows
[9] (
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V (R,�) is the potential of the system.
The adiabatic potentials Uν(R) and the corresponding

channel function �ν(R,�) at the fixed R are obtained by
solving the following eigenvalue equation

Had (R,�)�ν(R,�) = Uν(R)�ν(R,�) . (5)

In this Brief Report, we use B-spline basis functions to
expand the channel function

�ν(R,�) =
Nα∑
i=1

lmax∑
j=1

cν
i,jBi,k(α)Fj (�), (6)

where Bi,k(α) are B-spline functions and k denotes the order
of B splines. We choose the following angular functions, as
proposed by Goldman and Glickman [3],

Fj (�) = 
LM
l1j l2j

(r̂1,r̂2)eγj cos θ12 , (7)
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TABLE I. Radial convergence for the ground state of helium using the present method and comparisons with other results.

Nα NDVR Nc E (a.u.)

40 30 20 −2.879 028 767 296 9
40 40 30 −2.879 028 767 308 5
40 50 30 −2.879 028 767 313 1
40 50 40 −2.879 028 767 314 2
Natural orbital CI [13] −2.879 026 4
CI with splines [12] −2.879 028 767 29
Radially uncoupled CI [14] −2.879 028 767 319 214 408 538

where 
LM
l1j l2j

(r̂1,r̂2) is


LM
l1j l2j

(r̂1,r̂2) =
∑
m1m2

〈l1jm1l2jm2 | LM〉Yl1j ,m1 (r̂1)Yl2j ,m2 (r̂2).

(8)

The function eγj cos θ12 can be expanded in the form

eγj cos θ12 =
∞∑
l=0

(2l + 1)ul(γj )Pl(cos θ12), (9)

with the normalized coefficient

wl(γ ) = 1

[u0(2γ )]1/2
(2l + 1)ul(γ ). (10)

Pl(cos θ12) is the Legendre polynomial and ul(γj ) is the
modified spherical Bessel function of the first kind

ul(z) =
(

π

2z

) 1
2

Il+ 1
2
(z) = (−i)ljl(iz). (11)

The use of eγj cos θ12 , which satisfies specific expansion and
associative conditions [3], will enhance angular convergence.
The angular matrix elements can be evaluated analytically
using the orthonormality of 
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and the relation
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where bL
lj k;l = bL

l1j l2j k1k2,l
, and the form of it can be found in

Ref. [3]. The matrix elements of the single-particle angular
momentum operator l̂2

n (n = 1,2) between two basis members
Fj ′ and Fj , can be reduced to
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We mention that there is a misprint in Eq. (13) in Ref. [3]. The
term γj

∑
k1,k2

kn(kn + 1)bL
lj ′ k;1b

L
lj k;q should have a plus sign.

The solution ψ(R,�) of Eq. (2) can be expanded in terms
of point-wise discrete variable representation (DVR) basis
functions πj (R)

ψ(R,�) =
NDVR∑
j=1

Nc∑
μ=1

cjμπj (R)�μ(Rj ,�), (14)

where NDVR is the number of terms in the DVR basis set and Nc

is the number of coupled channels. Equation (2) can be solved
using the slow variable discretization (SVD) method [10].

III. RESULTS AND DISCUSSIONS

The atomic helium is a benchmark system for testing our
method. Due to the Pauli exclusion principle, for the 1S state,
the space part of the wave function must be symmetric with
respect to the exchange of two electrons. In hyperspherical
coordinates this can be satisfied by reducing the interval
of α from 0 � α � π

2 to 0 � α � π
4 with proper boundary

conditions. Because of the singularities of the electron-electron
potential [see Eq. (1)], the basis sets need to include the cusp
behavior of a wave function [11]. In the present method,
the cusp behavior can be described handily by adopting k

coincident knots at α = π
4 . As a result, the radial convergence

can be improved dramatically, which can be tested by keeping
only the terms with λ = 0 in the expansion of r−1

12 . The results
are shown in Table I. From the table, we can see that the present
result is converged to 10−11 in double precision arithmetic.
Decleva et al. [12] also performed the radial convergence test
using B-spline basis sets but with no special treatment on
the singularities. Their result is found to be accurate to 10−8.
We can see that our method can deal with radial correlations
more efficiently. With Nα = 60, lmax = 8 (lmax is the number
of the partial wave), Nc = 20, and NDVR = 60, using our
approach the ground-state energy of He can be calculated to
−2.903 724 21, which is close to the value of −2.903 724 287
given by the authors of Ref. [2]. Thus, the present method
could work well for ordinary three-body systems.

Next we consider the e+-Li system, a two-center problem,
which is more difficult to deal with than ordinary three-body
systems. In this system, the electron-positron correlations are
so strong that they are coalescing into a Ps cluster. The accurate
representation of the Ps cluster by single-particle functions
requires the inclusion of high angular momentum quantum
numbers. As noted by Bromley et al. [15], they used lmax = 30
to obtain a definite evidence of forming a bound state for
e+Li in their CI calculations. Thus, the present method may
be considered to be more efficient if it could be applied to
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TABLE II. Comparisons of the calculated bound state energies of
Li to the experiment values and other results. All values are in atomic
units.

Present Bromley [15] Experiment [17]

2s −0.197 952 −198 115 0 −0.198 14
2p −0.130 218 −0.130 015 2 −0.130 24
3s −0.074 224 −0.074 162 2 −0.074 18
3p −0.057 242 −0.057 156 0 −0.057 24
3d −0.055 615 −0.055 611 8 −0.055 61
4d −0.031 279 −0.031 264 2 −0.031 27

the e+-Li system. We attempt to improve convergence in
two directions: the angular correlations as included in the
IAE method and the radial correlations as represented by
optimizing the knot distribution of B splines. The guiding
principle of distributing knots is to put more knots near the
particle-particle coalescence points and use k − 2 coincident
knots at α = π

4 so that the radial cusp behavior of the wave
function can be sufficiently described. The e+-Li system is
treated as an effective three-body system consisting of a core,
an electron, and a positron. The core is assumed to have infinite
mass. We adopt the model potential given by Peach et al. [16]
to describe the interaction between the core and electron.
Using this model potential, we have calculated the energies
of the ground and excited states of Li by diagonalizing the
Hamiltonian using B-spline basis functions. The calculated
energies are nicely comparable with the experimental results,
as shown in Table II.

Table III shows the angular convergence of the ground-state
energy of e+Li obtained in this work and the CI calculations
[15]. Basis sets with Nα = 130, Nc = 15, and NDVR = 60
are used in our calculations. We have made an extensive
convergence study for the ground-state energy with respect to
the basis sets and we ensured that the ground-state energy has
converged to four significant figures. From the table, we can see
that our results converge faster than those obtained by CI. With
only lmax = 9 generalized angular functions, the calculated
energy is −0.250 83 which is lower than −0.250 107 82

TABLE III. Comparison of the ground-state energy of e+Li
and angular convergence obtained in this work and from the CI
calculations [15]. lmax refers to the largest angular momentum used.
All values are in atomic units.

lmax Present CI [15]

9 −0.250 83 −0.241 605 76
10 −0.251 02 −0.243 023 09
11 −0.251 70
12 −0.251 73 −0.245 116 08
13 −0.251 99
15 −0.252 16(24) −0.247 561 64
30 −0.250 107 82
CI(14) [18] −0.242 087 11
CI-HY [19] −0.229 499
FEM [22] −0.252 37(10)
Hyper [23] −0.252 447
FCSVM [20,21] −0.252 477

obtained using CI [15] with lmax = 30. The large difference
is mainly due to different methods used because the influence
caused by the model potentials is small. From Table II, we
can see that the bound-state energies of Li obtained by using
different model potentials are close to each other. Table III
also lists two CI-type calculations, where CI(14) is the result
obtained by Bromley et al. [18] using the CI method with
single particle orbitals lmax = 14 and CI-HY is the result
obtained by Clary [19] using the CI plus Hylleraas approach.
Note that these two CI-type approaches fail to predict the
existence of bound states in e+Li. We also list the results by
the finite element method (FEM), the hyperspherical method,
and the fixed core stochastic variational method (FCSVM)
[20–23]. Though the present results have not converged to
the value given by the non-CI methods, in the framework of
CI calculations, we can see that the efficiency of the present
method is superior to that of the standard CI.

The normalized coefficient in the expansion of Eq. (9)
will give the relative distribution of different values of l.
This distribution is presented in Fig. 1, where each curve
corresponds to one value of γ . The mixing of different angular
orbitals is clearly seen. The larger the value of γ , the larger the
value of l is mixed. Notice that with 15 generalized angular
functions, at least 80 angular functions are mixed.

The extension of the present method to atomic four-body
systems, such as e+He, is straightforward. In contrast to the
proposal seen in Ref. [3], we suggest that the angular functions
should be written as follows

Fj (1,2; 3) = 

K12LM
l1j l2j l3j

(1,2; 3)

× (eγ1j cos θ12 + eγ2j cos θ23 + eγ3j cos θ31 ), (15)

where 

K12LM
l1j l2j l3j

(1,2; 3) has the following form:



K12LM
l1j l2j l3j

(1,2; 3)

=
∑

M12,m3j

〈K12M12l3jm3j | LM〉
K12M12
l1j l2j

(r̂1,r̂2)Yl3j m3j
(r̂3).

(16)

FIG. 1. Relative distribution of single-orbital angular functions
for a basis set with 15 exponential-type generalized angular functions.
l refers to the quantum number of Pl(cos θ12), and wl is the normalized
coefficient in the expansion of eγ cos θ12 .
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Using the recoupling transformations



K12LM
l1j l2j l3j

(1,2; 3) =
∑
K23



K23LM
l1j l2j l3j

(2,3; 1)(−1)l1j +l2j +l3j +L

× [K12,K23]1/2

{
l1j l2j K12

l3j L K23

}
, (17)



K12LM
l1j l2j l3j

(1,2; 3) =
∑
K13



K13LM
l1j l3j l2j

(1,3; 2)(−1)l1j +l2j +l3j +L

× [K12,K13]1/2

{
l2j l1j K12

l3j L K13

}
, (18)

and Eq. (12), closed-form expressions for angular matrix
elements can also be found easily.

IV. CONCLUSION

In conclusion, we have described the hyperspherical
method based on the infinite angular expansions. We have
approximated the cusp behavior of a wave function using

B-spline techniques. Calculations of the ground-state energies
for He and e+Li have been performed as examples to test
the method. The calculated ground-state energy of He is
−2.903 724 a.u. with single particle orbitals lmax = 8. For
e+Li, the ground-state energy is −0.250 83 a.u. with lmax = 9,
which is better than the CI calculation of −0.250 107 82 a.u.
with lmax = 30. It can be seen that the present method is
superior to that of standard CI. We have also discussed the
extension of the present method to systems involving more
than two electrons and suggest a new combination mode of
angular functions.
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